Thanks!

Dr. Alan Jones

Fundamentals of Inversion

Doug Oldenburg, Seogi Kang, Lindsey Heagy
\& the UBC-GIF team

Collaborators

Lindsey

Dom

Thibaut

Some background and personal perspective

- Doug inspired by Bob Parker, Freeman Gilbert and George Backus: The Geophysical Inverse Problem

Result: Computing power + advances in inversion methodology \rightarrow we can now solve most EM geophysics problems

Outline

- Choices for numerical implementation
- Linear Inverse problem (IP)
- Non-linear inverse problem (DC)
- Including other information
- Summary

Generic geophysical experiment?

All require ways to see into the earth without direct sampling

Physical
Properties

$$
\sigma, \mu, \varepsilon
$$

Survey: DC / IP

- Direct Current (DC) resistivity: sensitive to contrasts in resistivity
- Induced Polarization (IP): sensitive to chargeability

- DC and IP can be acquired in a single survey
- Recovering resistivity from DC data is a non-linear inverse problem
- Recovering chargeability is a linear inverse problem

Century Deposit: geology + physical properties

Mineralized sequence:

- $\quad 40 \mathrm{~m}$ thick
- Pb, Zn within black carbonaceous shales (BCS)

Resistivity

- Provides structural information (faults)
- Needed input to IP

Chargeability

- Associated with mineralization

Century Deposit: DC / IP data

DC Resistivity data

Our statement of the inverse problem

- Given observations: $d_{j}^{\text {obs }}, \quad j=1, \ldots, N$
- Uncertainties: ϵ_{j}
- Ability for forward modelling: $\mathcal{F}[m]=d$

- Find the earth model that gave rise to the data.

Inverse problem

- Non-unique
- III-conditioned

?

The Inverse Problem is ill-posed

Any inversion approach must address these issues

Example of extreme non-uniqueness

DC experiment

Recovered models

Constraining the inversion

What information is available?

- Geologic structure

Prior information

How do we achieve our goal?

Need a Framework for Inverse Problem

Tikhonov (deterministic)
Bayesian (probabilistic)

Find a single "best" solution by solving optimization

$$
\begin{aligned}
\operatorname{minimize} & \phi=\phi_{d}+\beta \phi_{m} \\
\text { subject to } & m_{L}<m<m_{H}
\end{aligned}
$$

Use Bayes' theorem

$$
P\left(m \mid d^{o b s}\right) \propto P\left(d^{o b s} \mid m\right) P(m)
$$

Two approaches:
(a) Characterize $P\left(m \mid d^{o b s}\right)$
(b) Find a particular solution that maximizes $P\left(m \mid d^{o b s}\right)$
(MAP: (maximum a posteriori) estimate

Flow chart for the inverse problem

Inputs

- Many components to achieving a quality result
- Success is in the details
- Evaluate each step in the box critically before going on

Starting up

- Survey and observations

Inputs
-What processing has been done?

- Normalization of data
- Ability for forward model
- Assemble geologic, petrophysical information
- Build a reference model
- What is the question you want answered from the inversion?

Forward modelling approaches

Maxwell's equations can be solved as:

- Integral equation (IE)

$$
\vec{E}(\vec{r})=\vec{E}_{p}(\vec{r})+\int_{V} G\left(\vec{r}, \vec{r}_{s}\right) \sigma_{a}\left(\vec{r}_{s}\right) \vec{E}\left(\vec{r}_{s}\right) d v_{s}
$$

- Differential equation (DE)

$$
\nabla \times \mu^{-1} \nabla \times \vec{E}+\imath \omega \sigma \vec{E}=-\imath \omega \vec{J}_{s}
$$

Desired qualities for a mesh

- Conform to structure being modelled
- Small number of cells to reduce computation time
- Be able to discretize equations on the mesh
- "Easy" to solve (sparse matrices)
- Visualize fields and models

What type of mesh?

