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Spectral Conflicts
Desired properties of a spectral estimator


Low bias


Consistent


Efficient (Cramér-Rao lower bound)


Statistically characterizable


Robust


NO METHOD CAN SIMULTANEOUSLY 
ACHIEVE ALL OF THESE GOALS



Two Classes of 
SpectralEstimator

Parametric


Based on a time series model


Autoregressive, moving average, ARMA


Nonparametric


Based on Fourier transform


Indirect (based on acvs)


Direct



Indirect Estimator

Compute


Multiply by a lag window L(n)


Take the Fourier transform


Result is power spectrum by the Wiener-
Khintchine Theorem

sn =
1

N − n
xkxk+n

k=0

N−1−n

∑



Indirect Estimator
Equivalent to extended periodogram


Extend N point time series with N+1 
zeroes


Take Fourier transform and square the 
coefficients


 


Badly biased due to default window


Obsolete and should never be used

ŜI f( ) = L̂ f( )⊗ sin 2π f( )
2π f

⊗ x̂ f( )
2



1000 samples of barometric pressure with δt = 10 s


Blue is periodogram

Red is multitaper estimate with TBW of 8
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Figure 1. (a) A comparison of a multitaper spectrum with a periodogram. The curve marked ‘P’ shows a periodogram of 1000
samples of barometric pressure data sampled at δt = 10.0 s during 26 April 2006. The superimposed black curve shows its
average over±1 Rayleigh resolution. The curve marked ‘MT’ is a multitaper estimate made with a time–bandwidth product
CR = 8.0 and K = 12 tapers. The two estimates di'er by a factor of at least 1000 across most of the frequency range and by
more than 107 at higher frequencies. Note that the approximately )at part of the spectrum above 35mHz is due to quantization
noise. (b) Part of a higher resolution spectrum of barometric pressure from Piñon Flat Observatory (PFO), California, USA. The
raw data at 1min resolution were pre-whitened with an AR-1 prediction error ,lter, then a multitaper spectrum with CR = 5
and K = 8 tapers computed using all 123 454 available samples. To keep the spectrum level, it has not been corrected for pre-
whitening, so the scale is arbitrary. The average and signi,cance levels (for a centralχ 2

16) are estimated from the lower 5% levels
and checked against themedian. The vertical dashed linesmarked 0T7 and 0S7 are normalmodes of the Earth, and thosemarked
P2,7, P0,8 and P3,7, the central frequency of solar p-modes. (Online version in colour.)

Figure 1b shows a small part of a spectrum made using 85.7 days of data from a similar
microbarograph at PFO in California, USA, and it may be seen that it contains numerous discrete
lines whose frequencies correspond closely to those of the normal modes of the Earth and Sun.
(Some of the others are splittings of the solar modes by ±1 cycle/day, 11.57 µHz.) The frequencies
in pressure are at slightly lower frequencies than those of the solar or seismic modes, possibly due
to the Doppler effect. There are many solar p-modes on this range but, for simplicity, only those
with spherical harmonic degree l ≤ 3 plus two normal modes of the Earth are marked. The largest
peak, corresponding to the solar P2,7 mode at 1250.555 ± 0.003 µ Hz [49], is about 3.78 times the
estimated background level. This spectrum was made using K = 8 tapers, so is approximately χ2

16
distributed. The probability of such a peak occurring by chance is ! 4 × 10−7, very improbable
in a sample from 123 000 points. There are 14 other peaks above the 99% level in this figure.
Noting that the 120 µHz frequency span of figure 1 corresponds to 890 Rayleighs and looking
forward to figure 2 in §4, if the data were random one would expect an average of 5.3 peaks
above the 99% level, not 15. This is one of many such examples. Fig. 11 of [6] and fig. 1 of [11]
show even higher peaks in the BFO pressure spectrum and in that of solar wind density from
the Advanced Composition Explorer (ACE) spacecraft, respectively. Both peaks correspond to
the solar P0,2 mode, so seeing solar mode peaks in terrestrial data is common.

