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66 1-D MT INVERSION 

Riccati equation over frequency and using the causality condition gives the 
conductivity in a shell adjacent to the level at which the responses are 
known. The Riccati equation can then be used to downward continue the 
responses through this layer. These new responses define the next deeper 
conductivity value, and the process is repeated. Importantly, Bailey showed 
that this inversion technique is unique for the class of all nonzero, bounded, 
infinitely differentiable tr(r). That is, there is only one conductivity profile 
which keeps the responses causal at all radii. 

Bailey (1970) showed that this method can be adapted to a plane strat- 
ified Earth model. MacBain and Bednar (1986) discussed this form of Bai- 
ley's method. In our notation, the response is c(z,w) = -E(z,w)/E'(z,w) 
and the Riccati equation it satisfies is 

c'(z,w) - iwpotr(z) c2(z,w) - 1. 

The conductivity is derived by applying the Cauchy integral formula to the 
derivative of c(z, w) with respect to z. In the lower half of the complex 
w-plane, causality requires this function to be analytic. The result is an 
integral constraint on Oc/Oz. Integrating the Riccati equation (136) with 
respect to w and substituting the causality constraint gives 

1 1 2•uo /o • er(z) - er(Z) -t-- Re[c2(z,w)]dw, (137) 
where er(Z)is the underlying half-space conductivity. Equation (137) be- 
gins with the known surface responses c(0, w), and calculates the conduc- 
tivity of the surface layer. Downward continuation of the response using 
equation (136) or the standard recursion relations leads to subsequent er(z) 
values. 

The main difficulty with this method is that the response must be known 
at all frequencies. A practical data set can be completed by fitting the data 
to the dispersion relations or to the Stieltjes integral form in equation (7); 
however, the downward continuation is inherently unstable for the higher 
frequencies. Achache et al. (1981) discussed the numerical implementation 
of Bailey's method, and applied it to long-period geomagnetic variations. 

The layer-recursive aspect of this inversion is analogous to the Schur 
algorithm discussed by Yagle and Levy (1984). This algorithm finds tr(z) 
at successive depths using the high-frequency limit of the Riccati equation 
(130) involving r(z,w). For a given depth z, the limit is 

•(z) = lim 2 k(z)r(z,w) (138) 
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66 1-D MT INVERSION 
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296 Constable et al.

Figure 3 shows rms misfit, which is /M)I/2, at successive
iterations in the inversion of the Schlumberger data. The
figure also shows the locations of the 11 chosen at each iter-
ation; the minima were found using a golden section search,
and the intercepts were found using the bisection method (see,
for example, Gill et al., 1981).

CONVERGENCE AND STABILITY

Because we seek a well defined, specific model (i.e., the
smoothest model possible), our iterative scheme is very stable.
That is, the models found at each iteration will not contain
very large or very small conductivities unless they are abso-
lutely required in order to fit the data.
The convergence of our scheme is also impressive. Figure 4

shows the starting model and the models for each of the five
iterations required to fit the Schlumberger data with a maxi-
mally smooth model. Table 1 gives the values of X 2, rms
error, Ilk' II RIf, and II 1'111 2 (the step size) at each iteration.
The starting model was a half-space of 105 n· m, and the
smoothest model (in a first derivative sense) fitting the data to
a tolerance of an rms error of 1 was sought. This model was
found in only five iterations. A sixth iteration verified that the
procedure had converged and the algorithm stopped on the
criteria that II 1'111 2 < am and Irms error - required rms
error I < 0.05.

EXAMPLES

We present a few examples of the application of our inver-
sion technique. In these examples the model was parame-
terized as loglo (layer resistivities), with the layer thickness
held constant in the log domain. All the data, except for MT
phases, were also parameterized in loglo domain, so the rms
tolerances refer to the misfit in log space. The actual data used
in these inversions are given in Tables 2 through 5.
The Schlumberger data already presented are from Con-

stable et al. (1984). These data are from a deep sounding con-
ducted on the central Australian shield which employed over-
land telephone lines to achieve a maximum electrode spacing
of 200 km. Constable et al. (1984) presented a six-layer model
obtained by a Marquardt method which fits the data to an
rms tolerance of 0.81 when calculated in the manner just de-
scribed. The best 1-D fit to these data is obtained with a
bilayer model (Parker, 1984) which predicts the data to within
an rms misfit of 0.75 (Figure 2). The bilayer model is physi-
cally unrealistic, being only 10m thick and containing layer
resistivities from 10- 1 n· m to 109 n· m, but it does highlight
the non uniqueness problem of electrical sounding inversion.
Models which fit the Schlumberger data to an rms misfit of 1
and which are maximally smooth in a second derivative
(Figure 1) and first derivative (Figure 2) sense are shown. The
conclusions drawn by Constable et al. (1984) from their Mar-
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FIG. 5. The COPROD data described by Jones and Hutton (1979a), and the smallest first derivative model fitting these
data to an rms tolerance of 1.0. The large error bars in phase represent measurements where phase error was
indeterminate. Also shown is a simple layered model given in Jones and Hutton (1979a) for the same data. The
terminating half-space of the Jones and Hutton model has a resistivity of 1n· m.
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Smooth Models from EM Data 297

quardt model would also have been drawn from the smooth
models. In particular, the drop in resistivity at km ap-
pears in all but the model with rms misfit of 1.5. If the data
errors have been well assessed and the earth is truly one-
dimensional, then the probability of the real earth generating
such poorly fitting data is only 0.025. We therefore interpret
the drop in resistivity at depth as being significant.
As an example of MT inversion, we present the COPROD

data circulated by Dr. Alan Jones, collected at a site near
Newcastleton in Britain and described in Jones and Hutton
(1979a). The model that is smoothest in a first derivative sense
and that fits the data to an rms misfit of 1.0 is shown in Figure
5, along with a simple layered model from Jones and Hutton
(1979a). The smooth model contains all the features of their
layered model, but has a more conservative resistivity for the
deep conductive region. Parker (1982) shows that the maxi-
mum depth to which any model is constrained by these data is
about 300 km. Our smooth model has little structure below
400 km and no structure below 700 km, in general agreement
with Parker's result.
As a final example of the versatility of our inversion algo-

rithm, Figure 6 shows the result of inverting Schlumberger
and MT data simultaneously. The data are from a site in
south-central Australia where both a 20 km electrode spacing
Schlumberger sounding (Constable, 1985) and a wide-band
MT sounding (Cull, 1985)were conducted. The joint inversion

of resistivity and MT data is not a new idea (see Vozoff and
Jupp, 1975); we merely wish to demonstrate the tolerance of
our inversion routine to the nature of the forward problem
and the consistent results that can be obtained from data of
mixed type. Figure 6 shows the joint model and the responses
fitting the various sounding data to a combined rms error of I.
For comparison, the smooth models with rms errors of I ob-
tained when the two data sets are inverted independently are
also shown (the responses are not given here). The only signifi-
cant difference between the joint fits and individual fits occurs
in the MT phase, which has a slightly poorer fit below a
period of I s for the joint model. However, the errors on the
MT data are probably too large, resulting in a preferential fit
to the Schlumberger data. Note that there is no reason to
believe the structure at this site is one-dimensional; the inver-
sion was done as an exercise to test the modeling algorithm.
However, a I-D model fits both data sets, and Cull (1985)
inferred the presence of the deep conductive layer on the basis
of several additional MT stations to the east of the site repre-
sented here.

CONCLUSIONS

Although the non uniqueness in inverting electromagnetic
sounding data is well known, we usually require a preferred
model to represent and interpret our data. It is most desirable
to avoid including features in that model which are not actu-
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292 Constable et al.