Semi-structured

To consider:

- Complex geometry
- Matrix size / sparsity
- Visualization
- Complexity of generating
- Ease of programming
- Discretizing to "infinity"
- Cell size / element size changes

Solving differential equations

Problems on unstructured or structured meshes can be solved using

Solving the forward problem

$$
A(m) u=q
$$

Methodology depends on A

- Small: use SVD or back-slash (and equivalent)
- Intermediate: direct solver $A=L L^{\top}$ or $A=L U$
- Very big: iterative techniques

E.g. Airborne TDEM

- Forward problem: 1000 Tx, 50 timesteps $\rightarrow 50,000$ solves
- Inversion: 20 GN iterations and using CG solver \rightarrow 20,000,000

Forward problem must be efficient; need lots of processors for big problems

Sanity checks for forward modelling

- Test numerical results against a (semi-) analytic solution (eg. halfspace, sphere)
- Estimate numerical modelling errors (this can useful later when assigning "uncertainties" in the inversion)
- Forward model your reference model and see how them match the data. Check: Normalization errors? Coordinate system? ...

Inversion model parameters

- In the forward problem

$$
d=\mathcal{F}[m]
$$

m is our sought function (conductivity, density,)

- Inverse problem: we have options

Field observations \& error estimates

Ability to forward model

Prior knowledge Build reference model (eg log sigma, parametric)

Inversion as an optimization problem

- Find a single "best" solution by solving optimization

Field observations \& error estimates

Prior knowledge Build reference model

Define inversion model parameters

ϕ_{d} : data misfit
ϕ_{m} : model norm
β : trade-off parameter
m_{L}, m_{U} : lower and upper bounds

Flow chart for the Inverse problem

Inputs

Dealing with uncertainties

Observed datum

$$
d_{j}^{o b s}=F_{j}(m)+n_{j}
$$

Noise n_{j} includes

- Modelling errors
- dimensionality errors (1D v. 3D)
- Noise on data
- incomplete physics
- instrument / sensor noise
- discretization errors
- survey parameter errors
- wind ...

True statistics of "noise" is complicated. In practice, assume errors are Gaussian

$$
\mathcal{N}\left(0, \epsilon_{j}\right)
$$

Dealing with uncertainties

Consider random variable, $x_{j} \in \mathcal{N}(0,1)$

Define

$$
\chi_{N}^{2}=\sum_{j=1}^{N} x_{j}^{2}
$$

Chi-squared statistic with N degrees of freedom
$\left\{\begin{array}{l}\text { Expected value: } E\left(\chi_{N}^{2}\right)=N \\ \text { Variance: } \operatorname{Var}\left(\chi_{N}^{2}\right)=2 N \\ \text { Standard deviation: } \operatorname{std}\left(\chi_{N}^{2}\right)=\sqrt{2 N}\end{array}\right.$

Misfit function

Crucial steps for any misfit: (1) Specify the metric used
(2) Determine target misfit

We use L_{2} norm (least squares statistic)
Define data misfit: $\phi_{d}=\sum_{j=1}^{N}\left(\frac{F_{j}(m)-d^{o b s}}{\epsilon_{j}}\right)^{2}$
ϕ_{d} is now a χ_{N}^{2} variable

Define

$$
\begin{gathered}
\mathbf{W}_{d}=\operatorname{diag}\left(1 / \epsilon_{1}, \ldots, 1 / \epsilon_{N}\right) \\
\phi_{d}=\left\|\mathbf{W}_{d}\left(F[\mathbf{m}]-\mathbf{d}^{o b s}\right)\right\|_{2}^{2} \\
E\left[\phi_{d}\right] \simeq N
\end{gathered}
$$

Reality: we do not know uncertainties
Try:

$$
\epsilon_{j}=\%\left|d_{j}^{o b s}\right|+\text { floor }
$$

Flow chart for the Inverse problem

Inputs

Define inversion model parameters

Model norms

First define our model norms as functions and then discretize

Smallest model:

$$
\phi_{m}=\int\left(m-m_{r e f}\right)^{2} d x
$$

Flattest model:

$$
\phi_{m}=\int\left(\frac{d m}{d x}\right)^{2} d x
$$

Combination:

$$
\phi_{m}=\alpha_{s} \int\left(m-m_{r e f}\right)^{2} d x+\alpha_{x} \int\left(\frac{d m}{d x}\right)^{2} d x
$$

Discretize:

$$
\phi_{m}=\alpha_{s}\left\|\mathbf{W}_{s}\left(\mathbf{m}-\mathbf{m}_{r e f}\right)\right\|_{2}^{2}+\alpha_{x}\left\|\mathbf{W}_{x}(\mathbf{m})\right\|_{2}^{2}
$$

Flow chart for the Inverse problem

Inputs

Choose a misfit criterion

Design model norm

Interpret preferred model(s)

