

Australian Government Geoscience Australia

How do we include **3D Magnetotelluric** Data into Joint **Probabilistic Inversions?**

Maria Constanza Manassero¹

Juan Carlos Afonso¹, Fabio Zyserman², Sergio Zlotnik³ and Ilya Fomin¹

In collaboration with Geoscience Australia, Geological Survey of South Australia, Geological Survey of NSW, Northern Territory Geological Survey

¹ Macquarie University, Sydney, Australia (<u>maria-constanza.manassero@mq.edu.au</u>, <u>juan.afonso@mq.edu.au</u>, <u>ilya.fomin@mq.edu.au</u>)

² CONICET – FCAGLP, UNLP, Argentina (<u>zyserman@fcaglp.unlp.edu.ar</u>)

³ LaCan, UPC , Barcelona, Spain (<u>sergio.zlotnik@upc.edu</u>)

Overview

- Introduction to inverse problem and joint inversion
- Deterministic and **probabilistic inversion**
- Reduced Basis Method
- **RB+MCMC** approach

- Joint 3D MT+SW probabilistic inversion
 - Structure of the code
 - Parameterisation
 - **Sampling** strategy
 - Synthetic example

• Conclusions

Passive technique	measures vai	riations of the Eart magnetic field.	h's electric and	SSSSSSS SSSSSSS H,
Objective	determine electrical conductivity distribution below the surface.			$\begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $
Electrical conductivity (σ)	Depends on:	composition temperature	water content melt content	

source

Hogg (2016)

Inverse theory —

Inverse theory —

Joint inversion

3D MT Data

Seismic Data

Afonso et al. (2016)

Single and 'best' model based on a single physical parameter (vs,vp, etc)

m

What is a Probabilistic Inversion? -

MCMC

MCMC algorithms produce approximations of the true posterior by repeatedly drawing models \mathbf{m}_t and evaluating their posterior probability

 $P(\mathbf{m}|\mathbf{d}) \propto \mathcal{L}(\mathbf{d}|\mathbf{m})P(\mathbf{m}).$

Inversion

Advantages

- **Extensive information** • about unknown parameters
- Inversion results are almost ٠ independent of initial values
- Global and robust -

Result: a lot of models that are likely to fit the data!

Posterior probability distributions (PDFs) over data and parameters

Posterior probability distributions (PDFs) over data and parameters

Posterior probability distributions (PDFs) over data and parameters

How do we compute fast forwards and include **3D MT into joint probabilistic inversions?**

How do we compute fast forwards and include **3D MT into joint probabilistic inversions?**

Reduced basis, in a simple way

Reduced basis, in a simple way

Initial 3D conductivity model

Reduced basis scheme

Initial 3D conductivity model

Random 3D conductivity fields in MT mesh

Reduced basis scheme

Different enough?

3D MT Forward

RB solution using

Initial 3D conductivity model

Initial 3D conductivity model

SD MT Forward

Random 3D conductivity fields in MT mesh

Reduced basis scheme

Different enough?

RB solution using

Initial 3D conductivity model

Reduced basis scheme

Compute full forward RB solution using

Initial 3D conductivity model

Reduced basis scheme

Full forward (high-fidelity) solutions are sought via an optimized version of the finite element (FE) code developed by Zyserman & Santos (2000). We use the parallel solver MUMPS

U is a vector containing the unknown coefficients for the electric field in the whole domain

Reduced Basis strategy

Generate a space of N_{RB} linearly independent solutions or *snapshots* of (4)

 $\mathcal{U}_{\mathcal{RB}} = span\{\mathbf{u}_{h(1)}, \mathbf{u}_{h(2)}, ..., \mathbf{u}_{h(RB)}\} \subset \mathcal{U}_h$

$$\sigma(\mathbf{x}, \theta)\mathbf{E} - \nabla \times \mathbf{H} = -F$$

 $i\omega\mu_0\mathbf{H} + \nabla \times \mathbf{E} = 0 \tag{2}$

- $(1-i)P_{\tau}a\mathbf{E} + \nu \times \mathbf{H} = 0 \quad \text{on } \partial\Omega \equiv \Gamma, \quad (3)$
- **Discretised** problem to solve:

 $\mathbb{K}(\theta)\mathbf{U}(\theta) = \mathbf{F}(\theta)$

where \mathbb{K} is the stiffness matrix and \mathbf{F} is the nodal vector forces.