Notice that .R l in the discrete case is just

For the linear discrete case now under consideration, the
mathematical minimization problem is this: We must mini-

where I is an N x N matrix given by mize R1 of equation (5) subject to the condition that the misfit
Xl in equation (3) is equal to X; (a value deemed acceptable
in view of the uncertainties). If the uncertainties are due to a
zero-mean, Gaussian process that is independent in each of
the observations, and a j are the associated standard devi-
ations, then Xl is well known to be distributed as Xl. This is a
great deal to assume about the noise, but often the uncer-
tainties are rather poorly known and more refined statistical
models may not be worth the considerable additional labor.
With the Gaussian model, the expected value of Xl is just M,
the number of data, and is equivalent to an rms misfit of 1. It
is unlikely that any other kind of distribution function would
yield a value for the expected Xl that is widely different. M is
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FIG. 2. Three maximally smooth models (below), in a first derivative sense, and their responses (above) for three
different rrns misfits. A marginal improvement in fit to the data requires a substantial increase in model structure. The
data are the same as for figure 1. Also shown is the best-fitting I-D (bilayer) model, which produces a misfit of 0.75.
The resistivities of the bilayer model exceed the range used for this plot.
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φd =
M
∑

i=1

(

dobsi − F [m∗]i
σi

)2

Quantifying how well the data from our candidate model reproduce 
the observations.



and Zhdanov !1999". Ramos et al. !1999" minimize an entropy mea-
sure of the vector comprising the absolute values of the spatial finite
differences of the model. They apply their technique to the 2D inver-
sion of resistivity data as well as other geophysical data sets. Howev-
er, despite the success of the preceding approaches in producing
piecewise-constant, blocky models, the interfaces in the models are
always either vertical or horizontal: The methods do not want to pro-
duce dipping interfaces !Auken and Christiansen, 2004". The work
presented here attempts to remedy this problem.

A minimum-structure inversion procedure that uses l1 measures
for both the measure of model structure and the measure of data
misfit can be solved via linear programming !see, for example,
Dosso and Oldenburg, 1989, for 1D inversion of magnetotelluric
data; Oldenburg and Ellis, 1991, for 2D inversion of magnetotelluric
data; and van Zon and Roy-Chowdhury, 2006 for 2D and 3D gravity
inversion". However, the flexibility afforded by the IRLS procedure
to use non-l2 measures other than the l1 measure, and to use different
measures for the model structure and data misfit, is preferred here.

Smith et al. !1999" and de Groot-Hedlin and Constable !2004" for
magnetotelluric !MT" data and Auken and Christiansen !2004" for
resistivity data have developed 2D inversion procedures that gener-
ate blocky, pseudolayered models. However, the approach of these
authors has been to parameterize the subsurface in terms of a small
number of cells beneath each observation location, to allow both the
conductivities of the cells and the depths of their horizontal bound-
aries to vary in the inversion and to apply constraints on the lateral
variability of the conductivities and depths of the cell boundaries. In
some respects, these inversion procedures are hybrids of the mini-
mum-structure approach and a parameter estimation approach; a full
minimum-structure approach is of interest here.

The remainder of this paper is arranged as follows. First, the par-
ticulars of the modified minimum-structure inversion procedure are
described, beginning with the general minimum-structure inversion
strategy and continuing with examples of non-l2 measures and their
properties, the iteratively reweighted least-squares procedure for
dealing with the nonlinearity introduced by non-l2 measures, and the
inclusion of diagonal finite differences in the measure of model
structure for enabling dipping interfaces to be generated. The capa-
bilities of the modified procedure are then illustrated by its applica-
tion to the inversion of a synthetic 2D MT data set and to the 3D in-
version of gravity data from the Ovoid deposit at Voisey’s Bay, La-
brador.

THEORY

General minimum-structure inversion strategy

The typical framework of a minimum-structure inversion proce-
dure is used here. The subsurface is discretized using a fine mesh
comprising uniform cells. The mesh is kept fixed during the inver-
sion, with the values of the physical property !or properties" in the
cells being the model parameters to be determined in the inversion.
The solution strategy is to find the model parameters that minimize
an objective function, which is a combination of a measure of how
well the observations are reproduced and a measure of how compli-
cated the model is:

! ! !d " " !m. !1"

Here, !d is the measure of data misfit, having the general form

!d ! !d!u" , !2"

u ! Wd!dobs # dprd" , !3"

where dobs is the vector of observations, dprd is the vector of data com-
puted for the vector m, of model parameters, and Wd is a diagonal
matrix whose elements are the reciprocals of the estimates of the
standard deviations of the noise in the observations. Also, !m is a
measure of the amount of structure in the model, having the form

!m ! #
k

#k!k!vk" , !4"

vk ! Wk!m # mk
ref" . !5"

The summation in !m is over five terms for the 2D problem consid-
ered here and over 14 terms for the 3D problem. This will be treated
below. The factor " in the objective function is the regularization, or
trade-off, parameter, which controls the relative contributions of the
data misfit term and the model complexity term.

General measures

Ageneral form for !d and !k is

!!x" ! #
j

$!xj" , !6"

where xj are the elements of the vector x, which will be u or vk from
above, and the summation is over all elements in the vector. There
are numerous possibilities for the specific form of the measure. One
example is the lp-norm:

$x$p
p ! #

j
%xj%p, !7"

of which the traditional sum-of-squares measure, or l2-norm, is a
special case. Other examples are the M-measure of Huber !1964",
for which

$!x" ! &x2 %x% % c ,

2c%x% # c2 %x% & c ,' !8"

where c is the value of x at which the behavior of $ changes from
quadratic to linear and the perturbed lp-norm measure of Ekblom
!1987", for which

$!x" ! !x2 " '2"p/2, !9"

where ' is a small number. This measure is numerically more attrac-
tive than the lp-norm because its derivative exists at x ! 0 when
p ! 1. Furthermore, Last and Kubik !1983" and Portniaguine and
Zhdanov !1999" use the measure with

$!x" !
x2

x2 " '2 . !10"

For small ', this measure essentially is proportional to the number of
nonzero elements in x and is analogous to the measure of the area or
volume of support of a continuous function. There are innumerable
other possibilities, allowing a measure to be chosen that produces a
model !or data fit" with a specific desirable character. It is also con-
ceivable to construct a measure function $ that is optimal for a partic-
ular situation !Haber and Tenorio, 2003". Figure 1 illustrates how $
varies for the measures described above.

K2 Farquharson
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and Zhdanov !1999". Ramos et al. !1999" minimize an entropy mea-
sure of the vector comprising the absolute values of the spatial finite
differences of the model. They apply their technique to the 2D inver-
sion of resistivity data as well as other geophysical data sets. Howev-
er, despite the success of the preceding approaches in producing
piecewise-constant, blocky models, the interfaces in the models are
always either vertical or horizontal: The methods do not want to pro-
duce dipping interfaces !Auken and Christiansen, 2004". The work
presented here attempts to remedy this problem.

A minimum-structure inversion procedure that uses l1 measures
for both the measure of model structure and the measure of data
misfit can be solved via linear programming !see, for example,
Dosso and Oldenburg, 1989, for 1D inversion of magnetotelluric
data; Oldenburg and Ellis, 1991, for 2D inversion of magnetotelluric
data; and van Zon and Roy-Chowdhury, 2006 for 2D and 3D gravity
inversion". However, the flexibility afforded by the IRLS procedure
to use non-l2 measures other than the l1 measure, and to use different
measures for the model structure and data misfit, is preferred here.

Smith et al. !1999" and de Groot-Hedlin and Constable !2004" for
magnetotelluric !MT" data and Auken and Christiansen !2004" for
resistivity data have developed 2D inversion procedures that gener-
ate blocky, pseudolayered models. However, the approach of these
authors has been to parameterize the subsurface in terms of a small
number of cells beneath each observation location, to allow both the
conductivities of the cells and the depths of their horizontal bound-
aries to vary in the inversion and to apply constraints on the lateral
variability of the conductivities and depths of the cell boundaries. In
some respects, these inversion procedures are hybrids of the mini-
mum-structure approach and a parameter estimation approach; a full
minimum-structure approach is of interest here.