Perform inversion: Linear Forward problem

Linear problem $\mathcal{F}[m]=d \quad \rightarrow \mathbf{G m}=\mathbf{d}$

$$
\phi(\mathbf{m})=\frac{1}{2}\left\|\mathbf{W}_{d}\left(\mathbf{G} \mathbf{m}-\mathbf{d}^{o b s}\right)\right\|^{2}+\frac{\beta}{2}\left\|\mathbf{W}_{m}\left(\mathbf{m}-\mathbf{m}_{r e f}\right)\right\|^{2}
$$

Quadratic objective function (for a single variable)

$$
\begin{array}{ll}
\mathbf{g}=\nabla_{m} \phi & \mathbf{g}=\mathbf{G}^{\top} \mathbf{W}_{d}^{\top} \mathbf{W}_{d}\left(\mathbf{G} \mathbf{m}-\mathbf{d}^{o b s}\right)+\beta \mathbf{W}_{m}^{\top} \mathbf{W}_{m}\left(\mathbf{m}-\mathbf{m}_{r e f}\right) \\
\mathbf{g}=0 & \left(\mathbf{G}^{\top} \mathbf{W}_{d}^{\top} \mathbf{W}_{d} \mathbf{G}+\beta \mathbf{W}_{m}^{\top} \mathbf{W}_{m}\right) \mathbf{m}=\mathbf{G}^{\top} \mathbf{W}_{d}^{\top} \mathbf{W}_{d} \mathbf{d}^{o b s}+\beta \mathbf{W}_{m}^{\top} \mathbf{W}_{m} \mathbf{m}_{r e f}
\end{array}
$$

$\mathbf{H m}=\mathbf{b}$

$$
\left\{\begin{array}{l}
\mathbf{H} \in \mathbb{R}^{M \times M} \text { is full rank } \\
\mathbf{m}, \mathbf{b} \in \mathbb{R}^{M}
\end{array} \quad \mathbf{m}=\mathbf{H}^{-1} \mathbf{b}\right.
$$

Role of beta

$$
\phi(m)=\phi_{d}(m)+\beta \phi_{m}(m)
$$

$$
\begin{array}{ll}
\beta \rightarrow 0: & \phi \sim \phi_{d} \\
\beta \rightarrow \infty: & \phi \sim \phi_{m}
\end{array}
$$

Tikhonov Curve

- Desired misfit $\quad \phi_{d}^{*} \simeq N$
- Choose β such that $\phi_{d}(m)=\phi_{d}^{*}$

Linear inversion app (demo)

Develop survey

м	100
$\mathrm{mbockground}^{\text {d }}$	0.00
m1	1.00
$\mathrm{ml}_{\text {center }}$	0.20
m1 width	0.20
m2	2.00
m2 ${ }_{\text {center }}$	0.75
$\mathrm{m}_{\text {sigma }}$	0.07

Linear IP problem

Linear model for IP (Seigel, 1959)

- Chargeability: η
- Effect increases resistivity

$$
\rho_{\eta}=\rho \frac{1}{1-\eta} \quad \eta \in[0,1)
$$

An IP datum can be written as:

$$
d_{i}^{I P}=\sum_{j=1}^{M} J_{i j} \eta_{j} \quad i=1, \ldots, N
$$

Where $J_{i, j}$ are the sensitivities for the DC problem

$$
J_{i, j}=\frac{\partial \log \phi^{i}}{\partial \log \rho_{j}}
$$

Governing linear equation $\mathbf{d}^{\mathbf{I P}}=\mathbf{J} \eta$

Field example: IP Century deposit

Non-linear inversion

Non-linear inversion

- Inverse problem minimize

$$
\phi=\phi_{d}+\beta \phi_{m}
$$

$$
\phi_{d}=\sum_{j=1}^{N}\left(\frac{\mathcal{F}_{j}(m)-d_{j}^{o b s}}{\epsilon_{j}}\right)^{2}
$$

- For linear problem: $d=G m$

- And quadratic regularization: $\int_{v}\left(m-m_{\text {ref }}\right)^{2} d v$
- This is quadratic so we can solve in one step
- Problem becomes non-linear if:
(i) $\mathcal{F}[m]$ is non-linear
(ii) ϕ_{d} is not l_{2} (e.g. $\sum\left|\frac{\mathcal{F}_{i}[m]-d_{i}}{\epsilon_{i}}\right|$)
(iii) ϕ_{m} is not quadratic