The point of these examples is that multitaper estimates allow study of scientific phenomena
that was not feasible with the estimates available in the 1970s. A major driver of spectrum
estimation methodology has been the improvements in data quality, sampling rates and sample
size. For example, in 1967 appendix 1 of Bogert et al. [50] compares hand-digitized data with three-
and four-digit voltmeters (10–13 bits) in contrast to the 24-bit data used here.

 on April 24, 2014rspa.royalsocietypublishing.orgDownloaded from 

Thomson and Haley 2014



Direct Estimate

Uses data taper d (choose your favorite)


Lag window <-> convolutional smoother W


Band averaged estimator


Obsolete and should not be used

ŜD f( ) = Ŵ f( )⊗ d̂ f( )⊗ x̂ f( )
2



WOSA

Welch overlapped section averaging


Divide a long time series into short, 
overlapped sections


Average Fourier transforms of the sections


Can be robustified



Summary

Parametric methods require information that 
is not usually available


Indirect methods are obsolete


Band-averaged direct methods are obsolete


WOSA is a good choice when frequency of 
interest is not of order one over the time 
series length



Multitaper Method
Proposed by David Thomson in 1982


Small sample theory with sample size explicit


Quantifiable bias


Consistent without ad hoc smoothing


Resolution is well defined


High variance efficiency


Data adaptive


Line and stochastic components co-exist



Fourier Transform Pair

xn = e
i2π f n−N−1

2
⎛
⎝⎜

⎞
⎠⎟

−1/2

1/2

∫ X f( )df

X f( ) = xn
i=0

N−1

∑ e
− i2π f n−N−1

2
⎛
⎝⎜

⎞
⎠⎟

X(f) is an entire function of frequency, and not 
defined only at k/N!



Cramér Representation

xn = e
i2π f n−N−1

2
⎛
⎝⎜

⎞
⎠⎟

−1/2

1/2

∫ dZ f( )

E dZ f( )⎡⎣ ⎤⎦ = µi
i=1

L

∑ δ f − fi( )

E dZ f( ) 2⎡
⎣

⎤
⎦ = S f( )df

E dZ f( )dZ ′f( )⎡⎣ ⎤⎦ = 0

Time sequence that is generated by the 
superposition of random infinitesimal harmonic 
oscillators has the spectral representation



Fundamental Equation of Spectral 
Analysis

X f( ) = sinNπ f −ν( )
sinπ f −ν( )−1/2

1/2

∫ dZ ν( )

Spectral analysis is estimation of

the expected value of |dZ|2

Integral equation of the first kind

Harmonic analysis is estimation of

the expected value of dZ



First Kind Integral Equation

Exact solutions do not exist


Approximate solutions must be sought


Analogy to inverse problem although problem 
is quadratic



Generic Integral Equation

y x( ) = K x, ′x( )z ′x( )d ′x
a

b

∫

K x, ′x( ) = K ′x , x( )

K x, ′x( )ψ k ′x( ) d ′x = λk
a

b

∫ ψ k x( )

ẑ x( ) = λk
−1 y ′x( )ψ k ′x( )d ′x

a

b

∫
⎡

⎣
⎢

⎤

⎦
⎥

k
∑ ψ k x( )

λk->0 as k->N



Slepian Functions

sinNπ f −ν( )
sinπ f −ν( )−W

W

∫ Uk N ,W ;ν( )dν = λk N ,W( )Uk N ,W ; f( )

sinNπ ( f −ν )
sinπ ( f −ν )−1/2

1/2

∫ Uk (N ,W ;ν ) dν =Uk (N ,W ; f )

Uk N ,W ; f( )
−W

W

∫ Ul N ,W ; f( )df = λk δ kl

Uk N ,W ; f( )
−1/2

1/2

∫ Ul N ,W ; f( )df = δ kl



Slepian Functions
W or NW is free parameter that

defines the inner domain [-W,W)

Eigenvalues are real, distinct 
and finite in number

1 > λ0 >...> λN-1

First 2NW eigenvalues are nearly 1, then 
decay exponentially to 0

Eigenvalues give the fractional energy 
concentration in [-W,W) of the 
corresponding Slepian function