The remainder of this paper is arranged as follows. First, the par-
ticulars of the modified minimum-structure inversion procedure are
described, beginning with the general minimum-structure inversion
strategy and continuing with examples of non-l2 measures and their
properties, the iteratively reweighted least-squares procedure for
dealing with the nonlinearity introduced by non-l2 measures, and the
inclusion of diagonal finite differences in the measure of model
structure for enabling dipping interfaces to be generated. The capa-
bilities of the modified procedure are then illustrated by its applica-
tion to the inversion of a synthetic 2D MT data set and to the 3D in-
version of gravity data from the Ovoid deposit at Voisey’s Bay, La-
brador.

THEORY

General minimum-structure inversion strategy

The typical framework of a minimum-structure inversion proce-
dure is used here. The subsurface is discretized using a fine mesh
comprising uniform cells. The mesh is kept fixed during the inver-
sion, with the values of the physical property !or properties" in the
cells being the model parameters to be determined in the inversion.
The solution strategy is to find the model parameters that minimize
an objective function, which is a combination of a measure of how
well the observations are reproduced and a measure of how compli-
cated the model is:

! ! !d " " !m. !1"

Here, !d is the measure of data misfit, having the general form

!d ! !d!u" , !2"

u ! Wd!dobs # dprd" , !3"

where dobs is the vector of observations, dprd is the vector of data com-
puted for the vector m, of model parameters, and Wd is a diagonal
matrix whose elements are the reciprocals of the estimates of the
standard deviations of the noise in the observations. Also, !m is a
measure of the amount of structure in the model, having the form

!m ! #
k

#k!k!vk" , !4"

vk ! Wk!m # mk
ref" . !5"

The summation in !m is over five terms for the 2D problem consid-
ered here and over 14 terms for the 3D problem. This will be treated
below. The factor " in the objective function is the regularization, or
trade-off, parameter, which controls the relative contributions of the
data misfit term and the model complexity term.

General measures

Ageneral form for !d and !k is

!!x" ! #
j

$!xj" , !6"

where xj are the elements of the vector x, which will be u or vk from
above, and the summation is over all elements in the vector. There
are numerous possibilities for the specific form of the measure. One
example is the lp-norm:

$x$p
p ! #

j
%xj%p, !7"

of which the traditional sum-of-squares measure, or l2-norm, is a
special case. Other examples are the M-measure of Huber !1964",
for which

$!x" ! &x2 %x% % c ,

2c%x% # c2 %x% & c ,' !8"

where c is the value of x at which the behavior of $ changes from
quadratic to linear and the perturbed lp-norm measure of Ekblom
!1987", for which

$!x" ! !x2 " '2"p/2, !9"

where ' is a small number. This measure is numerically more attrac-
tive than the lp-norm because its derivative exists at x ! 0 when
p ! 1. Furthermore, Last and Kubik !1983" and Portniaguine and
Zhdanov !1999" use the measure with

$!x" !
x2

x2 " '2 . !10"

For small ', this measure essentially is proportional to the number of
nonzero elements in x and is analogous to the measure of the area or
volume of support of a continuous function. There are innumerable
other possibilities, allowing a measure to be chosen that produces a
model !or data fit" with a specific desirable character. It is also con-
ceivable to construct a measure function $ that is optimal for a partic-
ular situation !Haber and Tenorio, 2003". Figure 1 illustrates how $
varies for the measures described above.
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and Zhdanov !1999". Ramos et al. !1999" minimize an entropy mea-
sure of the vector comprising the absolute values of the spatial finite
differences of the model. They apply their technique to the 2D inver-
sion of resistivity data as well as other geophysical data sets. Howev-
er, despite the success of the preceding approaches in producing
piecewise-constant, blocky models, the interfaces in the models are
always either vertical or horizontal: The methods do not want to pro-
duce dipping interfaces !Auken and Christiansen, 2004". The work
presented here attempts to remedy this problem.

A minimum-structure inversion procedure that uses l1 measures
for both the measure of model structure and the measure of data
misfit can be solved via linear programming !see, for example,
Dosso and Oldenburg, 1989, for 1D inversion of magnetotelluric
data; Oldenburg and Ellis, 1991, for 2D inversion of magnetotelluric
data; and van Zon and Roy-Chowdhury, 2006 for 2D and 3D gravity
inversion". However, the flexibility afforded by the IRLS procedure
to use non-l2 measures other than the l1 measure, and to use different
measures for the model structure and data misfit, is preferred here.

Smith et al. !1999" and de Groot-Hedlin and Constable !2004" for
magnetotelluric !MT" data and Auken and Christiansen !2004" for
resistivity data have developed 2D inversion procedures that gener-
ate blocky, pseudolayered models. However, the approach of these
authors has been to parameterize the subsurface in terms of a small
number of cells beneath each observation location, to allow both the
conductivities of the cells and the depths of their horizontal bound-
aries to vary in the inversion and to apply constraints on the lateral
variability of the conductivities and depths of the cell boundaries. In
some respects, these inversion procedures are hybrids of the mini-
mum-structure approach and a parameter estimation approach; a full
minimum-structure approach is of interest here.

The remainder of this paper is arranged as follows. First, the par-
ticulars of the modified minimum-structure inversion procedure are
described, beginning with the general minimum-structure inversion
strategy and continuing with examples of non-l2 measures and their
properties, the iteratively reweighted least-squares procedure for
dealing with the nonlinearity introduced by non-l2 measures, and the
inclusion of diagonal finite differences in the measure of model
structure for enabling dipping interfaces to be generated. The capa-
bilities of the modified procedure are then illustrated by its applica-
tion to the inversion of a synthetic 2D MT data set and to the 3D in-
version of gravity data from the Ovoid deposit at Voisey’s Bay, La-
brador.

THEORY

General minimum-structure inversion strategy

The typical framework of a minimum-structure inversion proce-
dure is used here. The subsurface is discretized using a fine mesh
comprising uniform cells. The mesh is kept fixed during the inver-
sion, with the values of the physical property !or properties" in the
cells being the model parameters to be determined in the inversion.
The solution strategy is to find the model parameters that minimize
an objective function, which is a combination of a measure of how
well the observations are reproduced and a measure of how compli-
cated the model is:

! ! !d " " !m. !1"

Here, !d is the measure of data misfit, having the general form

!d ! !d!u" , !2"

u ! Wd!dobs # dprd" , !3"

where dobs is the vector of observations, dprd is the vector of data com-
puted for the vector m, of model parameters, and Wd is a diagonal
matrix whose elements are the reciprocals of the estimates of the
standard deviations of the noise in the observations. Also, !m is a
measure of the amount of structure in the model, having the form

!m ! #
k

#k!k!vk" , !4"

vk ! Wk!m # mk
ref" . !5"

The summation in !m is over five terms for the 2D problem consid-
ered here and over 14 terms for the 3D problem. This will be treated
below. The factor " in the objective function is the regularization, or
trade-off, parameter, which controls the relative contributions of the
data misfit term and the model complexity term.

General measures

Ageneral form for !d and !k is

!!x" ! #
j

$!xj" , !6"

where xj are the elements of the vector x, which will be u or vk from
above, and the summation is over all elements in the vector. There
are numerous possibilities for the specific form of the measure. One
example is the lp-norm:

$x$p
p ! #

j
%xj%p, !7"

of which the traditional sum-of-squares measure, or l2-norm, is a
special case. Other examples are the M-measure of Huber !1964",
for which

$!x" ! &x2 %x% % c ,

2c%x% # c2 %x% & c ,' !8"

where c is the value of x at which the behavior of $ changes from
quadratic to linear and the perturbed lp-norm measure of Ekblom
!1987", for which

$!x" ! !x2 " '2"p/2, !9"

where ' is a small number. This measure is numerically more attrac-
tive than the lp-norm because its derivative exists at x ! 0 when
p ! 1. Furthermore, Last and Kubik !1983" and Portniaguine and
Zhdanov !1999" use the measure with

$!x" !
x2

x2 " '2 . !10"

For small ', this measure essentially is proportional to the number of
nonzero elements in x and is analogous to the measure of the area or
volume of support of a continuous function. There are innumerable
other possibilities, allowing a measure to be chosen that produces a
model !or data fit" with a specific desirable character. It is also con-
ceivable to construct a measure function $ that is optimal for a partic-
ular situation !Haber and Tenorio, 2003". Figure 1 illustrates how $
varies for the measures described above.
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and Zhdanov !1999". Ramos et al. !1999" minimize an entropy mea-
sure of the vector comprising the absolute values of the spatial finite
differences of the model. They apply their technique to the 2D inver-
sion of resistivity data as well as other geophysical data sets. Howev-
er, despite the success of the preceding approaches in producing
piecewise-constant, blocky models, the interfaces in the models are
always either vertical or horizontal: The methods do not want to pro-
duce dipping interfaces !Auken and Christiansen, 2004". The work
presented here attempts to remedy this problem.