Non-linear optimization

- Single variable x :
minimize $f(x)$
$f(\cdot)$: function
- Case I: f is quadratic

$$
\begin{aligned}
& f(x)=\frac{1}{4} x^{2}-3 x+9=\left(\frac{1}{2} x-3\right)^{2} \\
& f^{\prime}(x)=\left(\frac{1}{2} x-3\right)=0 \quad \square \quad x=6
\end{aligned}
$$

- Suppose

Minimum: $f^{\prime}(x)=0$

$$
f^{\prime \prime}(x)>0
$$

$$
f(x)=\left(\frac{1}{2} x-3\right)^{2}+a x^{3}+b x^{4}
$$

Non-linear optimization

- Single variable x :
minimize $f(x)$
$f(\cdot)$: function
- Case I: f is quadratic

$$
\begin{aligned}
& f(x)=\frac{1}{4} x^{2}-3 x+9=\left(\frac{1}{2} x-3\right)^{2} \\
& f^{\prime}(x)=\left(\frac{1}{2} x-3\right)=0 \quad \square \quad x=6
\end{aligned}
$$

- Suppose

$$
f(x)=\left(\frac{1}{2} x-3\right)^{2}+a x^{3}+b x^{4}
$$

Non-linear optimization

- Newton's Method
i. Begin with x_{k}
ii. Solve a local quadratic for δx
iii. $\quad x_{k+1}=x_{k}+\delta x$

Local Quadratic: $\hat{f}\left(x_{k}+\delta x\right)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right) \delta x+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right) \delta x^{2}+\mathcal{O}\left(\delta x^{3}\right)$
δx that minimizes $\hat{f}\left(x_{k}+\delta x\right)$

$$
\begin{aligned}
f^{\prime \prime}\left(x_{k}\right) \delta x & =-f^{\prime}\left(x_{k}\right) \\
\text { or } \delta x & =-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
\end{aligned}
$$

Convergence conditions

$$
\begin{aligned}
& f^{\prime}(x)<\text { tolerance } \\
& \|\delta x\|<\text { tolerance } \\
& f^{\prime \prime}(x)>0
\end{aligned}
$$

Summary: Newton's method

Linear

$$
\begin{aligned}
& f^{\prime \prime}(x) \delta x=-f^{\prime}(x) \\
& x^{*}=-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
\end{aligned}
$$

Solution in one step

Non-linear

$$
\begin{aligned}
& f^{\prime \prime}\left(x_{k}\right) \delta x=-f^{\prime}\left(x_{k}\right) \\
& \delta x=-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)} \\
& x_{k+1}=x_{k}+\alpha \delta x \quad \alpha<1
\end{aligned}
$$

Iterate to convergence

Multivariate functions

Minimize $\quad \phi(m) \quad m \in\left\{m_{1}, m_{2}, \ldots, m_{M}\right\}$

Taylor expansion

$$
\phi(m+\delta m)=\phi(m)+\left(\nabla_{m} \phi(m)\right)^{T} \delta m+\frac{1}{2} \nabla_{m} \nabla_{m} \phi(m) \delta m+\mathcal{O}\left(\delta m^{3}\right)
$$

Note similarity to single variable

$$
f(x+\delta x)=f(x)+f^{\prime}(x) \delta x+\frac{1}{2} f^{\prime \prime}(x) \delta x^{2}+\mathcal{O}\left(\delta x^{3}\right)
$$

Define

Gradient: $g(m)=\nabla_{m} \phi=\left(\begin{array}{c}\frac{\partial \phi}{\partial m_{1}} \\ \vdots \\ \frac{\partial \phi}{\partial m_{M}}\end{array}\right) \quad g \in \mathbb{R}^{M}$
Hessian:

Minimum defined:

$$
\begin{aligned}
& g\left(m^{*}\right)=0 \\
& H\left(m^{*}\right) \text { is positive definite }
\end{aligned}
$$

Finding a solution

(i) Begin with $m^{(k)}$
(ii) Solve $H\left(m^{(k)}\right) \delta m=-g\left(m^{(k)}\right) \quad$ c.f. $\left\{f^{\prime \prime}(x) \delta x=-f^{\prime}(x)\right\}$
(iii) $m^{(k+1)}=m^{(k)}+\alpha \delta m$