Slepian Sequences

vn
k( ) N ,W( ) = 1

ε kλk N ,W( ) Uk N ,W ;( ) f e
i2π f n−N−1

2
⎛
⎝⎜

⎞
⎠⎟

−W

W

∫ df

vn
k( ) N ,W( ) = 1

ε k
Uk N ,W ; f( )e

i2π f n−N−1
2

⎛
⎝⎜

⎞
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−1/2

1/2

∫ df



Numerical Solution

Slepian (1978) gives a tridiagonal analog for 
the Slepian sequences


 


Eigenvalues follow from 

Uk N ,W ; f( ) = ε k e
− i2π f n−N−1

2
⎛
⎝⎜

⎞
⎠⎟

n=0

N−1

∑ vn
(k ) N ,W( )

Uk
2 N ,W ; f( )

−W

W

∫ df = λk
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Multitaper Recipe
Choose the resolution bandwidth W = r/N


Fix the upper limit to the number of tapers 
K ≦ 2NW


Compute K raw spectra and average their 
absolute squares frequency-by-frequency

S fo( ) = 1
2NW

λkbk
2 ak fo( ) 2

k=0

K−1

∑

ak fo( ) = ε k vn
(k )

n=0

N−1

∑ xne
− i2π fo n−N−1

2
⎛
⎝⎜

⎞
⎠⎟



Adaptive Weighting

S fo( ) =
λk dk

2 fo( ) ak fo( ) 2
k=0

K−1

∑

λk dk
2 fo( )

k=0

K−1

∑

dk ( f ) =
λk S( f )

λkS( f )+σ
2 (1− λk )

σ 2 = S f( )df
−1/2

1/2

∫



Prewhitening

Time domain filter that reduces the spectral 
dynamic range


Differentiation is simplest example


AR filter is better choice


Useful adjunct



Degrees-of-freedom

ν f( ) = 2 λkdk
2

k=0

K−1

∑ f( )

Prewhitening is essential toward maximizing dof



Harmonic Components

µ̂ f( ) =
Uk N ,W ;0( )ak f( )

k=0

K−1

∑

Uk
2 N ,W ;0( )

k=0

K−1

∑

Power in line is absolute square with 2 dof

Reshaped spectrum after removing line

F f( ) =
ν f( )− 2( ) µ̂ f( ) 2 Uk

2 (N ,W ;0)
k=0

K−1

∑

2 ak f( )− µ̂ f( )Uk (N ,W ;0)
2

k=0

K−1

∑
~F2,ν(f)-2

Σ̂2 f( ) = ak f( )− µ̂ f( )Uk N ,W ;0( ) 2
k=0

K−1

∑



LOD Data
Daily measurements of the change in length 
of day from 1962-01-01 thru 2013-12-31
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Extensions

Bivariate and multivariate


Irregular sampling


Nonstationary processes
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S U M M A R Y
A multitaper estimator is proposed that accommodates time-series containing gaps without
using any form of interpolation. In contrast with prior missing-data multitaper estimators
that force standard Slepian sequences to be zero at gaps, the proposed missing-data Slepian
sequences are defined only where data are present. The missing-data Slepian sequences are
frequency independent, as are the eigenvalues that define the energy concentration within
the resolution bandwidth, when the process bandwidth is [−1/2, 1/2) for unit sampling and
the sampling scheme comprises integer multiples of unity. As a consequence, one need only
compute the ensuing missing-data Slepian sequences for a given sampling scheme once, and
then the spectrum at an arbitrary set of frequencies can be computed using them. It is also
shown that the resulting missing-data multitaper estimator can incorporate all of the optimality
features (i.e. adaptive-weighting, F-test and reshaping) of the standard multitaper estimator,
and can be applied to bivariate or multivariate situations in similar ways. Performance of the
missing-data multitaper estimator is illustrated using length of day, seafloor pressure and Nile
River low stand time-series.

Key words: Fourier analysis; Numerical approximations and analysis; Statistical methods;
Time-series analysis.