A minimum-structure inversion procedure that uses l1 measures
for both the measure of model structure and the measure of data
misfit can be solved via linear programming !see, for example,
Dosso and Oldenburg, 1989, for 1D inversion of magnetotelluric
data; Oldenburg and Ellis, 1991, for 2D inversion of magnetotelluric
data; and van Zon and Roy-Chowdhury, 2006 for 2D and 3D gravity
inversion". However, the flexibility afforded by the IRLS procedure
to use non-l2 measures other than the l1 measure, and to use different
measures for the model structure and data misfit, is preferred here.

Smith et al. !1999" and de Groot-Hedlin and Constable !2004" for
magnetotelluric !MT" data and Auken and Christiansen !2004" for
resistivity data have developed 2D inversion procedures that gener-
ate blocky, pseudolayered models. However, the approach of these
authors has been to parameterize the subsurface in terms of a small
number of cells beneath each observation location, to allow both the
conductivities of the cells and the depths of their horizontal bound-
aries to vary in the inversion and to apply constraints on the lateral
variability of the conductivities and depths of the cell boundaries. In
some respects, these inversion procedures are hybrids of the mini-
mum-structure approach and a parameter estimation approach; a full
minimum-structure approach is of interest here.

The remainder of this paper is arranged as follows. First, the par-
ticulars of the modified minimum-structure inversion procedure are
described, beginning with the general minimum-structure inversion
strategy and continuing with examples of non-l2 measures and their
properties, the iteratively reweighted least-squares procedure for
dealing with the nonlinearity introduced by non-l2 measures, and the
inclusion of diagonal finite differences in the measure of model
structure for enabling dipping interfaces to be generated. The capa-
bilities of the modified procedure are then illustrated by its applica-
tion to the inversion of a synthetic 2D MT data set and to the 3D in-
version of gravity data from the Ovoid deposit at Voisey’s Bay, La-
brador.

THEORY

General minimum-structure inversion strategy

The typical framework of a minimum-structure inversion proce-
dure is used here. The subsurface is discretized using a fine mesh
comprising uniform cells. The mesh is kept fixed during the inver-
sion, with the values of the physical property !or properties" in the
cells being the model parameters to be determined in the inversion.
The solution strategy is to find the model parameters that minimize
an objective function, which is a combination of a measure of how
well the observations are reproduced and a measure of how compli-
cated the model is:

! ! !d " " !m. !1"

Here, !d is the measure of data misfit, having the general form

!d ! !d!u" , !2"

u ! Wd!dobs # dprd" , !3"

where dobs is the vector of observations, dprd is the vector of data com-
puted for the vector m, of model parameters, and Wd is a diagonal
matrix whose elements are the reciprocals of the estimates of the
standard deviations of the noise in the observations. Also, !m is a
measure of the amount of structure in the model, having the form

!m ! #
k

#k!k!vk" , !4"

vk ! Wk!m # mk
ref" . !5"

The summation in !m is over five terms for the 2D problem consid-
ered here and over 14 terms for the 3D problem. This will be treated
below. The factor " in the objective function is the regularization, or
trade-off, parameter, which controls the relative contributions of the
data misfit term and the model complexity term.

General measures

Ageneral form for !d and !k is

!!x" ! #
j

$!xj" , !6"

where xj are the elements of the vector x, which will be u or vk from
above, and the summation is over all elements in the vector. There
are numerous possibilities for the specific form of the measure. One
example is the lp-norm:

$x$p
p ! #

j
%xj%p, !7"

of which the traditional sum-of-squares measure, or l2-norm, is a
special case. Other examples are the M-measure of Huber !1964",
for which

$!x" ! &x2 %x% % c ,

2c%x% # c2 %x% & c ,' !8"

where c is the value of x at which the behavior of $ changes from
quadratic to linear and the perturbed lp-norm measure of Ekblom
!1987", for which

$!x" ! !x2 " '2"p/2, !9"

where ' is a small number. This measure is numerically more attrac-
tive than the lp-norm because its derivative exists at x ! 0 when
p ! 1. Furthermore, Last and Kubik !1983" and Portniaguine and
Zhdanov !1999" use the measure with

$!x" !
x2

x2 " '2 . !10"

For small ', this measure essentially is proportional to the number of
nonzero elements in x and is analogous to the measure of the area or
volume of support of a continuous function. There are innumerable
other possibilities, allowing a measure to be chosen that produces a
model !or data fit" with a specific desirable character. It is also con-
ceivable to construct a measure function $ that is optimal for a partic-
ular situation !Haber and Tenorio, 2003". Figure 1 illustrates how $
varies for the measures described above.
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Farquharson (2008)

Huber M-measure

Minimum support (Portniaguine & 
Zhdanov, 1999; Last & Kubik, 1983)

The l2-norm traditionally has been used in inverse problems be-
cause its minimization results in a linear system of equations to be
solved and because it is the most appropriate measure of misfit if the
noise in the observations obeys a Gaussian distribution. However,
squaring the elements of a vector in its l2-norm means that the contri-
butions of large-valued elements to the norm are disproportionately
large. Minimizing an l2-norm of a vector therefore results in a vector
with no large, distinct elements. When minimizing a misfit, no single
discrepancy between the forward-modeled and observed data will
be dramatically larger than the others. Outliers will therefore drag
the predicted data toward them and away from the remainder of the
data set. When minimizing a measure of the spatial derivatives in a
model, as is done in most minimum-structure inversions, using an
l2-norm spreads a change in physical property from one region of the
model to another over a number of cells. In other words, an abrupt,
significant change from one cell to its neighbor is ruled out. In con-
trast, large-valued elements of a vector contribute proportionally to
an l1 measure of its size. Consequently, when an l1-type measure of
misfit is minimized, outliers essentially are ignored. Also, when
minimizing an l1 measure of the spatial derivatives in a model,
abrupt changes between regions of uniform physical property are not
discriminated against and are, in fact, the kind of structure that is
produced naturally.

Iterative solution procedure

Most geophysical inverse problems are nonlinear. The standard
approach for this is used here: establishing a procedure, at each itera-
tion of which a linearized approximation of the inverse problem is
treated. This involves both the linearization of the relationship be-
tween the model parameters and the observed quantities and of the
nonlinearity introduced by the use of non-l2 measures.

The goal at the nth iteration is to find the model m which minimiz-
es the intermediate objective function:

!n ! "d
n " # n"m

n . !11"

In this objective function,

"d
n ! "d!u" , !12"

u ! Wd!dobs # dn#1 # J$ m" , !13"

where dn#1 is the vector of data for the model mn#1 obtained from
the previous iteration, $ m ! mn # mn#1, and J is the Jacobian ma-
trix of sensitivities for the linear approximation:

dn # dn#1 " J$ m , !14"

Jij !
!di

!mj
. !15"

Also in the intermediate objective function "equation 11#,

"m
n ! $

k
%k"k!vk" , !16"

vk ! Wk!mn#1 " $ m # mk
ref" . !17"

There are many ways to choose the trade-off parameter # n; these are
not discussed here.

