AusLAMP : Illuminating Australia's lithosphere

Stephan Thiel

MTNet Eminar, February 17 (18), 2021

Acknowledgements

Copper

PACE

AusLAMP

Illuminating Australia's deep earth

GEOLOGICAL

SURVEY OF

South Australia

Australian Government

Geoscience Australia

THE UNIVERSITY

ofADELAIDE

National Research Infrastructure for Australia

An Australian Government Initiative

•:

Department for Energy and Mining

Australian Lithosphere Architecture Magnetotelluric Project

- History and background
- The AusLAMP Array
- Research highlights

Geomagnetism – The very early Days

Parkinson 1962

Geomagnetism - The Early Days

GDS - Now in colour

3D inversion of tipper data

First 3D inversion of long-period MT in Australia

- Data acquired in 2006 and 2008 across the Gawler Craton
- First recognition of anomalous mantle resistivity as a result of metasomatic processes
- Only very loose correlation to major mineral deposits

Motivation – the first link of MT to major mineral systems

WW

OD

VC

20

Olympic Dam, Heinson et al., 2018, 2006

Delivering AusLAMP

- Data acquisition funding from federal and state geological surveys, AuScope (to date around \$6-7M)
- Instrument funding through AuScope and Geoscience Australia
- Some university funding (University of Adelaide and University of Tasmania)
- Computing time on NCI (National Computational Infrastructure)

Goals of AusLAMP

Help to

- understand the geologic and tectonic history of the Australian continent
- helping to identify footprints of mineral and energy systems at a broad regional scale, not at a local property scale
- Provide a backbone EM data set to inform future and current high-resolution EM surveys, e.g. broadband MT, airborne EM
- analysing risks to Australia's electricity infrastructure

http://www.ga.gov.au/about/projects/resources/auslamp

Betts et al 2015

Department for Energy and Mining

Instrumentation

- 10 Hz sampling in the field, reduced to 1Hz sampling for processing
- Low noise LEMI fluxgate instruments from AuScope National Instrument Pool (University of Adelaide, Goran Boren)
- Geoscience Australia Instruments
 pool
- 5 channel MT data

AusLAMP South Australian Community Engagement - Land Access

Land Tenure types encountered include:

- Pastoral Leases
- Freehold / Perpetual Lease Lands
- Aboriginal Freehold Lands / IPA's eg Maralinga-Tjarutja Lands, APY Lands
- Woomera Protected Area
- State Conservation Areas / National Parks / Wilderness Area
- Infrastructure Land

AusLAMP South Australian - Logistics

- Mainly used the ANSIR EDL MT Units housed at Adelaide University.
- Usually deployed 25 MT units per field trip, with around +/- 2 sites failing (best was 1 failure, worst was about 8 from animal damage).
- Depending on access, used a combination of vehicles and/or helicopter for deployment.
- Used a core group of three who managed SA AusLAMP and understood good deployment to maximise recording good data.
- Often camped out to reduce travel times.

AusLAMP South Australian - Field Work

- 1. Communications
- 2. Language
- 3. Word-of-Mouth
- 4. Utilising networks
- 5. Build on existing deployments
- 6. University vs Government or Company Brand

MT data collection

- Processing primarily using BIRRP and Lemi software
- Typical range of periods between 8-20,000 s
- Full impedance tensor and tipper data

Induction Arrows

K Robertson pers comm.

Tasmania Model kindly provided by Tom Ostersen, U Tas

-10°

-12°

-14°

-16°

-18°

-20°

-22°

-24°

-26°

–28°

-30°

-32°

-34°

-36°

-38°

-40°

-42°

Modelling of AusLAMP data

- Rigorous model parameter testing in Robertson et al., 2020, EPS
- Wide range of modelling parameters need testing, especially
 - model covariances in relation to cell sizes
 - Starting half spaces
 - A priori information

Modelling of AusLAMP data

• Influence of model covariance on the inversion results

First AusLAMP deployment – Proterozoic-Phanerozoic Transition

Musgrave Province

- Area of intraplate deformation
- At the triple junction between Western Australian Craton, Northern Australian Craton, South Australian Craton
- mineralization associated with ~1070 Ma Warakurna Large Igneous Province Giles Complex, e.g. Ni potential of Nebo Babel deposit

Mid-lower crust model slices – development of E-W trend

Department for Energy and Mining

Comparison of resistivity with Bouguer gravity

Mid-lower crust model slices. East west trend. Follows the gravity signature, Moho offset?

