EMinar: EM/MT data inversion

Memorial University of Newfoundland, St. John's, NL, Canada

Colin Farquharson

My intention/aims/hopes with this presentation; E/R.

Non-linear (sensitivities/Jacobian, iterations).

Disclaimer.

Pre-amble

- Big problems (in terms of computations; cells, frequencies/times, sources).

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

Inversion ... (!)

$$c(z,\omega) = -$$

$\frac{1}{\sigma(z)} = \frac{1}{\sigma(Z)} + \frac{2\mu}{\pi}$

Bailey (1970), Whittall and Oldenburg (1992)

 $-E(z,\omega)/E'(z,\omega)$

$$\frac{\mu_0}{\pi} \int_0^\infty \operatorname{Re}[c^2(z,\omega)] \, d\omega,$$

... discrete data, and noise.

COPROD M.T., rms 1.0

Constable et al. (1987)

Importance of measurement uncertainties.

Constable et al. (1987)

Importance of measurement uncertainties.

Constable et al. (1987)

Quantifying how well the data from our candidate model reproduce the observations.

 $\phi_d = \sum_{i=1}^{M} \left(\frac{d_i^{\text{obs}} - F[\mathbf{m}^*]_i}{\sigma_i} \right)^2$

Quantifying how well the data from our candidate model reproduce the observations.

$$\|\mathbf{x}\|_{p}^{p} = \sum_{j} |x_{j}|^{p}$$

$$\phi(\mathbf{x}) = \sum_{j} \rho(x_{j}),$$

$$\rho(x) = \begin{cases} x^{2} & |x| \leq c \\ 2c|x| - c^{2} & |x| > c \end{cases}$$
Huber M
$$\rho(x) = \frac{x^{2}}{x^{2} + \varepsilon^{2}}$$
Minimum suppor Zhdanov, 1999; L

Quantifying how well the data from our candidate model reproduce the observations.

By Inductiveload - self-made, Mathematica, Inkscape, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3817954

By IkamusumeFan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=34776178

Quantifying how well the data from our candidate model reproduce the observations.

and in this case the likelihood function is (see equations (1.93)-(1.95))

 $L(\mathbf{m}) =$

A couple of examples of such a likelihood function are given as a footnote.²⁸

other examples are given in chapter 1.

Tarantola (2005)

Sometimes, the relation between data and model parameters is functional, $\mathbf{d} = \mathbf{g}(\mathbf{m})$,

$$= \rho_{\rm D}(\mathbf{g}(\mathbf{m}))$$
 . (2.3)

²⁸For instance, if d_{obs}^i represents the observed data values and σ^i the estimated mean deviations, assuming double exponentially distributed observational errors gives $L(\mathbf{m}) = \exp(-\sum_i |g^i(\mathbf{m}) - d^i_{obs}| / \sigma^i)$. If \mathbf{C}_D represents the covariance operator describing estimated data uncertainties and uncertainty correlations, assuming a Gaussian distribution gives (equation (1.101)) $L(\mathbf{m}) = \exp(-\frac{1}{2}(\mathbf{g}(\mathbf{m}) - \mathbf{d}_{obs})^t \mathbf{C}_D^{-1}(\mathbf{g}(\mathbf{m}) - \mathbf{d}_{obs}))$. Some

Quantifying the "quality" of the fit ...

Smith and Booker (1988)

Spearman statistic to assess "whiteness" of data fit

$$D = \sum_{i=1}^{N} (S_i - R_i)^2$$

low values, positive correlation, high values, negative correlation; based on rankings

Quantifying the "quality" of the fit ...

Jones (2019)

Durbin-Watson statistic

$$dw_1 = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=i}^{n} (e_i - \bar{e})^2}$$

auto-correlated?

Include Durbin-Watson statistic in inversion:

$$\Phi = \lambda_1 nRMS + \lambda$$

 \pm 0.002X - $0.00003x^{6}$

 $\lambda_2 (dw_1 - 2)^2 + \lambda_3 S(m)$

Quantifying how well the data from our candidate model reproduce the observations.

Minimize the measure of data misfit ... optimization ...? (Just curve fitting!)

Oh ...

Oldenburg and Li (1999)

$$\alpha_{s}, \alpha_{x}, \alpha_{z}) = (0.001, 1, 1)$$

 Ω -m

Oldenburg and Li (1999)

Oldenburg and Li (1999)

Non-uniqueness! Well then, let's deal with that.

Constable et al. (1987)

 $U = \|\mathbf{\partial}\mathbf{m}\|^2 + \mu^{-1} \{\|\mathbf{W}\mathbf{d} - \mathbf{W}\mathbf{F}[\mathbf{m}]\|^2 - X_*^2 \}.$

"Occam's inversion"

model roughness

smoothest model, simplest model

Non-uniqueness! Well then, let's deal with that.