To minimize !n, equation 11 is differentiated with respect to the
perturbations of the model parameters, and the resulting derivatives
are equated to zero. "For the specifics of the following summary that
pertain to general measures, see Farquharson and Oldenburg, 1998,
and references therein.# Differentiating the general form of the mea-
sures "equation 6# gives

!"!x"
!$ mk

! $
j

&$!xj"
!xj

!$ mk
, !18"

that is,

!"!x"
!$ m

! BTq , !19"

where !" /!$ m ! !!" /!$ m1, . . . ,!" /!$ mN"T, Bij ! !xi/!$ mj,
and q ! !&$!x1", . . . ,&$!xN""T. Equation 19 can be reformulated by
introducing a diagonal matrix:

R ! diag%&$!x1"/x1, . . . ,&$!xN"/xN& , !20"

which leads to

!"!x"
!$ m

! BTRx . !21"

For the measure of misfit in the intermediate objective function, B is
# WdJ. For the components of the measure of model structure, B is
Wk. For the four examples of measures given in equations 7–10, the
elements of the matrix R are

Rii ! 'p' p#2 (xi( ( ' ,

p(xi(p#2 (xi( ) ' ,) !22"

where ' is a small number so that R does not become singular as
xi→0;

0

1

2

ρ

0 1 2
x

a b,d
c

d
b

e

a,c

Figure 1. The behavior of the function & for various measures: "a# the
l2-norm; "b# the l1-norm; "c# the Huber M-measure with c ! 0.5; "d#
the Ekblom measure with p ! 1 and * ! 0.1; "e# the support mea-
sure of equation 10 with * ! 0.1.
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Quantifying how well the data from our candidate model reproduce 
the observations.
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Quantifying how well the data from our candidate model reproduce 
the observations.
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44 Chapter 2. Monte Carlo Methods

regions is the most difficult problem, and mathematics alone cannot solve it (because of the
great emptiness of large-dimensional spaces): it is the particular physics (or geometry) of
the problem at hand that may help on this. Once one has been able to come close to one of
these regions, the techniques described below (Gibbs sampler or Metropolis algorithm) are
able to perform a random walk, a sort of Brownian motion that is efficient in exploring the
region, and avoid leaving it (thus entering the vast empty regions of the space).

2.2 The Movie Strategy for Inverse Problems
We have seen in chapter 1 that two typical inputs to the inverse problem are a probability
density ρM(m) , describing the a priori information on the model parameters, and a prob-
ability density ρD(d) , describing the information we have on the data parameters, gained
through some measurements. The solution to the inverse problem is given by a (posterior)
probability density σM(m) that equals the (normalized) product of the prior probability
density ρM(m) times a likelihood function L(m) :

σM(m) = k ρM(m) L(m) . (2.1)

The likelihood function is a measure of how good the model m is in fitting the data. The
normalizing constant can be written k = 1 /

∫
M dm ρM(m) L(m) .

In the most general setting, the relation between data and model parameters is proba-
bilistic and is represented by a conditional probability density θ(d|m) . Then, the likelihood
function is (see equations (1.89)–(1.91))

L(m) =
∫

D
dd

ρD(d) θ(d | m)

µD(d)
, (2.2)

where µD(d) is the homogeneous probability density in the data manifold.
Sometimes, the relation between data and model parameters is functional, d = g(m) ,

and in this case the likelihood function is (see equations (1.93)–(1.95))

L(m) = ρD( g(m) ) . (2.3)

A couple of examples of such a likelihood function are given as a footnote.28

As the methods about to be developed require the computation of the value of the
likelihood at many points, that the expression of the likelihood takes the form (2.2) or (2.3)

is far from irrelevant.
In this chapter, we are going to describe methods that allow us, first, to obtain samples

{m1 , m2 , . . . } of the prior probability density ρM(m) , then samples {m′1 , m′2 , . . . } of
the posterior probability density σM(m) . As, typically, each sample (i.e., each model) can
be represented as an image, the display of many samples corresponds to the display of a
‘movie.’ Let us start discussing the generation of the ‘prior movie.’

28For instance, if di
obs represents the observed data values and σ i the estimated mean deviations, assuming

double exponentially distributed observational errors gives L(m) = exp( −∑i | gi(m) − di
obs | / σ i ) . If CD

represents the covariance operator describing estimated data uncertainties and uncertainty correlations, assuming
a Gaussian distribution gives (equation (1.101)) L(m) = exp(− 1

2 (g(m) − dobs)
t C−1

D (g(m) − dobs) ) . Some
other examples are given in chapter 1.

book
2004/11/19
page 44

!

!

!

!

!

!

!

!

44 Chapter 2. Monte Carlo Methods

regions is the most difficult problem, and mathematics alone cannot solve it (because of the
great emptiness of large-dimensional spaces): it is the particular physics (or geometry) of
the problem at hand that may help on this. Once one has been able to come close to one of
these regions, the techniques described below (Gibbs sampler or Metropolis algorithm) are
able to perform a random walk, a sort of Brownian motion that is efficient in exploring the
region, and avoid leaving it (thus entering the vast empty regions of the space).

2.2 The Movie Strategy for Inverse Problems
We have seen in chapter 1 that two typical inputs to the inverse problem are a probability
density ρM(m) , describing the a priori information on the model parameters, and a prob-
ability density ρD(d) , describing the information we have on the data parameters, gained
through some measurements. The solution to the inverse problem is given by a (posterior)
probability density σM(m) that equals the (normalized) product of the prior probability
density ρM(m) times a likelihood function L(m) :

σM(m) = k ρM(m) L(m) . (2.1)

The likelihood function is a measure of how good the model m is in fitting the data. The
normalizing constant can be written k = 1 /

∫
M dm ρM(m) L(m) .

In the most general setting, the relation between data and model parameters is proba-
bilistic and is represented by a conditional probability density θ(d|m) . Then, the likelihood
function is (see equations (1.89)–(1.91))

L(m) =
∫

D
dd

ρD(d) θ(d | m)

µD(d)
, (2.2)

where µD(d) is the homogeneous probability density in the data manifold.
Sometimes, the relation between data and model parameters is functional, d = g(m) ,

and in this case the likelihood function is (see equations (1.93)–(1.95))

L(m) = ρD( g(m) ) . (2.3)

A couple of examples of such a likelihood function are given as a footnote.28

As the methods about to be developed require the computation of the value of the
likelihood at many points, that the expression of the likelihood takes the form (2.2) or (2.3)

is far from irrelevant.
In this chapter, we are going to describe methods that allow us, first, to obtain samples

{m1 , m2 , . . . } of the prior probability density ρM(m) , then samples {m′1 , m′2 , . . . } of
the posterior probability density σM(m) . As, typically, each sample (i.e., each model) can
be represented as an image, the display of many samples corresponds to the display of a
‘movie.’ Let us start discussing the generation of the ‘prior movie.’

28For instance, if di
obs represents the observed data values and σ i the estimated mean deviations, assuming

double exponentially distributed observational errors gives L(m) = exp( −∑i | gi(m) − di
obs | / σ i ) . If CD

represents the covariance operator describing estimated data uncertainties and uncertainty correlations, assuming
a Gaussian distribution gives (equation (1.101)) L(m) = exp(− 1

2 (g(m) − dobs)
t C−1

D (g(m) − dobs) ) . Some
other examples are given in chapter 1.

Tarantola (2005)

Quantifying how well the data from our candidate model reproduce 
the observations.
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loses resolution but reduces the sensitivity to data errors. Re-
quiring a misfit close to the minimum possible X2 requires the
false structures in model lb to fit the noise in the data. Note
that most of the extraneous peaks in model I b correspond to
spikes in the D + model 2b. This correspondence increases as
the misfit of a minimum-structure log c model approaches the
minimum possible.
In comparing misfit statistics, it should be noted that we

measure normalized misfit in terms of Yi = -ljcdEi. Parker's
D+ minimizes the squared misfit in terms of CdE i where Ei is
the estimated standard error in c., so D + does not necessarily
obtain the smallest squared misfit expressed in terms of Yi'
When the relative misfit at each frequency is small (e.g., ::;; 5
percent), the squared misfit is very nearly identical expressed
in Y or c. When the relative misfit is larger, the squared misfit
of D+ expressed in terms of Ymay be somewhat larger than
the minimum possible and may be different from the squared
misfit of D + expressed in terms of c.

