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Geophysical experiments & physical properties 
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Last week: DC resistivity and IP at century

Last week: Century Deposit
● IP: linear inverse problem 
● DC: non-linear inverse problem
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Lp resistivity

Lp chargeability

Fundamentals of finite volume 



DC resistivity 

DC is an illustrative problem

● foundation for the physics of EM

● poisson equation, starting point: 
numerical simulations, finite volume

● inverse problem: non-linear, ideal 
example for showing impacts of: 
model norm, constraints, … 6

Governing PDE 

Finite Volume Tutorial (Cockett et al, 2016)

Inversions with SimPEG (Heagy, 2020)

https://curvenote.com/@lheagy/pixels-and-their-neighbours/pixels-and-their-neighbours
https://curvenote.com/@lheagy/transform-2020-simpeg-tutorial/geophysical-inversions-with-simpeg


Focus for today: electromagnetics

Theory: Maxwell’s equations, inversion
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Captured in code



inversion 
flowchart
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inversion 
flowchart
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Electromagnetics: basic equations (quasi-static)

10* Solve with sources and boundary conditions

Time Frequency

Faraday’s Law

Ampere’s Law

Constitutive
Relationships
(non-dispersive)

No Magnetic Monopoles



Electromagnetics: frequency domain equations

Use constitutive relations, reduce to two 
equations, one field, one flux 
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Boundary conditions

Staggered grid discretization
● Physical properties: cell centers
● Fields: edges
● Fluxes: faces



Electromagnetics: frequency domain equations

Continuous equations
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Finite volume discretization (see: Haber, 
2014; Cockett et al., 2016)

 



Electromagnetics: frequency domain equations

Eliminate b to obtain a second-order 
system in e
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Discrete equations



Solving an FDEM problem 

● Complex
● Symmetric 
● Factor once for each frequency (solve for multiple sources)
● Need to refactor on each model update 
● Separable over frequencies
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Solving an FDEM problem 
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Create a mesh: the discretize package 

Properties or Methods

dim, origin

n_cells, n_nodes, n_faces, n_edges

cell_volumes, face_areas, edge_lengths

cell_centers, nodes, edges, faces

nodal_gradient, face_divergence, edge_curl

average_edge_to_cell, 
average_node_to_cell, ...

get_edge_inner_product()

get_interpolation_matrix(location)
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mesh types in simpeg

QuadTree / OcTree
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Tensor / Cylindrical Curvilinear

Joe 
Capriotti 



Survey: sources and receivers

Sources

● inductive
● grounded 

Receivers
● electric
● magnetic
● interpolate to locations
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Bring it all together: simulation 

where: 
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Sensitivities (we will need them later!)

For inverse problem, also need sensitivities (and adjoint)

where the derivative of the fields (u) is computed implicitly (requires a solve) 

J is a large, dense matrix →  compute products with a vector if memory-limited 
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Demo

conductive sphere in a 
halfspace

cylindrical mesh

time-domain 

21curvenote.com/@geosci/inversion-module

https://curvenote.com/@geosci/inversion-module/time-domain-cyl-forward


inversion 
flowchart

22



inversion 
flowchart
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Inversion model parameters & mappings

What parameters are we inverting for? 
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Inversion model parameters & mappings

What parameters are we inverting for? 
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a mapping translates model parameters to 
physical properties on simulation mesh



Inversion model parameters & mappings

What parameters are we inverting for? 
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● Mappings can be composed 
● Includes parametric models
● Keep track of derivatives (for sensitivities) 



inversion 
flowchart
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observed data, uncertainties, and data misfit 

Data misfit term 

uncertainties captured in W matrix



observed data, uncertainties, and data misfit 

Data misfit term 
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uncertainties captured in W matrix

Data class: survey geometry, observed 
data, assigned uncertainties

Data misfit instantiated with 
● simulation: to compute
● data: defines        , 

can now evaluate data misfit + derivatives



inversion 
flowchart
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Designing a model norm: regularization class

Basic Tikhonov regularization

smallness smoothness

Choices:
● ⍺ - parameter values
● reference model
● mref in the smoothness terms 
● norm applied on each term

discretize



Designing a model norm: regularization class

Basic Tikhonov regularization
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smallness smoothness

Choices:
● ⍺ - parameter values
● reference model
● mref in the smoothness terms 
● norm applied on each term

discretize

Regularization instantiated with
● mesh: to evaluate spatial derivs 
● alphas, mref have default values, 

can be replaced with user values

can now evaluate phi_m + derivatives



inversion 
flowchart
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Perform the inversion: stating the objective function

Inversion as an optimization problem (deterministic approach) 
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At this stage, we have specified
● parameters we are inverting for 
● data misfit 
● model norm 