Our inversion

Minimize:

$$
\phi(m)=\frac{1}{2}\left\|\mathcal{F}[m]-d^{o b s}\right\|^{2}+\frac{\beta}{2}\|m\|^{2}
$$

Sensitivity:

$$
\begin{aligned}
& \nabla_{m} \mathcal{F}(m)=J \\
& J_{i j}=\frac{\partial \mathcal{F}_{i}[m]}{\partial m_{j}}
\end{aligned}
$$

Hessian:

$$
H(m)=\nabla_{m} g(m)=J^{T} J+\underbrace{\left(\nabla_{m} J\right)^{T}\left(\mathcal{F}[m]-d^{\text {obs }}\right)}_{\text {neglect }}+\beta
$$

Final

$$
H \delta m=-g \longmapsto\left\{\begin{array}{l}
\left(J^{T} J+\beta\right) \delta m=-\left(J^{T} \delta d+\beta m\right) \\
\delta d=\mathcal{F}[m]-d^{o b s}
\end{array}\right.
$$

General algorithm:

$\operatorname{minimize} \phi=\phi_{d}+\beta \phi_{m}$
Initialize $m^{(0)}, \beta^{(0)}$
until convergence

$$
\begin{aligned}
& H \delta m=-g \\
& m^{(k+1)}=m^{(k)}+\alpha \delta m \quad \text { (line search) } \\
& \beta^{(k+1)}=\frac{\beta^{(k)}}{\gamma} \quad \text { (cooling) }
\end{aligned}
$$

Many variants: - Solving system

- Cooling rate

Summary

$$
\phi(m)=\frac{1}{2}\left\|\mathcal{F}[m]-d^{o b s}\right\|^{2}+\frac{\beta}{2}\|m\|^{2}
$$

Linear

$d=G m$
$\left(G^{T} G+\beta\right) \delta m=-\left(G^{T} d+\beta m\right)$

Non-linear

$$
d=\mathcal{F}[m]
$$

$$
\begin{gathered}
\left(J^{T} J+\beta\right) \delta m=-\left(J^{T} \delta d+\beta m\right) \\
\quad \delta d=\mathcal{F}[m]-d^{o b s} \\
m^{(k+1)}=m^{(k)}+\alpha \delta m
\end{gathered}
$$

All understanding from linear problems is valid for nonlinear problems

DC resistivity

Governing PDE: electrostatic Maxwell's equations

- Faraday's law

$$
\nabla \times \vec{e}=0 \quad \rightarrow \quad \vec{e}=-\nabla \phi
$$

Governing PDE

- Ampere's law

$$
\nabla \cdot \vec{j}=I \delta(r)
$$

- Ohm's law

$$
\vec{j}=\frac{1}{\rho} \vec{e}
$$

DC inversion

- Forward modelling
- Nodal discretization for ϕ
- Neumann boundary conditions $\frac{1}{\rho} \vec{e}=\left.0\right|_{\partial \Omega}$
- Discrete equations $\underbrace{\mathbf{G}^{\top} \mathbf{M}_{\sigma}^{\mathrm{e}} \mathbf{G}}_{\mathbf{A}(\mathbf{m})} \phi=\mathbf{q}$

- Inversion
- Invert for log resistivity (ensures positivity): $\mathbf{m}=\log (\rho)$

Tutorial: Cockett et al 2016, Pixels ad their neighbours

Evaluate results

Same as for linear problem

- Plot Tikhonov curve and some resulting models

- Misfit
- Evaluate models

Example 2D DC resistivity

True resistivity model

Pole-Dipole

- Pole-dipole array
- n-spacing = 8
- Electrode-spacing $=100 \mathrm{~m}$
- \# of data = 151
- 5\% Gaussian noise added

Apparent resistivity pseudo-section

Log10 (Voltage)

DC inversion: iteration 1

True model

Recovered model

$$
\begin{aligned}
& \alpha_{s}=0 \\
& \alpha_{x}=1, \alpha_{z}=1
\end{aligned}
$$

DC inversion: iteration 5

True model

Recovered model

$$
\alpha_{s}=0
$$

$$
\alpha_{x}=1, \alpha_{z}=1
$$

DC inversion: iteration 7

$\alpha_{s}=0$
$\alpha_{x}=1, \alpha_{z}=1$

DC resistivity: Century

Century deposit

DC/IP Inversion is a 2-step process

Step 1: invert DC data

resistivity model

Step 2: invert IP data using sensitivities from recovered model in Step 1
chargeability model

Constraining the inversion

What information is available?