The choice of what norm is minimized can affect the color
of the fit significantly. Changing the norm by decreasing 11 in
equation (6) penalizes structure at depth and typically in-
creases the size of the low-frequency residuals relative to the
high-frequency residuals, making for a bluer fit of the model to
the data. In Figure 3, we compare the truth (model 3d) to
flattest models of log o with respect to z, log (z + zo), and
-Ij(z + zo), (models 3a, 3b, 3c) corresponding to 11 = 0, -1,
- 2, respectively. All these flattest models have X2 misfits
equal to its expected value of 22. We plot the normalized
residuals associated with the three models and the truth in
Figure 4. The model flattest with respect to log (z + zo),model
3b, shows the true structure most clearly of the three inver-
sions. The model flattest with respect to z, model 3a, shows
fluctuations at depth which are not present in the true model,
and the structure is less clearly defined near the surface.
Model 3a clearly fits the high frequencies systematically better
than the low frequencies (Figure 4). The model flattest with
respect to -Ij(z + zo) shows less detail at depth, more fluctu-
ations near the surface, and systematically overfits the high
frequencies (Figure 4). Overfitting the low frequencies de-
mands the oscillations at depth, whereas underfitting the high
frequencies loses resolution near the surface. The model flat-
test with respect to log (z + zo), model 3b, achieves a fairly
even fit, resulting in more accurate detail and fewer extraneous
oscillations.
To quantify the color of the fit, we use Spearman's statistic

D. This robust statistic is used to test the significance of a
trend (ef., Bickel and Doksum, 1977, p. 365-369) and is based
on the ranks R, and S, of two variables. The samples of a
variable are arranged by size and the ordered samples are
numbered (e.g., 1, 2, 3, ...). Then the rank of each sample is
simply the number of its place in the ordered set. In our case,
we let R, be the ranks of the sums of the squares of the real
and imaginary parts of the residuals (normalized by their stan-
dard errors) and let Si be the ranks of the corresponding fre-
quencies. Spearman's statistic D is
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FIG. 2. (a) Model from which data of Table I were generated'
2 'X = 25.6. (b) Conductances of best-fitting D+ model scaled
into conductivities by dividing by the midpoint distances be-
tween the conductance spikes; X2 = 3.75.

FIG. 3.Models all with misfit X2 = 22.0 fit to the data of Table
I, minimizing (a) F(log o, z), (b) F(log o, log (z + zo)), and (c)
F(log o, - lj(z + zo»' (d) Model from which data were gener-
ated; X2 = 25.6.
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i= 1

Do
wn

lo
ad

ed
 0

3/
25

/2
1 

to
 1

42
.1

67
.2

9.
18

2.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 lic

en
se

 o
r c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
DO

I:1
0.

11
90

/1
.1

44
24

38

Smith and Booker (1988)

Spearman statistic to assess "whiteness" of data fit

low values, positive correlation, high values, negative correlation; 
based on rankings

Quantifying the "quality" of the fit ...

Aside
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statistic (Durbin and Watson, 1950; 1951), and include the 
statistic in the objective function. I will show that models that 
simultaneously minimize misfit, roughness and serial 
correlations are superior to those derived only considering 
misfit and roughness alone. 
 

THE PROBLEM 
 
I demonstrate the problem of relying on nRMS through a toy 
example of 13 data points illustrated in Figure 1. There is 
clearly structure to these data, with the maximum at x=0. I seek 
a model to describe these data, and choose a polynomial model 
basis function. To regularize the problem, I ask the question 
“what is the lowest order polynomial we can find that satisfies 
these data”. The answer is a straight line with a gradient of zero 
(±0.0098) and an intercept of 1.065 ±0.00073 (red line on 
Figure 1). This model fits the data with a c2 misfit of 10.6, thus 
an nRMS of 0.90 and a reduced nRMS of 0.94 (reducing n by 
1 for the number of parameters in the model), so is deemed 
acceptable. 

 
Figure 1. Toy data and lowest-order polynomial that fits the 
data using c2 as the distance measure of the closeness of the 
model to the data. 
 
Although the model is acceptable using a c2 based misfit 
criterion, clearly the model does not describe the data – the 
obvious maximum at x=0 that is supported by four neighboring 
values is totally missed. Such problems occur in fitting our 
datasets all of the time, and the larger and more complex the 
dataset the larger the problem. Particularly, the smoothness 
weighting in a regularized OF ensures that data that have little 
information are overfit, and data that contain a lot of 
information, i.e., structural complexity, are underfit. 
 
A published example of this occurring in real data is given in 
Jones (1993) for a profile of 35 MT stations across the North 
American Central Plains anomaly that lies within the 
Paleoproterozoic Trans-Hudson Orogen. The TM mode data at 
sites directly above the anomaly have a distinctive low of 1-2°. 
This low is consistent over a half-decade of frequencies and 
over five neighboring sites. Some models are consistent with 
that local minimum, whereas others, that have equally as good 
an overall misfit, do not. 
 

A SOLUTION 
 
A solution to this dependence on a single number to describe 
the closeness of a model to the data is to use higher order 
measures of misfit. In particular, serial correlations of the 
residuals need to be guarded against. In the toy example above, 

the first and last four data have negative residuals, and the 
central five all have positive residuals. 
 
There exist a number of run tests and algorithms that can be 
used to discover if there are serial correlations of the residuals. 
In MT, Smith and Booker (1988) used the Spearman statistic to 
inspect the “color” of the fits of their models to their data 
subsequent to inversion. However, this was a posterior test and 
not an intrinsic part of the inversion. 
 
One simple test in widespread use across the sciences is the 
Durbin-Watson (DW) statistic (Durbin and Watson, 1950; 
1951). The generalized form of the DW statistic for an 
autocorrelation lag of 1 is given by 
 

!"# =
∑ ('( − '(*#),-
(.,
∑ ('( − '̅),-
(.(

 

  (5) 
 
(Vinod, 1973; Ali, 1987), where here e is the residual between 
the data and the model response (not the error), i.e. ei = (di - mi), 
and n is the number of data. (The original form of the DW 
statistic excluded the '̅ term on the denominator.) Note that 
there is no consideration given to errors – the DW statistic only 
tests for serial autocorrelations of the residuals. The statistic lies 
between 0 and 4, and the expectation value for residuals that are 
not autocorrelated is 2. Values significantly less than 1.5 are 
indicative of positive autocorrelation of the residuals, i.e., long 
intervals of residuals with the same sign, and values 
significantly greater than 2.5 are indicative of negative 
autocorrelation, i.e. the residuals change sign too rapidly. 

 
Figure 2. Toy data and polynomial fits to 6th order of the 
data. 
 
The DW statistic for the fit of the linear regression model 
response to the toy data in Figure 1 (red line) is 0.42, which is 
well below the 1% significance bound of 0.697 for 12 degrees 
of freedom (Savin and White, 1977) so we can reject the null 
hypothesis of no autocorrelated residuals. This means that the 
linear regression model can be rejected based on the positive 
autocorrelation of the residuals. We can seek to find higher 
order polynomials that fit the data acceptably, both in terms of 
misfit and also in terms of lack of serial correlation of residuals. 
Fits of second (quadratic), fourth and sixth order polynomials 
are shown in Figure 2. 
 
The misfits and DW statistics of the zeroeth, quadratic, 4th and 
6th order polynomials are given in Table 1. Based on a c2 

statistic we would choose a zeroeth order polynomial as the best 
model to fit our data. However, based on a Durbin-Watson 
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statistic (Durbin and Watson, 1950; 1951), and include the 
statistic in the objective function. I will show that models that 
simultaneously minimize misfit, roughness and serial 
correlations are superior to those derived only considering 
misfit and roughness alone. 
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I demonstrate the problem of relying on nRMS through a toy 
example of 13 data points illustrated in Figure 1. There is 
clearly structure to these data, with the maximum at x=0. I seek 
a model to describe these data, and choose a polynomial model 
basis function. To regularize the problem, I ask the question 
“what is the lowest order polynomial we can find that satisfies 
these data”. The answer is a straight line with a gradient of zero 
(±0.0098) and an intercept of 1.065 ±0.00073 (red line on 
Figure 1). This model fits the data with a c2 misfit of 10.6, thus 
an nRMS of 0.90 and a reduced nRMS of 0.94 (reducing n by 
1 for the number of parameters in the model), so is deemed 
acceptable. 