Perform the inversion: stating the objective function

Inversion as an optimization problem (deterministic approach) 
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Still to define
● optimization method
● upper and lower bounds 
● choice of initial beta
● choice of beta-cooling schedule
● target misfit and stopping the inversion



Perform the inversion: optimization approach

Inversion as an optimization problem (deterministic approach) 
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Second-order methods



Perform the inversion: inversion directives

Inversion as an optimization problem (deterministic approach) 
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We use directives to make parameter updates and orchestrate the inversion, e.g. 
● estimating initial beta
● defining a beta-cooling schedule
● stopping the inversion when target misfit reached



Perform the inversion: inversion directives

Inversion as an optimization problem (deterministic approach) 
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Initial beta 
● estimate “size” of data misfit and model norm by approximating eigenvalues of 

● take ratio, weight by a parameter controlling relative importance of each
                          



Perform the inversion: inversion directives

Inversion as an optimization problem (deterministic approach) 
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Beta-cooling 
● Define how often beta is reduced (every N iterations)
● Define how much beta is reduced by

                          



Perform the inversion: inversion directives

Inversion as an optimization problem (deterministic approach) 
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Target misfit 
● Expected value of data misfit

● Define target misfit as (default 𝜒= 1) 
                          



Perform the inversion: inversion directives

Inversion as an optimization problem (deterministic approach) 
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Other uses for directives 
● saving inversion model at each iteration
● saving inversion progress (beta, data misfit, ...) 
● including / updating sensitivity weighting 
● updating values for norms (L2 → Lp) 

                          

Recovered 
susceptibility

Sensitivity weighted  
susceptibility



Perform the inversion: bringing it all together

Inversion as an optimization problem (deterministic approach) 
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An example: 1D inversions

Layered earth, 3 different EM systems

● Resolve (airborne, frequency)
● Geotem (airborne, time-domain)
● NanoTEM (ground, time-domain) 

43(Oldenburg et al, 2020) 



SimPEG EM1D

● Efficient forward simulation, sensitivity 
calculation using digital filters
○ relies on empymod (Werthmüller, 2017)

● Parallelized over soundings

● Common FDEM, TDEM system 
parameters implemented
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Seogi Kang

(Kang et al, 2018) 



Individual inversions

L2 regularization
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Joint Inversion 
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L2 regularization



Joint Inversion 
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L2 regularization



Joint Inversion 
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L0 regularization



Joint Inversion 

Flexibility to handle:

● multiple surveys / physics

● different model 
parameterizations

● different simulation mesh for 
each datum 

● separate forward simulation 
and inversion meshes
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L0L2



Example: Bookpurnong

Murray River Floodplain
● over-irrigation and drought
● saline water recharges river 
● floodplain salinization

Data 
● 2006: SkyTEM (time-domain)
● 2008: RESOLVE (frequency-domain)

Inversion 
● Spatially constrained 1D 
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Example: Bookpurnong

51coming to the docs soon! (Viezzoli et al., 2009)

https://docs.simpeg.xyz/


Example: Bookpurnong

52coming to the docs soon! 

losing 
freshwater

gaining 
saline 
water

(Viezzoli et al., 2009)

https://docs.simpeg.xyz/


geophysical methods in SimPEG
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● Gravity
● Magnetics
● Direct current resistivity
● Induced polarization
● Electromagnetics

○ Frequency Domain
○ Time Domain
○ Controlled + natural sources 

● Fluid Flow
○ Richards Equation

Tiled, parallelized inversions in progress

Dom 
Fournier



https://simpeg.xyz 

what is                 ? 

https://simpeg.xyz


code + community

Software practices
● Versioning code
● Tracking issues 
● Testing code
● Suggesting changes 
● Peer-reviewing changes

Communication
● Weekly meetings (recorded) 
● Discourse forum for Q&A
● Chat with slack

https://simpeg.xyz 

https://simpeg.xyz


testing
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co

nfi
de

nc
e

mathematical 
properties 

analytic 
solutions

code 
comparisons

?
(Werthmüller et al., 2020)



community: connecting + resources

● documentation:              
docs.simpeg.xyz  

● community forum: 
simpeg.discourse.group

● chat:                              
slack.simpeg.xyz 

● meeting notes + recordings: 
curvenote.com/@simpeg/meeting-notes 
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Devin 
Cowan

https://docs.simpeg.xyz
http://simpeg.discourse.group/
http://slack.simpeg.xyz/
https://curvenote.com/@simpeg/meeting-notes


GeoSci.xyz
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https://geosci.xyz

undergrad at UBC

26 locations worldwide

curvenote.com/@geosci/inversion-module

https://curvenote.com/@geosci/inversion-module/linear-tikhonov-inversion


thank you!
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simpeg.xyz 

geosci.xyz 

curvenote.com/@geosci
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