Smith and Booker (1988)

$$\chi^2 = \sum_{i=1}^{2N} \left[\frac{\Delta \gamma_i}{\varepsilon_i} \right]^2, \qquad F(m, f) = \int_0^\infty \left[\frac{dm}{df(z)} \right]^2$$

$$W(m_1, \chi_t^2, \beta_t) = F(m_1, f) + \beta_t \chi_t^2$$

"minimum-structure" inversion

flattest model

"Occam's inversion", "minimum-structure" inversion:

A combination of ...

 $\Phi = \phi_d + \gamma \phi_m$

a measure of how well the observations are reproduced (small value is good), and a measure of whatever-we-think-will-give-us-a-good-model (small value good).

"Occam's inversion", "minimum-structure" inversion:

Has proved to be very successful: everyone uses this approach (gravity, magnetic, DC/IP, seismic travel-time tomography; and FWI is getting there).

Arguably most important aspect is that chances of a useful model from any one run are very high (compare with needing to re-start parameter estimation algorithms from lots of different initial models). Reliable, robust.

"D+" models of Parker (1980)

Parker and Whaler (1981)

Parker and Whaler (1981)

Rather than finding a unique model that reproduces the data ...

Finding all models that give a suitable misfit ... sampling.

$$\frac{l_i^{\text{obs}} - F[\mathbf{m}^*]_i}{\sigma_i} \right)^2$$

Bayesian Markov chain Monte Carlo algorithm for model assessment

Minsley (2011)

Bayesian Markov chain Monte Carlo algorithm for model assessment

Minsley (2011)

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts

different models, different approaches? D+?

Käufl et al. (2020)

Lu et al. (2021)

50m & 100m line spacing 900 line-km Tx-Rx location every ~2m vertical and in-line components 45 time channels

Efficient meshing: unstructured tetrahedral

Ansari et al. (2017)

Efficient meshing: OcTree, non-conforming

Haber and Schwarzbach (2014)

Grayver and Kolev (2015)

Decouple model and computational meshes: "meshfree"

Wittke and Tezkan (2014)

Decouple model and computational meshes: "meshfree"

Long and Farquharson (2020)

Xushan Lu

-200

-300

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts

different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling ---- Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches?

D+?

"Perturbation" approach:

 $\frac{\partial F_j(\mathbf{m})}{\partial m_k} \approx \frac{F_j(\mathbf{m} + \Delta m_k) - F_j(\mathbf{m})}{\Delta m_k}.$

McGillivray and Oldenburg (1990)

Compute Jacobian one column at a time using forward-modelling routine. Requires N forward modellings (where N is the number of model parameters).

"Sensitivity equation" approach:

Forward modelling, matrix equation:

Differentiate w.r.t. model parameter:

Compute Jacobian one column at a time using forward-modelling routine. Requires N forward modellings (where N is the number of model parameters).

(But what if a direct solver has been used for the forward problem, and the factorization available?) (What if only one column of the Jacobian matrix is required?)

McGillivray at al. (1994)

"Adjoint equation" approach

Forward modelling,
PDE:

$$L u = s \rightarrow L \frac{\partial u}{\partial m_j} = -\frac{\partial L}{\partial m_j} u \qquad L g(\mathbf{r}; \mathbf{r}_o) = \delta(\mathbf{r} - \mathbf{r}_o)$$

Green's function
 $\int_V \left\{ g L \frac{\partial u}{\partial m_j} - \frac{\partial u}{\partial m_j} L g \right\} dv = \int_V \left\{ -g \frac{\partial L}{\partial m_j} u - \frac{\partial u}{\partial m_j} \delta(\mathbf{r} - \mathbf{r}_o) u \right\} dv - \frac{\partial u}{\partial m_j} |_{\mathbf{r}_o},$
 $0 = \int_V \left\{ -g \frac{\partial L}{\partial m_j} u \right\} dv - \frac{\partial u}{\partial m_j} |_{\mathbf{r}_o},$
 $\frac{\partial H_z(\mathbf{x}_0)}{\partial \sigma_k} = \int_D \mathbf{\tilde{E}} \cdot \mathbf{E} \psi_k(\mathbf{x}) dv.$
 $\frac{\partial u}{\partial \mathbf{m}_j} |_{\mathbf{r}_o} = -\int_V \left\{ g(\mathbf{r}; \mathbf{r}_o) u \right\} dv,$
 $\frac{\partial u}{\partial \mathbf{m}_j} |_{\mathbf{r}_o} = -\int_V \left\{ g(\mathbf{r}; \mathbf{r}_o) u \right\} dv.$

$$\frac{\partial H_z(\mathbf{x}_0)}{\partial \sigma_k} = \int_D \tilde{\mathbf{E}} \cdot \mathbf{E} \psi_k(\mathbf{x}) \, dv.$$

Compute Jacobian one row at a time using forward-modelling routine. Requires M forward modellings (where M is the number of data).