 
Figure 1. Toy data and lowest-order polynomial that fits the 
data using c2 as the distance measure of the closeness of the 
model to the data. 
 
Although the model is acceptable using a c2 based misfit 
criterion, clearly the model does not describe the data – the 
obvious maximum at x=0 that is supported by four neighboring 
values is totally missed. Such problems occur in fitting our 
datasets all of the time, and the larger and more complex the 
dataset the larger the problem. Particularly, the smoothness 
weighting in a regularized OF ensures that data that have little 
information are overfit, and data that contain a lot of 
information, i.e., structural complexity, are underfit. 
 
A published example of this occurring in real data is given in 
Jones (1993) for a profile of 35 MT stations across the North 
American Central Plains anomaly that lies within the 
Paleoproterozoic Trans-Hudson Orogen. The TM mode data at 
sites directly above the anomaly have a distinctive low of 1-2°. 
This low is consistent over a half-decade of frequencies and 
over five neighboring sites. Some models are consistent with 
that local minimum, whereas others, that have equally as good 
an overall misfit, do not. 
 

A SOLUTION 
 
A solution to this dependence on a single number to describe 
the closeness of a model to the data is to use higher order 
measures of misfit. In particular, serial correlations of the 
residuals need to be guarded against. In the toy example above, 

the first and last four data have negative residuals, and the 
central five all have positive residuals. 
 
There exist a number of run tests and algorithms that can be 
used to discover if there are serial correlations of the residuals. 
In MT, Smith and Booker (1988) used the Spearman statistic to 
inspect the “color” of the fits of their models to their data 
subsequent to inversion. However, this was a posterior test and 
not an intrinsic part of the inversion. 
 
One simple test in widespread use across the sciences is the 
Durbin-Watson (DW) statistic (Durbin and Watson, 1950; 
1951). The generalized form of the DW statistic for an 
autocorrelation lag of 1 is given by 
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(Vinod, 1973; Ali, 1987), where here e is the residual between 
the data and the model response (not the error), i.e. ei = (di - mi), 
and n is the number of data. (The original form of the DW 
statistic excluded the '̅ term on the denominator.) Note that 
there is no consideration given to errors – the DW statistic only 
tests for serial autocorrelations of the residuals. The statistic lies 
between 0 and 4, and the expectation value for residuals that are 
not autocorrelated is 2. Values significantly less than 1.5 are 
indicative of positive autocorrelation of the residuals, i.e., long 
intervals of residuals with the same sign, and values 
significantly greater than 2.5 are indicative of negative 
autocorrelation, i.e. the residuals change sign too rapidly. 

 
Figure 2. Toy data and polynomial fits to 6th order of the 
data. 
 
The DW statistic for the fit of the linear regression model 
response to the toy data in Figure 1 (red line) is 0.42, which is 
well below the 1% significance bound of 0.697 for 12 degrees 
of freedom (Savin and White, 1977) so we can reject the null 
hypothesis of no autocorrelated residuals. This means that the 
linear regression model can be rejected based on the positive 
autocorrelation of the residuals. We can seek to find higher 
order polynomials that fit the data acceptably, both in terms of 
misfit and also in terms of lack of serial correlation of residuals. 
Fits of second (quadratic), fourth and sixth order polynomials 
are shown in Figure 2. 
 
The misfits and DW statistics of the zeroeth, quadratic, 4th and 
6th order polynomials are given in Table 1. Based on a c2 

statistic we would choose a zeroeth order polynomial as the best 
model to fit our data. However, based on a Durbin-Watson 
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statistic, we would choose a fourth order polynomial. Clearly 
the latter is a far superior choice within the domain x=(-6,+6), 
but given the low nRMS<<1 would conventionally be deemed 
to be overfitting the data. 
 
Table 1. Equations, misfits and DW statistics for 
polynomials fitting the data of Figure 1. 
 

Order Equation c2 Reduced 
nRMS 

DW 
statistic 

0 y = 1.065 10.6 0.94 0.42 
2 y = 1.14 - 0.0053x2 4.97 0.67 0.86 
4 y = 1.20 - 0.02x2 + 

0.00042x4 
1.47 0.38 1.70 

6 y = 1.24 - 0.041x2 
+ 0.002x4 - 
0.00003x6 

0.17 0.14 3.11 

 
MODIFICATION OF THE OBJECTIVE 

FUNCTION 
 
Although we can examine the residuals for systematic 
correlations after finding an acceptable model, e.g. Smith and 
Booker (1988), a far superior approach is to modify the 
objective function to preferentially discover models that are 
statistically acceptable both in terms of the misfit and in terms 
of the lack of autocorrelated residuals. I use a modified OF that 
takes the form 
 
Φ = 1#2345 +	1,(!"# − 2), +	195(:) (4) 
 
where the first term in the RHS is the fit to the data, the third 
term is our imposed conditions on the nature of the model, and 
the new second term is the Durbin-Watson statistic normalized 
to minimize to zero. 
 
It is not advised to seek to minimize the modified Objective 
Function from the outset, particularly when the start model is 
very far from fitting the data, e.g. a uniform half space. 
Appropriate cooling and heating strategies should be adopted 
for the three lambda weighting trade-off parameters. 
 
EXAMPLES OF APPLICATION TO REAL DATA  
 
sno106 
  
As an example of this approach I use MT data that have been 
examined in detail by Jones (2013). The data were recorded as 
part of the LITHOPROBE project on the SNORCLE transect 
(Cook and Erdmer, 2005), and were used to illustrate the first-
ever imaging of an electrical Moho (Jones and Ferguson, 2001). 
The MT data are shown in Figure 3 (errors smaller than the 
symbols). These are not the original data, but data subsequent 
to galvanic distortion removal assuming a 1D regional Earth 
(Jones, 2012) and internal consistency correction using a robust 
variant of Parker and Booker’s Rho+ scheme (Parker and 
Booker, 1996). 
 
If we invert the data using the original unregularized 1D MT 
minim code of Fischer and Le Quang (1981), starting from an 
8-layer model with layers at 300 m, 1 km, 3 km, 10 km, 30 km, 
100 km, and 300 km, and resistivity of 5,000 Wm from the 
surface to 300 km and 100 Wm below, the best-fitting model is 
as shown in blue in Figure 4 (note the log axis for both 
resistivity and depth). This model has an acceptable reduced 
nRMS of 0.86 (with an assumed error floor of 3.56% in rho and 
1° in pha), but very unacceptable DW statistics of 1.09 for rho 

and 0.97 for pha, both evidence of highly autocorrelated 
residuals in both series. The model has a roughness, derived 
according to equation (5) below, of 1.3. 
 

 
Figure 3. sno106 data and fits of the two models to the data 
 
We then invert the data using a modified form of the minim 
code that has an objective function as shown in equation (4). 
For the S(m) term, we use a measure of model roughness given 
by the sum of the squared absolute logarithmic change at each 
interface, viz. 
 
5(:) = #

;<*#
∑ |>?@#A(B(C#) −	>?@#A(B()|,;<*#
(.#  (5) 

 
We start with only seeking to minimize misfit, i.e., l1=1 and 
l2=l3=0. We cool l1 to 1/3 after 500 iterations, and heat l2 and 
l3 simultaneously to 1/3 after the same number of iterations. 
This heating and cooling strategy results in ensuring that the 
data are first fit, then the model is smoothed and simultaneously 
varied to ensure as acceptable a DW statistic as possible. If the 
start model is already close to acceptable, then the inversion can 
commence immediately with equal weighting. 
 

 
Figure 4. Models found fitting sno106 data using original 
minim code (blue) and the modified code (red) that includes 
DW & roughness terms in the OF. 
 
The model, shown in red in Figure 4, has a reduced nRMS of 
0.74, DW statistics of 1.66 and 0.93 for rho and pha 
respectively, and a roughness of 0.75. This model has a better 
misfit, no autocorrelated residuals behavior for the rho data, 
superior residuals behavior for the pha data, and a far lower 

Durbin-Watson statistic

auto-correlated?

