Multitaper Spectral Analysis: State of the Art

Alan Chave

Spectral Conflicts

Desired properties of a spectral estimator

Low bias

Consistent

Sefficient (Cramér-Rao lower bound)

Statistically characterizable

Robust

NO METHOD CAN SIMULTANEOUSLY ACHIEVE ALL OF THESE GOALS

Two Classes of SpectralEstimator Parametric Based on a time series model
 Autoregressive, moving average, ARMA Nonparametric Based on Fourier transform
 Indirect (based on acvs) Ø Direct

Indirect Estimator

Compute s_n = 1/N-n ∑_{k=0}^{N-1-n} x_kx_{k+n}
Multiply by a lag window L(n)
Take the Fourier transform
Result is power spectrum by the Wiener-

Khintchine Theorem

Indirect Estimator

Equivalent to extended periodogram

Extend N point time series with N+1 zeroes

Take Fourier transform and square the coefficients

$$\widehat{S}_{I}(f) = \widehat{L}(f) \otimes \left| \frac{\sin(2\pi f)}{2\pi f} \otimes \widehat{x}(f) \right|^{2}$$

Badly biased due to default window

Obsolete and should never be used

1000 samples of barometric pressure with $\delta t = 10$ s Blue is periodogram Red is multitaper estimate with TBW of 8

Direct Estimate

 $\hat{S}_D(f) = \hat{W}(f) \otimes \left| \hat{d}(f) \otimes \hat{x}(f) \right|^2$

Uses data taper d (choose your favorite)
Lag window <-> convolutional smoother W
Band averaged estimator
Obsolete and should not be used

WOSA

Welch overlapped section averaging
Divide a long time series into short, overlapped sections
Average Fourier transforms of the sections
Can be robustified

Summary

Parametric methods require information that is not usually available

Indirect methods are obsolete

Band-averaged direct methods are obsolete

WOSA is a good choice when frequency of interest is not of order one over the time series length

Multitaper Method

- Proposed by David Thomson in 1982
- Small sample theory with sample size explicit
- Quantifiable bias
- Consistent without ad hoc smoothing
- Resolution is well defined
- High variance efficiency
- Data adaptive
- Ine and stochastic components co-exist

Fourier Transform Pair

$$x_{n} = \int_{-1/2}^{1/2} e^{i2\pi f \left(n - \frac{N-1}{2}\right)} X(f) df$$

$$X(f) = \sum_{i=0}^{N-1} x_{n} e^{-i2\pi f \left(n - \frac{N-1}{2}\right)}$$

X(f) is an entire function of frequency, and not defined only at k/N!

Cramér Representation

Time sequence that is generated by the superposition of random infinitesimal harmonic oscillators has the spectral representation

$$x_{n} = \int_{-1/2}^{1/2} e^{i2\pi f\left(n - \frac{N-1}{2}\right)} dZ(f)$$

$$\mathcal{E}\left[dZ(f)\right] = \sum_{i=1}^{L} \mu_i \delta(f - f_i)$$
$$\mathcal{E}\left[\left|dZ(f)\right|^2\right] = S(f)df$$
$$\mathcal{E}\left[dZ(f)dZ(f')\right] = 0$$

Fundamental Equation of Spectral Analysis

 $X(f) = \int_{-1/2}^{1/2} \frac{\sin N\pi (f - v)}{\sin \pi (f - v)} \, dZ(v)$

Spectral analysis is estimation of the expected value of $|dZ|^2$ Harmonic analysis is estimation of the expected value of dZ Integral equation of the first kind

First Kind Integral Equation

Section Sec

Approximate solutions must be sought

Analogy to inverse problem although problem is quadratic

Generic Integral Equation

 $y(x) = \int_{a}^{b} K(x, x') z(x') dx'$

K(x,x') = K(x',x)

 $\int_{a}^{b} K(x,x') \psi_{k}(x') dx' = \lambda_{k} \psi_{k}(x)$ $\hat{z}(x) = \sum_{k} \lambda_{k}^{-1} \left[\int_{a}^{b} y(x') \psi_{k}(x') dx' \right] \psi_{k}(x)$

 $\lambda_{k} \rightarrow 0$ as $k \rightarrow N$

Slepian Functions

$$\int_{-W}^{W} \frac{\sin N\pi (f-v)}{\sin \pi (f-v)} U_k(N,W;v) dv = \lambda_k(N,W) U_k(N,W;f)$$

$$\int_{-W}^{W} \frac{\sin N\pi (f-v)}{\sin \pi (f-v)} U_k(N,W;v) dv = U_k(N,W;f)$$

$$\int_{-W}^{W} U_k(N,W;f) U_l(N,W;f) df = \lambda_k \delta_k$$

$$\int_{-1/2}^{1/2} U_k(N,W;f) U_l(N,W;f) df = \delta_{kl}$$

Slepian Functions W or NW is free parameter that defines the inner domain [-W,W) Eigenvalues are real, distinct and finite in number $1 > \lambda_0 > \dots > \lambda_{N-1}$ First 2NW eigenvalues are nearly 1, then decay exponentially to O Eigenvalues give the fractional energy concentration in [-W,W) of the corresponding Slepian function

Slepian Sequences

$$v_{n}^{(k)}(N,W) = \frac{1}{\varepsilon_{k}\lambda_{k}(N,W)} \int_{-W}^{W} U_{k}(N,W;) f e^{i2\pi f \left(n - \frac{N-1}{2}\right)} df$$
$$v_{n}^{(k)}(N,W) = \frac{1}{\varepsilon_{k}} \int_{-1/2}^{1/2} U_{k}(N,W;f) e^{i2\pi f \left(n - \frac{N-1}{2}\right)} df$$