McGillivray at al. (1994)

"Implicit", "pseudo-forward modelling" approach:

Matrix equation to be solved for model update (for example):

$$\{\mathbf{J}^{n-1}^{T}\mathbf{W}_{d}^{T}\mathbf{W}_{d} \ \mathbf{J}^{n-1} + \alpha_{r}\beta^{n} \ \mathbf{W}_{r}^{T}\mathbf{W}_{r} + \alpha_{s}\beta^{n} \$$
$$= \mathbf{J}^{n-1}^{T}\mathbf{W}_{d}^{T}\mathbf{W}_{d}(\mathbf{d}^{t} - \mathbf{d}^{n-1})$$

Iterative solution requires results of: From "sensitivity equation" approach: But do this using forward-solving routine:

Don't have to construct and store Jacobian matrix. (Trade memory for computations.)

- Mackie and Madden (1993)
- $\mathbf{W}_{s}^{T}\mathbf{W}_{s}$ $\delta \mathbf{m}^{n}$ $-\alpha_r\beta^n \mathbf{W}_r^T \mathbf{W}_r \mathbf{m}^{n-1} + \alpha_s\beta^n \mathbf{W}_s^T \mathbf{W}_s(\mathbf{m}^f - \mathbf{m}^{n-1}),$ $\mathbf{y} = \mathbf{J} \mathbf{x}$ $\mathbf{J}_i = \mathbf{A}^{-1} \tilde{\mathbf{u}}$ $\mathbf{A}\mathbf{J}_{i} = \tilde{\mathbf{u}}$
- Compute product of Jacobian with vector using forward-modelling routine.

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling ---- Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches?

D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like

Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts

different models, different approaches? D+?

Descent-based, gradient-based optimization, e.g., Gauss-Newton: $\{\mathbf{J}^{n-1} \mathbf{W}_{d}^{T} \mathbf{W}_{d} \mathbf{J}^{n-1} + \alpha_{r} \beta^{n} \mathbf{W}_{r}^{T} \mathbf{W}_{r} + \alpha_{s} \beta^{n} \mathbf{W}_{s}^{T} \mathbf{W}_{s}\} \delta \mathbf{m}^{n}$

Jahandari and Farquharson (2017)

NLCG, Rodi and Mackie (2001):

A variant of conjugate gradients applied directly to the function being minimized. Any less "powerful" than GN?

Data space, Siripunvaraporn and Egbert (2000): Smaller matrix to invert/solve. How expensive are the matrix operations for the transformation?

Avoids the Hessian matrix, thus needs fewer forward modelling, and so faster than GN.

- Transform GN matrix equation from $N \times N$ to $M \times M$ (N is number of model parameters).

Descent-based, gradient-based optimization, complex objective function:

$$\Phi(\mathbf{m}_1,\mathbf{m}_2) = \lambda_1 \Phi_{d1}(\mathbf{m}_1) + \lambda_2 \Phi_{d2}(\mathbf{m}_2) + \Phi_{m1}(\mathbf{m}_1) + \Phi_{m2}(\mathbf{m}_2) + \rho \Psi(\mathbf{m}_1,\mathbf{m}_2).$$

Design an objective/cost/penalty function that gives us what we want. Then go ahead and minimize (!).

Carter-McAuslan et al. (2017)

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like

Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts

different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

The Conclusion

"Occam", minimum-structure inversion is very effective — it gets the job done — and hence useful and popular.

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts different models, different approaches? D+?

Ansari et al. (2020)

3-D computer *geology* models

Touro VMS deposit, NW Spain

Arias et al. (2021)

traces are included.

3-D computer *geology* models

Uranium exploration, Athabasca Basin (geological section).

Inversion using same kind of computer Earth model as the geologists ...

Lu et al. (2021)

Surface geometry inversion, global optimization, sampling ...

Lu et al. (2021)

Jones et al. (2005)

Cordell et al. (2019)

Distance From Trench (km)

2-D D+ model?

2-D D+ model?

TE-model/E-polarization ?

2-D D+ model?

TM-model/B-polarization ?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities

Descent/gradient/derivative/linearization-based algorithms The Conclusion

Future work/thoughts different models, different approaches? D+?

Inversion optimization background: why optimization data misfit minimizing data misfit, non-uniqueness measure of model somethingorother descent-based, gradient-based optimization (linearization) or sampling and selection of collections of models we like Forward modelling Sensitivities Descent/gradient/derivative/linearization-based algorithms The Conclusion Future work/thoughts different models, different approaches? D+?

The Conclusion

"Occam", minimum-structure inversion is very effective — it gets the job done — and hence useful and popular.

The End.