

Unveiling a Continent: The US Array Magnetotelluric Program

Paul A. Bedrosian

MTNet EMinar, January 20, 2021

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Roadmap

Background and history

Components of a national-scale array

The U.S. 'National Impedance Map'

Science vignettes

- Active tectonics and fossil margins
- Mineral resource assessment
- Space weather hazards

Building the U.S. magnetotelluric array (MT Array)

NSF funded EarthScope program (2003-2018)

NASA funding (2019-2020)

USGS (2020-?)

EarthScope USArray - the early years

- Science planning began in 1993
- Workshops & community input
- Project plan 2001
- Equipment & facilities (2003-2008) \$70M USD
- Operations & maintenance (2006-2018) \$20M/yr
- MT doubled... but predominantly a seismic experiment

preliminary data, subject to revision. Not for citation or distribution

CIFNTIFIC TARGETS E WORLD'S LARGES IY POINTED SOLID EARTH

SCOPE INTO EARTH

ACQUISITION, CONSTRUCTION INTEGRATION AND FACILITY MANAGEMENT

PROPOS

USArray components & MT

- Transportable array: 70 km spacing, long-period, 3+ week recording
- Backbone array: 7 stations, 2-year recording
- Flexible array: PI-driven science
- Research funding for PI-driven experiments

Education & outreach

Instrumentation

- NIMS instrument (1 Hz sampling rate) start to finish
- Full 5-channel data MT data
- Instrument facility (NGF at OSU) with engineering support (repairs, upgrades, ancillary equipment)
- Low-noise fluxgate sensor

Permitting, QA/QC, site acceptance

- Site selection (cultural noise avoidance, spatial tolerance, etc.)
- In-field QA/QC, 10-day checkup, advanced processing
- Consensus-based site acceptance (10% in ρ_a, 5° in φ from 10-10,000 sec)
- Relocation of 'rejected' stations → 10% grid points relocated

Data acquisition

Definitive data processing

- EMTF processing suite (Dnff, TranMT, MMT)
- Standardized workflow w/ metadata tracking
- Remote-reference and multi-station responses

Identify best short and long-period responses

→ merge to best composite response

Transfer Functions

- 1216 stations and growing
 5-20,000 sec
- https://ds.iris.edu/spud/emtf

Canal

EM Transfer Function Product Query

EM Transfer Function Query Parameters

Products - Help - Citations

Canada Hudson Bay Draw Selection Box Map Satellite MB Canada BC SK ON OC BC SK ON OC Canada MB Canada NC BC SK ON OC Canada MB Canada NC Canada MB MB Canada Canada MB MB Canada Canada Canada MB MB Canada Canada MB MB Canada Canada MB MB Canada Canada MB MB Canada Canada Canada MB Canada Canada Canada Canada M	Legend Data Quality Quality Warn Max Lat 60.69 Min Lon -51.00 Max Lat Min Lon -142.40 -51.00 Max Lat 9.31 Site ID Image: Constraint of the second secon	Release StatusProjectMin IStart Date	Project:USArraySurvey:Transportable ArrayYear Collected:2018ID:CON27Name:Sedgwick, CO, USAElevation:1155.05Latitude:40.97947Longitude:-102.55042Declination:8.6Declination:0.000Release Status:Unrestricted ReleaseAcquired By:National Geoelectromagnetic FacilityData Quality Rating:5Data Quality Commer:2018-10-31 20:06:31End Date:2018-11-10 19:29:56	CON27b_O27coh [LON = -102.5504; LAT = 40.9799 0^{0}
Map data @2021 Google, INEGI Terms of Use	Clear Download EDI 👻		End Date: 2018-11-10 19:29:56	10^{0} 10^{1} 10^{2} 10^{3} 10^{4} Period (secs)

Item Details

Identification Sub Type:

Description:

Product ID:

Citation Info Survey Reference:

Download EDI

Acknowledgements:

Selected Publications:

Release Status:

Conditions of Use:

Site Info

Tags:

Source XML

MT TF

Download XML

Magnetotelluric Transfer Functions

USArray.CON27.2018

Unrestricted Release

impedance,tipper

preliminary data, subject to revision. Not for citation or distribution

Kelbert et al. (2011); Kelbert (2020)

Schultz, A., G. D. Egbert, A. Kelbert, T. Peery, V. Clote, B. Fry, S. Erofeeva and staff of the National Geoelectroma

USArray MT TA project was led by PI Adam Schultz and Gary Egbert. They would like to thank the Oregon State

of Land Management, the U.S. National Parks, the collected State land offices, and the many private landowners 75-MT under NSF Cooperative Agreement EAR-0733069 under CFDA No. 47.050, and IRIS Subaward 05-OSU-S Schultz, A. (2009). EMScope: a continental scale magnetotelluric observatory and data discovery resource. Data

Meqbel, N. M., Egbert, G. D., Wannamaker, P. E., Kelbert, A., & Schultz, A. (2014). Deep electrical resistivity struct Yang, B., Egbert, G. D., Kelbert, A., & Meqbel, N. M. (2015). Three-dimensional electrical resistivity of the north-co

All data and metadata for this survey are available free of charge and may be copied freely, duplicated and further

requirement to cite these papers when the data are used. Whenever possible, we ask that the author(s) are notified

While the author(s) strive to provide data and metadata of best possible quality, neither the author(s) of this data the quality or limitations of the data and metadata, as obtained from the author(s), are included for informational p