Department for Energy and Mining

Bouguer Gravity

0

500 1000

-1500-1000-500

Phanerozoic tectonics in SE Australia

- Model of the Tasmanides in SE Australia
- Crustal architecture a result of an Orocline model during the Silurian (Moresi et al., 2014)
- Oroclinal rotation along the eastern Gondwana margin around the Proterozoic Selwyn Block (microcontinent) (Cayley, 2015)

Phanerozoic tectonics in SE Australia

- Lower crustal conductors align with potential field data and seismic anisotropy (not shown)
- Correlation with Ordovician arc magmatism and alkaline mafic volcanism
- Generally good correlation of lower crustal conductors with gold deposits
- NE trending mantle conductors associated with Cenozoic volcanism along the Cosgrove hotspot track (Davies et al., 2015)

The mineral potential of the Gawler Craton

Total Magnetic Intensity

Bouguer Gravity

Electrical Resistivity (30 km)

Department for Energy and Mining

Imprints of metasomatised lithosphere in the Gawler Craton

Anomalous abundance of hydrated minerals - fluorine

- Hiltaba Suite
- lower GRV
- undifferentiated GRV
- upper GRV
- average continental crust
 average felsic volcanics
 average granite
 DM

Data source for plot: GSSA data; Pankhurst 2006; Budd 2006; Creaser 1989; Salters & Stracke 2004

Cratonic root control on mineral deposits – South Australia

Copper occurrences and resources occur on high conductivity regions or on the boundaries between low resistivity and high resistivity

Department for Energy and Mining

Mineral system concept

and Mining

Cratonic root control on mineral deposits – South Australia

Cratonic root control on mineral deposits – South Australia

Olympic Domain in-fill survey

- Funded by PaceCopper, South Australia government initiative funding
- Tender process with Geoscience Australia
- Total of 334 BBMT and AMT stations (10⁻⁴ s ~2000 s)
- Collected by Zonge in mid 2018, reprocessing by CGG in Q2 2019
- Variable site spacing between 1.5 km and 5 km
- Grid dependent on road access, geographical features (dry lake beds)
- Co-located airborne EM survey for cover characterisation

Department for Energy and Mining

Olympic Domain in-fill survey

Department for Energy and Mining

Detailed 2D profiles

gravuv_resid

2.2 2.0

.8

.6

.2

1.0 0.8

0.6

0.4 0.2

0.0

2.8

3.0

- ^{mGal}
 Profile selection based on deposits and dimensionality/strike of data
 - 200 m horizontal cell spacing
 - Vertical cells 5 m increasing with depth including topography
 - Periods from 0.0001 s to 2000 s
 - TE (50% and 7% error, ρ_a and ϕ), TM (6% and 3% error, ρ_a and ϕ), and Hz data (0.01 error floor)
 - inverted using Non-linear conjugate gradient approach (Rodi and Mackie, 2001; Geotools)

Oak Dam profile (E-W)

Airborne EM draped on topography

Vertical exaggeration 20x Department for Energy and Mining

Conclusions

- AusLAMP is a publically available long-period MT data set through web portals of state and federal geological surveys
- The AusLAMP arrays advance our understanding of mineral systems of the Australian continent, the geodynamic framework of past and present tectonism, and space weather hazard
- Through AusLAMP, the EM community has steadily grown over the last ten years with growing expertise within geological surveys working in conjunction with academia
- Led to exponential increase in the uptake of MT in industry, academia and government with particular focus on mineral exploration in a wider geological context

Acknowledgements

- Geological Survey of South Australia: Kate Robertson
- University of Adelaide: Graham Heinson, Goran Boren
- SA AusLAMP crew: Bruce Goleby, Pip Mawby, Geoff Axford
- Geoscience Australia: Jingming Duan, Alison Kirkby, Wenping Jiang, Darren Kyi
- University of Tasmania: Tom Ostersen, Anya Reading
- University of Western Australia: Mike Dentith, Perla Pina Varas
- National Computing Facility: Ben Evans, Lesley Wyborn, Nigel Reed
- Contractors: Zonge Engineering and Moombarriga Ltd
- Numerous staff at state and federal geological surveys who put their faith into MT
- We thank traditional owners and landholders for granting access to their land. We also acknowledge the field team and technical team that made data acquisition possible.
 - Model files were generated and viewed using MTpy software (Kirkby et al, 2019) and 3D grid
 - software from Naser Meqbel. Some figures were drawn using the Generic Mapping Tools (Wesseling and Smith, 1998).