- Geologic structure

Prior information

Physical property model

Constraining the inversion

Generic model norm

$$
\phi_{m}=\alpha_{s} \int_{v} w_{s}\left(m-m_{\mathrm{ref}}\right)^{2} d v+\alpha_{x} \int_{v} w_{x}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d x}\right)^{2} d x+\alpha_{z} \int_{v} w_{z}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d z}\right)^{2} d z
$$

Exploring the standard model norm

- Alpha weightings
- Weightings w's

$$
\begin{aligned}
& \alpha_{s}=0 \\
& \alpha_{x}=1, \alpha_{z}=1
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{s}=0 \\
& \alpha_{x}=1, \alpha_{z}=0
\end{aligned}
$$

- Reference model

$$
\alpha_{s}=0
$$

$$
\alpha_{x}=0, \alpha_{z}=1
$$

- Combinations offer great flexibility

$$
\alpha_{s}=1
$$

$$
\alpha_{x}=0, \alpha_{z}=0
$$

Reference model and its uses

Generic model norm

$$
\phi_{m}=\alpha_{s} \int_{v} w_{s}\left(m-m_{\mathrm{ref}}\right)^{2} d v+\alpha_{x} \int_{v} w_{x}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d x}\right)^{2} d x+\alpha_{z} \int_{v} w_{z}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d z}\right)^{2} d z
$$

- Simple or complex
- Used in derivative terms or not
- w's used to attach confidence in the reference model

- Can be used to
- incorporate additional information
- Hypothesis testing
- Depth of investigation for survey

Use of a reference model for depth of investigation

Background to DOI

$$
\text { doi index }=\frac{m^{1}-m^{2}}{m_{r e f}^{1}-m_{r e f}^{2}}
$$

m_{1} : recovered model with $\mathrm{m}_{\mathrm{ref}}^{1}$
m_{2} : recovered model with $\mathrm{m}_{\text {ref }}^{2}$
(Oldenburg and Li, 1999)

Example from Century deposit
DOI index

Resistivity model above the DOI (DOl index=0.5)

Use weighting functions

$$
\text { model norm: } \quad \phi_{m}=\alpha_{s} \int_{v} w_{s}\left(m-m_{\mathrm{ref}}\right)^{2} d v+\alpha_{x} \int_{v} \underline{w_{x}}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d x}\right)^{2} d x+\alpha_{z} \int_{v} \underline{w_{z}}\left(\frac{d\left(m-m_{\mathrm{ref}}\right)}{d z}\right)^{2} d z
$$

- Incorporate confidence in model or derivative
- Hypothesis testing
- Used to incorporate sensitivity weighting
- Important for potential fields
- Generate more realistic models

Sensitivity weighting

Consider $G m=d$ and minimize $\|m\|^{2}$
Easiest way to generate signal is to locate m where G is large.
In magnetics this produces a module with susceptibility at the surface

Sensitivity weighting

Consider $G m=d$ and minimize $\|m\|^{2}$
Easiest way to generate signal is to locate m where G is large.
Sensitivity in a DC experiment

Sensitivity weighting for DC

$$
w_{j}=\sum_{i=1}^{N} \sqrt{J_{i j}^{2}} \quad \begin{gathered}
i-\text { th datum } \\
j \text {-th model }
\end{gathered}
$$

Without sensitivity weighting

With sensitivity weighting
10^{3}

Bound Constraints

- Physical property bounds in each cell

$$
\mathbf{m}_{L} \leq \mathbf{m} \leq \mathbf{m}_{U}
$$

- Projected Gradient Gauss-Newton (Kelly, 1999; Haber, 2015)
- At each GN iteration

$$
\delta \mathbf{m}=\mathbf{H}^{-1} \delta \mathbf{d}+\alpha \mathbf{g}
$$

H: Hessian for cells not at the bounds
Positivity $\mathbf{m} \geq 0$ g : gradient for cells at the bounds
α : scalar

Enforcing positivity

Chargeability model
Susceptibility model
without positivity

with positivity

without positivity

with positivity

Structural information

- Body is at about the right depth but it is still smoothed out
- Want a solution that produces a thin mineralized zone
- Makes the faults more distinct

We can do this by altering the model norm

$$
\phi_{m}=\alpha_{s} \int_{V} w_{s}\left|m-m_{\mathrm{ref}}\right|^{p_{s}} d V+\alpha_{x} \int_{V} w_{x}\left|\frac{d\left(m-m_{\mathrm{ref}}\right)}{d x}\right|^{p_{x}} d V+\alpha_{z} \int_{V}\left|\frac{d\left(m-m_{\mathrm{ref}}\right)}{d z}\right|_{70}^{p_{z}} d V
$$

Why Lp?