Numerical Solution

Slepian (1978) gives a tridiagonal analog for the Slepian sequences

N=1000 TBW=5

Multitaper Recipe

The choose the resolution bandwidth W = r/N

Fix the upper limit to the number of tapers
K \leq 2NW

Compute K raw spectra and average their absolute squares frequency-by-frequency

$$a_{k}(f_{o}) = \varepsilon_{k} \sum_{n=0}^{N-1} v_{n}^{(k)} x_{n} e^{-i2\pi f_{o}\left(n - \frac{N-1}{2}\right)}$$

$$\overline{S}(f_o) = \frac{1}{2NW} \sum_{k=0}^{K-1} \lambda_k b_k^2 \left| a_k(f_o) \right|^2$$

Adaptive Weighting

$$\overline{S}(f_o) = \frac{\sum_{k=0}^{K-1} \lambda_k d_k^2(f_o) |a_k(f_o)|^2}{\sum_{k=0}^{K-1} \lambda_k d_k^2(f_o)}$$

$$d_k(f) = \frac{\sqrt{\lambda_k S(f)}}{\lambda_k S(f) + \sigma^2 (1 - \lambda_k)}$$

$$\sigma^2 = \int_{-1/2}^{1/2} S(f) df$$

Prewhitening

Time domain filter that reduces the spectral dynamic range

O Differentiation is simplest example

AR filter is better choice

Oseful adjunct

Degrees-of-freedom

 $v(f) = 2\sum_{k=0}^{K-1} \lambda_k d_k^2(f)$

Prewhitening is essential toward maximizing dof

Harmonic Components

$$\hat{\mu}(f) = \frac{\sum_{k=0}^{K-1} U_k(N,W;0) a_k(f)}{\sum_{k=0}^{K-1} U_k^2(N,W;0)}$$

Power in line is absolute square with 2 dof

$$\hat{\Sigma}^{2}(f) = \sum_{k=0}^{K-1} |a_{k}(f) - \hat{\mu}(f)U_{k}(N,W;0)|^{2}$$

Reshaped spectrum after removing line

$$F(f) = \frac{\left(v(f) - 2\right) \left|\hat{\mu}(f)\right|^2 \sum_{k=0}^{K-1} U_k^2(N, W; 0)}{2\sum_{k=0}^{K-1} \left|a_k(f) - \hat{\mu}(f)U_k(N, W; 0)\right|^2} \quad \mathbf{\mathcal{F}}_{2, \nu \text{ (f)}-2}$$

LOD Data

Daily measurements of the change in length of day from 1962-01-01 thru 2013-12-31

Length of Day

TBW=4 K=7

T < 1 month

Extensions

Bivariate and multivariate
 Irregular sampling
 Nonstationary processes

Geophysical Journal International

Geophys. J. Int. (2019) **218**, 2165–2178 Advance Access publication 2019 June 14 GJI General Geophysical Methods

doi: 10.1093/gji/ggz280

A multitaper spectral estimator for time-series with missing data

Alan D. Chave [©]

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. E-mail: achave@whoi.edu

Accepted 2019 June 13. Received 2019 May 1; in original form 2019 May 23

SUMMARY

A multitaper estimator is proposed that accommodates time-series containing gaps without using any form of interpolation. In contrast with prior missing-data multitaper estimators that force standard Slepian sequences to be zero at gaps, the proposed missing-data Slepian sequences are defined only where data are present. The missing-data Slepian sequences are frequency independent, as are the eigenvalues that define the energy concentration within the resolution bandwidth, when the process bandwidth is [-1/2, 1/2) for unit sampling and the sampling scheme comprises integer multiples of unity. As a consequence, one need only compute the ensuing missing-data Slepian sequences for a given sampling scheme once, and then the spectrum at an arbitrary set of frequencies can be computed using them. It is also shown that the resulting missing-data multitaper estimator can incorporate all of the optimality features (i.e. adaptive-weighting, *F*-test and reshaping) of the standard multitaper estimator, and can be applied to bivariate or multivariate situations in similar ways. Performance of the missing-data multitaper estimator is illustrated using length of day, seafloor pressure and Nile River low stand time-series.

Key words: Fourier analysis; Numerical approximations and analysis; Statistical methods; Time-series analysis.

Matlab code available on Mathworks website

Nonstationary Process

Stationary Process $E[dZ(f_1)dZ(f_2)] = S(f_1)\delta(f_1 - f_2)df_1df_2$ Nonstationary Process $E[dZ(f_1)dZ(f_2)] = S_L(f_1, f_2)df_1df_2$ S_L is the Loève spectrum A non stationary system forced at a given frequency will redistribute power to other frequencies, and the correlation of the spectrum at the two frequencies will be high

Geomagnetic Data

Honolulu Observatory 2001-2

- Compute standardized spectrum obtained by post-whitening by fitting and removing a quadratic polynomial from the MT result
- Compute coherence versus both ordinary and offset frequency and plotted conditional on its true value being zero, meaning no nonstationarity

H

Ζ

D

Multitaper spectrum avg for three 60 d sections of data with TBW=5 K=9 Note enhanced variability over 2000–4000 μ Hz (log of 3.3–3.6, periods of 250–500 s)

Solar Normal Modes

- Represented by quantum numbers n, l, m
 Characterized by central frequency and Q
 Pressure modes p_{n,l,m} over 250-5100 µHz
 Excited by turbulence -> amplitudes are random
- Qs of several thousand
- Persistence for a couple of months

Mixture Noncentral/Central χ^2 Fit over 2000-3000 μ Hz

H component for Y-D 424-484

H component for Y-D 424-484

H component for Y-D 358-418

Lecture notes on MT <u>achave@whoi.edu</u>

Maxwell will take questions