Specific Site Reference: Schultz, A., G. D. Egbert, A. Kelbert, T. Peery, V. Clote, B. Fry, S. Erofeeva and staff of the National Geoelectroma

Time Series

https://ds.iris.edu/gmap, network code: _US-MT-TA

Building the US MT Array \rightarrow 2006-present

A consistent framework to build upon

Electric field polarization ellipses \rightarrow 10 sec

Berdichevsky & Dmietriev, 2008

Phase tensors, minimum principal phase \rightarrow 100 sec

Real induction vectors, Parkinson convention \rightarrow 1000 sec

Conductivity model of the contiguous United States (v1.0)

3 km

<mark>■ 100</mark> km

30 km

preliminary data, subject to revision. Not for citation or distribution

Kelbert et al. (2019)

Framework Tectonics

Geologic/tectonic studies using MT Array data

North American framework

preliminary data, subject to revision. Not for citation or distribution

Whitmeyer & Karlstrom (2007)

Tectonic architecture

• 2 km

15 km

30 km

preliminary data, subject to revision. Not for citation or distribution

Tectonic architecture

preliminary data, subject to revision. Not for citation or distribution

Forest for the trees & building upon a backbone

preliminary data, subject to revision. Not for citation or distribution

Archean vs Paleoproterozoic subduction

- Paleoproterozoic sutures have conductance values that range from 1000-100,000 Siemens
- OTSB is low conductance: 1000x less than Paleoproterozoic sutures
- Other Archean sutures have similarly low conductance

≥USGS

preliminary data, subject to revision. Not for citation or distribution

Sediment-starved subduction in the Archean?

- What's missing in the Archean? → passive margin sediments
- Consistent with rapid emergence of the continents at the end of the Archean and accompanying increases in subaerial weathering

6000

Bindeman et al. (2018)

Mineral Resources

'Mineral Systems' framework

All geologic processes that control the formation and preservation of genetically-related ore deposits

- <u>Energy drive</u> (e.g. topography, geothermal gradient, magma)
- Source (metals)
- Transport media (melts, aqueous fluids, petroleum)
- Transport pathways (permeable structures/lithologies)
- <u>Physical and chemical traps</u> (basins, lithologies, redox changes)

Huston et al. (2016)

Mineral systems have much larger and deeper geologic and geophysical footprints than deposits.

Prospectivity analysis

Resistivity at 30 km + deposit locations

≥USGS

preliminary data, subject to revision. Not for citation or distribution

Kirkby et al., in prep.

Spatial relationship between deposits & conductors

preliminary data, subject to revision. Not for citation or distribution

Kirkby et al., in prep.

Correlation as heat maps

- Probability that deposits and conductors are spatially related as a function of depth
- Different spatial/depth relationships for different deposit types
- Reflect different genetic models and positions within convergent margins

preliminary data, subject to revision. Not for citation or distribution

Kirkby et al., in prep.

Space Weather

Electric fields generate voltages (and quasi-DC currents) in transmission lines

B(t)

₹

changing magnetic field induces geoelectric fields in the Earth

 $\vec{\mathrm{E}}(t) = \overleftrightarrow{\mathbf{Z}} * \vec{\mathrm{B}}(t)$

Geomagnetically Induced Currents (GICs)

- Quasi-DC currents that flow in the power grid during a geomagnetic storm
- GICs enter the power grid through transformer groundings at substations

Haytham Saeed (2015)

Can trigger cascading failure and widespread black outs

MT Array data + mag observatories + transmission lines

Geomagnetic storm identification from magnetic indices

preliminary data, subject to revision. Not for citation or distribution

Lucas et al.(2020)

≥USGS

2015-03-17 06:00

- 0.1 (V/km)

- 0.1 (V/km)

0.01

0.01

Statistics – peak geoelectric field for all storms

- Strong differences between sites (> 2 OOM)
- Extrapolated to 100-yr exceedance field

Lucas et al. (2020)

100-yr geoelectric field exceedance map

- Independent of human infrastructure
- Primarily geologically driven
- Secondary magnetic overprint

Lucas et al. (2020)

100-yr exceedance map

Added imprint of power network

 Polarization effects due to geologic polarization and network geometry

Conclusions

- The U.S. MT Array is a consistent, publicly-available longperiod data set nearing completion of the contiguous U.S.
- MT Array data and the models derived from them are advancing our understanding of active tectonics, North American assembly, and space weather hazards
- The MT Array program has increased the prominence of MT in the Earth Science community and exposed a new generation of students to magnetotellurics

Acknowledgements

- **US National Science Foundation:** Kaye Shedlock, Greg Anderson, Maggie Benoit
- <u>Oregon State University</u>: Adam Schultz, Gary Egbert, Lana Erofeeva, Esteban Bowles-Martinez, Naoto Imamura, Tristan Peery, Valerie Clote
- IRIS: Bob Woodward, Andy Frassetto, Shane Ingate, Rob Wooley, Chad Trabant, Rich Karstens, Mick Van Fossen
- USGS: Anna Kelbert, Jade Crosbie, Ben Murphy
- Green Geophysics: Louise Pellerin
- Chaytus Engineering: Brady Fry
- GYS (GeoSystem), Phil Wannamaker, Zonge Engineering
- The many dedicated field personnel who sustained this monumental effort