1000000 ; 1000000 size of **K**: $N_{FE} \times N_{FE}$

(1)

(4)

Reduced Basis strategy

Generate a space of N_{RB} linearly independent solutions or *snapshots* of (4)

 $\mathcal{U}_{\mathcal{RB}} = span\{\mathbf{u}_{h(1)}, \mathbf{u}_{h(2)}, ..., \mathbf{u}_{h(RB)}\} \subset \mathcal{U}_h$

• For every new sample we first seek for the solution in $\mathcal{U}_{\mathcal{RB}}$ as a linear combination of the basis functions

$$\mathbf{U}_{\mathbf{RB}} = \sum_{i=1}^{N_{RB}} a_i \mathbf{U}_i = \mathbb{U}_{\mathbb{RB}} \mathbf{a}$$

$$\mathbb{U}_{\mathbb{RB}} = [\mathbf{U}_1, \mathbf{U}_2, ..., \mathbf{U}_{N_{RB}}]^{N_{FE} \times N_{RB}}$$
$$\mathbf{a}^T = [a_1, a_2, ..., a_{N_{RB}}]$$

Reduced Basis strategy

Generate a space of N_{RB} linearly independent solutions or *snapshots* of (4)

 $\mathcal{U}_{\mathcal{RB}} = span\{\mathbf{u}_{h(1)}, \mathbf{u}_{h(2)}, ..., \mathbf{u}_{h(RB)}\} \subset \mathcal{U}_h$

For every new sample we first seek for the solution in $\mathcal{U}_{\mathcal{RB}}$ as a linear combination of the basis functions

$$\mathbf{U_{RB}} = \sum_{i=1}^{N_{RB}} a_i \mathbf{U}_i = \mathbb{U}_{\mathbb{RB}} \mathbf{a}$$

$$\mathbb{U}_{\mathbb{RB}} = [\mathbf{U}_1, \mathbf{U}_2, ..., \mathbf{U}_{N_{RB}}]^{N_{FE} \times N_{RB}}$$
$$\mathbf{a}^T = [a_1, a_2, ... a_{N_{RB}}]$$

The RB solution is found solving a system a of equation of size $N_{RB} \ll N_{FE}$

$$(\mathbb{U}_{\mathbb{R}\mathbb{B}}{}^T\mathbb{K}(\theta)\mathbb{U}_{\mathbb{R}\mathbb{B}})\mathbf{a} = \mathbb{U}_{\mathbb{R}\mathbb{B}}{}^T\mathbf{F}(\theta)$$

$$\mathbb{K}_{\mathbb{R}\mathbb{B}}(\theta)\mathbf{a}=\mathbf{F}_{\mathbf{R}\mathbf{B}}(\theta)$$

How good is the RB solution?

 $\mathbf{R}_{\mathbf{R}\mathbf{B}} := \frac{\mathbb{K}\mathbf{E}_{\mathbf{R}\mathbf{B}}}{\mathbf{F}} = \frac{|\mathbb{K}\mathbf{U}_{\mathbf{R}\mathbf{B}} - \mathbf{F}|}{|\mathbf{F}|}$

We have included:

Variable tolerance

Orthonormalization

 $\mathbf{E}_{\mathbf{RB}} := \mathbf{U}_{\mathbf{RB}} - \mathbf{U}$

 $R_{RB} \ll tol$

 $\mathbb{K}\mathbf{E}_{\mathbf{R}\mathbf{B}}:=\mathbb{K}\mathbf{U}_{\mathbf{R}\mathbf{B}}-\mathbb{K}\mathbf{U}$

3D MT into Multi-Observable Probabilistic Inversion

How do we implement the **RB approach** for the joint **MT+SW** inversion?

Parallel implementation and solvers

Parallel implementation and solvers

How do we **parameterise** our models for the joint **MT+SW** inversion?

Parameterisation : background + conductivity anomalies

Parameterisation : background + conductivity anomalies

Parameterisation : background + conductivity anomalies

Synthetic Example

- The MT synthetic data are full impedance tensor computed for 12 periods between 3.2 and 10000 seconds at 400 stations.
- The data errors are assumed to be uncorrelated and normally distributed.
- The standard deviation is assumed as 5% of max(|Zxx|,|Zxy|) for the components Zxx and Zxy of the impedance tensor, and 5% of max(|Zyy|,|Zyx|) for the components Zyy and Zyx.
- The SW data are the Rayleigh wave phase velocities for periods between 15 and 175 seconds, computed at the locations of the MT stations.
- We assume normally distributed data errors with a standard deviation of 1% of the velocity in meters.