- Work so far we have used L_{2} norms

$$
\phi_{m}=\int m^{2}(x) d x \stackrel{\text { Discretize }}{\square} \phi_{m}=\sum_{i=1}^{M} m_{i}^{2} v_{i}
$$

- General L_{p}-norm

$$
\phi_{m}=\sum_{i=1}^{M}\left|m_{i}\right|^{p} v_{i} \quad 0 \leq p \leq 2
$$

$\phi_{m}{ }^{*}$| $\mathrm{p}=2$ | $\mathrm{p}=1$ | $\mathrm{p}=0.5$ | $\mathrm{p}=0$ |
| :---: | :---: | :---: | :---: |
| | 69 | 55 | 54 |
| 100 | | | |

General character

- Geometric character

$$
\phi_{m}=\sum_{i=1}^{M}\left|m_{i}\right|^{p} v_{i}
$$

- $p=2$: all elements close to zero
- $\mathrm{p}=1$: sparse solution, \# of non-zero elements are \leq \# of data
- $p=0$: minimum support, model with the fewest number of elements
- 1D problem

$$
\mathrm{p}=2
$$

$\mathrm{p}=1$

$$
p=0
$$

General Lp objective function

Each component of a 3D objective function can have its own Lp-norm

$$
\phi_{m}=\left.\alpha_{s} \int_{V} w_{s}\left|m-m_{\mathrm{ref}} \mathrm{P}_{\left(\Theta^{2}\right.} d V+\alpha_{x} \int_{V} w_{x}\right| \frac{d\left(m-m_{\mathrm{ref}}\right)}{d x}\right|^{P_{x}} d V+\alpha_{z} \int_{V}\left|\frac{d\left(m-m_{\mathrm{ref}}\right)}{d z}\right|^{P_{z}} d V
$$

$$
0 \leq p_{j} \leq 2
$$

Lp inversion of DC data

$$
\text { Resistivity } \quad p_{s}=p_{x}=p_{z}=2
$$

observed data

Cambrian limestone (CLS) $\begin{aligned} & \text { Footwall shale-siltstone MINERALISATION } \\ & \text { (UFW) }\end{aligned}$
Fournier and
Oldenburg,
$\underline{2019}$

Lp inversion of DC data

$$
\text { Resistivity } \quad p_{s}=p_{x}=p_{z}=2
$$

observed data

Fournier and
Oldenburg,
$\underline{2019}$

Cambrian limestone (CLS)	Footwall shale-siltstone (UFW)	MINERALISATION	
Proterozoic weathering surface (HWDw)			Unit 1 (1.0, 1.1,
	Footwall carbonaceous shale (BCS)		Unit 2
Hangingwall sandstone (HWB, HWS)			Unit 3 (3.1, 3.2)
	$\mathrm{V}=\mathrm{H}$		Unit 4 (4.1 to 4.6)
Hangingwall siltstone-shale (HWD)	metres	500	

Lp inversion of IP data

Resistivity model (L2)
Chargeability models

$$
p_{s}=p_{x}=p_{z}=2
$$

$$
p_{s}=p_{x}=p_{z}=0
$$

Fournier and
Oldenburg,
$\underline{2019}$

What other information is available?

Petrophysics: each rock units each with range of physical properties
Geology: Lithology from drill holes

- Petrophysics
- Well-logs

Linking Geophysics, Petrophysics and Geology

Petrophysical characterization and geological identification are encoded in model norm.

$$
\Phi_{s}(\mathbf{m})=\frac{1}{2} \sum_{i=1}^{n}\left\|W_{s}\left(\Theta, z_{i}^{*}\right)\left(\mathbf{m}_{i}-\mathbf{m}_{r e f}\left(\Theta, z_{i}^{*}\right)\right)\right\|_{2}^{2}
$$

Thank you!

- SimPEG:

https://simpeg.xyz/

- Inversion resources:
curvenote.com/@geosci/inversion-module

prisae

sdevriese