1 I N T RO D U C T I O N

The analysis of time-series where the data are sampled at constant
intervals in time (or space) is well understood, and constitutes a core
capability in many fields of science and engineering. A major issue
in time-series analysis is devising a spectral estimator that operates
on a finite sample such that the estimate is not dominated by bias, is
statistically consistent, has a measurable variance and is relatively
immune to small departures from the underlying assumptions. This
problem becomes especially acute when the time-series is short
(i.e. when the required resolution is of order the inverse of the
time-series length), is a mixture of stochastic and deterministic
components or when the spectral dynamic range is large. Under
these circumstances, the multitaper estimator of Thomson (1982)
is the gold standard; see also Percival & Walden (1993, §7–9). The
advantages of the multitaper method include (1) it is a small sample
theory with sample size explicit, (2) its bias is quantifiable, (3) the
resolution bandwidth is well-defined, (4) the variance efficiency is
high, (5) it is data adaptive, so yields a low bias result even where the
spectrum is weak, (6) deterministic or spectral line components can
be accommodated in a straightforward manner and (7) for Gaussian
data, it is approximately maximum likelihood (Stoica & Sundin
1999). In this context, bias primarily means spectral leakage from
frequencies where the spectrum is large to those where it is small,
the resolution bandwidth defines the ability to resolve closely spaced
spectral features, and high variance efficiency refers to the ability

to make use of most of the data. A maximum likelihood estimator
has desirable statistical optimality properties. For a more detailed
review of these statistical concepts, see Chave (2017, §5.2 and 5.4).

The analysis of time-series with missing data (i.e. gaps) is less
well understood. Most of the literature concerns time-series with
one or more periodic components contained in noise. For example,
the Lomb–Scargle periodogram (Lomb 1976; Scargle 1982) was
introduced to analyse astronomical data containing gaps for periodic
components. However, it has been known since the time of Schuster
(1898) that the periodogram is badly biased; see Thomson & Haley
(2014, Fig. 1a) for a spectacular example. Other parametric and
resampling methods have been introduced to accommodate missing
data, as recently reviewed by Babu & Stoica (2010). None of these
provides the performance required for general applications.

However, power spectra of stochastic processes, or mixtures of
stochastic and deterministic processes, are more commonly of inter-
est in the earth and ocean sciences. Fodor & Stark (2000) modified
the standard multitaper estimator by forcing the ordinary Slepian
sequences (OSSs) for a complete time-series to be zero where there
are data gaps. Smith-Boughner & Constable (2012; hereafter SC12)
investigated this approach more deeply, and will be used for com-
parisons in this paper, where it will be shown that such an approach
yields suboptimal data tapers, in the sense that the spectral window
main lobe shape is not substantially square and the sidelobes are
significantly elevated relative to those of the estimator proposed
here.

C© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2165
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Nonstationary Process
Stationary Process
E[dZ( f1)dZ( f2)] = S( f1)δ( f1 − f2)df1df2

Nonstationary Process

E[dZ( f1)dZ( f2)] = SL( f1, f2)df1df2

SL is the Loève spectrum

A non stationary system forced at a given 
frequency will redistribute power to other 
frequencies, and the correlation of the spectrum 
at the two frequencies will be high



Geomagnetic Data

Honolulu Observatory 2001-2


Compute standardized spectrum obtained by 
post-whitening by fitting and removing a 
quadratic polynomial from the MT result


Compute coherence versus both ordinary and 
offset frequency and plotted conditional on 
its true value being zero, meaning no 
nonstationarity
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Solar Normal Modes

Represented by quantum numbers n, l, m


Characterized by central frequency and Q


Pressure modes pn,l,m over 250-5100 μHz


Excited by turbulence -> amplitudes are 
random


Qs of several thousand


Persistence for a couple of months
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H component for Y-D 424-484

Q~400 Q~270
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H component for Y-D 424-484

Q~695



H component for Y-D 358-418



Maxwell will take questions

Lecture notes on MT achave@whoi.edu
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