Data Misfits

$$\phi_{SW} = -\frac{1}{2} \sum_{i=1}^{N_{sta}} \sum_{j=1}^{N_{per}} \left(\frac{g_{ij} - d_{ij}}{std_{ij}}\right)^2$$

$$\phi_{MT} = -\frac{1}{2 \cdot N_{dat}} \sum_{i=1}^{N_{sta}} \sum_{j=1}^{N_{per}} \left(\frac{g_{ij} - d_{ij}}{std_{ij}}\right)^2$$

 N_{sta} and N_{per} are the number of stations and periods for each dataset;

 d_{ij} and g_{ij} correspond to the observed and computed data (with the MT or the SW forward) for station *i* and period *j*, std_{ij} is the standard deviation for data d_{ij} .

 N_{dat} is the total number of MT data used for each station and frequency

Model setup

- The inversion area is sub-divided into 324 columns of size 80×80×460 km
- 1155 conductivity nodes sparsely located within the inversion volume (1440×1440×410 km)
- The vector of model parameters contains **324 LAB values and 1155 nodal conductivity values (1479 parameters)**

Model setup

- The inversion area is sub-divided into 324 columns of size 80×80×460 km
- 1155 conductivity nodes sparsely located within the inversion volume (1440×1440×410 km)
- The vector of model parameters contains **324 LAB values and 1155 nodal conductivity values**

Prior and proposal distributions

- The priors for the LAB depths are uniform distributions defined in a range of ±70km, centered on the true value of each column.
- The proposals used in the first stage are Gaussian distributions centered on the current sample with a standard deviation of 20 km.
- For the conductivity nodes, we use Gaussian prior distributions centered on the background conductivity value (in log-scale) with a standard deviation of 1.5 log₁₀ (S/m).
- The initial proposal distributions are log-normal centered on the current node value and standard deviation of 0.9 log₁₀ (S/m).

Joint probabilistic inversion of 3D MT and SW synthetic data

Large scale example

- Model size=
 1200x1200x460 km
- 12 frequencies
- 400 stations

Parameters:

• 324 LAB + 1155 conductivity nodes

RUN **1,000,000 MCMC** steps

- tol1= 0.068
- tol2 =0.058
- 2 processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) per frequency
- Inversion took 14 days, with an average of 1.2 sec per simulation

Initial model. All LAB at 180km depth

Joint probabilistic inversion of 3D MT and SW synthetic data

٠

٠

٠

٠

•

simulations)

Joint probabilistic inversion of 3D MT and SW synthetic data

Best model after 1,000,000 simulations

Mean model after 1,000,000 simulations

Surface-waves data pdfs

1. Manassero, M.C., Afonso, J.C., Zyserman, F., Zlotnik, S. and Fomin, I., 2020. A reduced order approach for probabilistic inversions of 3-D magnetotelluric data I: general formulation. *Geophysical Journal International*, 223(3), pp.1837-1863

2. Manassero, M.C., Afonso, J.C., Zyserman, F.I., Zlotnik, S. and Fomin, I., 2021. A Reduced Order Approach for Probabilistic Inversions of 3D Magnetotelluric Data II: Joint inversion of MT and Surface-Wave Data. *Journal of Geophysical Research: Solid Earth* (**in review**)

3. Manassero, M.C., Kirkby, A., Afonso, J.C, Czarnota, K., 2021. A Reduced Order Approach for Probabilistic Inversions of 3D Magnetotelluric Data III: Joint inversion of MT and Surface-Wave Data in the Tasmanides, southeast Australia (**in preparation**)

Fast 3D MT forwards: less than 1 sec!

Efficient parameterisation of **background + conductivity anomalies**

Develop the **1**st numerical platform (**RB+MCMC**) to jointly invert **3D MT** data and seismic data in a probabilistic way

Adaptive strategies (MCMC and the surrogate model

Fast 3D MT forwards: less than 1 sec!

Efficient parameterisation of **background + conductivity anomalies**

Develop the 1st numerical platform (RB+MCMC) to jointly invert 3D MT data and seismic data in a probabilistic way

– Future work ––

- Inversion using field MT and SW data
- Efficient sampling MCMC strategies (transdimensional scheme, parallel tempering, etc..)

etc..)

e-mail:

maria-constanza.manassero@mq.edu.au