Include Durbin-Watson statistic in inversion:

Quantifying the "quality" of the fit ...

Aside



(Just curve fitting!)

Minimize the measure of data misfit ... optimization ... ?

Quantifying how well the data from our candidate model reproduce 
the observations.
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Oldenburg and Li

homogenous earth. One prism extends to infinite depth. A
vertical contact separates media of highly different conduc-
tivity; on the right, a circular-shaped Gaussian conductor is
buried beneath a layer of random conductivity. A pole-dipole
survey with n =1... 8 and a = 10 m was simulated. The data,
after being contaminated with 5% Gaussian noise, are shown in
Figure IN

The data are inverted using the methodology outlined in
Oldenburg and Li (1994). The model objective function 0,,, is
chosen to be a discretized version of

cbm (m) = as f (m — mo)zdx dz
rea

d(m — mo) 2

+ ax f  (dxdx dz
rea

Z L ea

(d(m—mo) ^ 2

 +a  
dz 

dxdz, (1)

where as , ax , aZ are constants, m o is a reference model, and
m = log a. The misfit functional ¢d is

N dohs — dpred 2

 ̂d = > (2)
i _1 Ei

where E, is the estimated standard deviation of the data. The
model was divided into M = 2500 cells and the number of
data N = 316. Minimizing equation (1) subject to cd = N, its
expected value, produces the model in Figure lc. In carrying
out the inversion, the reference model was specified to be a
half-space of 400 ohm-m and (as , ax , a^) = (0.001, 1,1).

The model in Figure lc bears considerable likeness to the
true model in Figure la. The surface inhomogeneities are well
delineated, and the underlying conductive prisms are clearly
visible. The vertical contact is sharply imaged but it extends
only to limited depth. The variable surface layer is well de-
fined, and the conductor rises distinctly above the resistive
background. Overall, manifestations of all of the true struc-
tures are observed, but there are both minor and major dif-
ferences between the images in Figures la and lc. In the re-
covered model, amplitudes of anomalies are reduced and the
boundaries of the recovered prisms are smooth. This is a con-
sequence of using the f2—norm and minimizing (dm/dx) 2 and
(dm/dz)2 . These discrepancies can be considered minor. Major
differences between Figures la and lc occur at the sides and at
depth where the recovered resistivity returns to the a priori ref-
erence model. Conductive or resistive features in those areas
do not significantly affect the data, and the inversion readily
complies with its mandate to produce a simple model that is
close to the background.

Of all of the discrepancies between Figures la and lc,
the truncation of the second conductor is perhaps the most

FIG. 1. (a) The synthetic resistivity model. (b) Error-contaminated data from a pole-dipole survey in which the
potential dipole is on the right. The a spacing is 10 m, and n = 1... 8. (c) The recovered resistivity model.
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Oh ...
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Oh ...  Non-uniqueness.
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the number we usually adopt for Xl. In any case, X; should
not be chosen to be too close to the smallest achievable value.
Models corresponding to the smallest possible Xl are rough
to the point of being physically unreasonable; they are delta
functions in the case of MT (Parker, 1980) and arbitrarily thin
layers in the case of resistivity sounding (Parker, 1984). As one
approaches small values of Xl, a substantial increase in
roughness is required to achieve only marginal improvement
in fit. The degree of increase is clear in Figure 2, which shows
the smoothest models and response functions for three levels
of desired misfit, as well as the best-fitting I-D model.
The optimization is performed as follows. To minimize a

functional subject to a constraint, we use the method of La-
grange multipliers (see Smith, 1974): the constraint equation is
rearranged to form an expression equal to zero; that ex-
pression is multiplied by a parameter, the Lagrange multiplier,
and added to the functional to be minimized; the original
functional is minimum where the new one, varying with its
original parameters and the Lagrange multiplier, is stationary
without constraint. It is convenient to call the Lagrange multi-
plier I! - I. Then the unconstrained functional is

where the first term on the right is the roughness and the
second the misfit, weighted by the Lagrange multiplier. For
any value of I! this functional of m is stationary when Vm U,
the gradient of U with respect to m, vanishes. After a little
algebra, we find

Rearrangement gives

Variation with respect to I! yields the original constraint con-
dition. Because I! is not known, equation (7) does not com-
pletely solve the problem; I! must be selected so that when
equation (7) is substituted into equation (4), the desired Xl,
namely X;, is obtained. An almost identical problem arises in
construction of optimally smooth magnetic fields after down-
ward continuation (Shure et al., 1982), but we defer discussion
of this search because the question deserves special attention
in the actual nonlinear problem which we discuss later. It is
useful to interpret I! as a kind of smoothing parameter: when
I! is large, we see from the definition of U that the solution to
equation (7) is not influenced much by the data misfit; it is a
very smooth function. Alternatively, as I! tends to zero, the
roughness term is of little significance in the minimization
problem, and m will satisfy the data constraints at whatever
cost in roughness.

THE NONLINEAR PROBLEM

When the full nonlinear problem is considered, the function-
al to be minimized is still R 1 given by equation (5), but the
expression for the data misfit, equation (4), becomes

Xl = II Wd - WF[m] f.

The theory of constrained minimization, however, instructs us
to proceed in the same way: an unconstrained functional U is
formed by means of a Lagrangian multiplier:

The extremal values of R I will be found at the stationary
points of U as before; taking the gradient, we find the vectors
m that cause U to be stationary obey

where the M x N matrix J: is the Jacobian or gradient matrix:

Expressed as components

oFj[m]
J =--
IJ "cm j

(See the Appendix for details of the computations.) The rows
of J: are the discrete equivalents of the Frechet derivatives in
the continuous profile problem (Parker, 1977). In the linear
problem, G = J:; what makes the solution of equation (9)
much more difficult than equation (6) is that, while G is a
constant matrix, J: depends upon m. Thus, instead of a simple
set of linear equations similar to equation (7), we must solve a
simultaneous nonlinear system for m. One way to proceed is
to attack equation (9) directly and solve the system by
Newton's method; unfortunately, this requires differentiation
of J: to find the second derivative of F, a very tedious piece of
algebra. -
A simple alternative is to return to equation (8) and exam-

ine the minimization problem created by linearization about a
particular model. Most solutions of nonlinear systems require
an initial guess for the answer, i.e., a starting model, from
which an iterative process begins a refinement procedure; here
we posit an initial model m., Elementary calculus says that if
F is differentiable at m, (as we shall always assume it is) for
sufficiently small vectors A

where & is a vector whose magnitude is 0 II A II and is J:
[m 1]' the Jacobian matrix evaluated at the vector mi' Sup-
pose we approximate F by dropping the remainder term & am'
write

If this approximate expression is substituted into equation (8),
we have returned to a problem linear in m l :

U = II ilmlil l

+ j.l-I{II W(d - Fjm.] + J:lml) - WJ:lmllll - X;},
where the expression in parentheses in the second term is a
kind of data vector which we will call al . Now we define m l as
the model that minimizes U under this approximation; then
we find from the linear theory thatDo
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Figure 3 shows rms misfit, which is /M)I/2, at successive
iterations in the inversion of the Schlumberger data. The
figure also shows the locations of the 11 chosen at each iter-
ation; the minima were found using a golden section search,
and the intercepts were found using the bisection method (see,
for example, Gill et al., 1981).

CONVERGENCE AND STABILITY

Because we seek a well defined, specific model (i.e., the
smoothest model possible), our iterative scheme is very stable.
That is, the models found at each iteration will not contain
very large or very small conductivities unless they are abso-
lutely required in order to fit the data.
The convergence of our scheme is also impressive. Figure 4

shows the starting model and the models for each of the five
iterations required to fit the Schlumberger data with a maxi-
mally smooth model. Table 1 gives the values of X 2, rms
error, Ilk' II RIf, and II 1'111 2 (the step size) at each iteration.
The starting model was a half-space of 105 n· m, and the
smoothest model (in a first derivative sense) fitting the data to
a tolerance of an rms error of 1 was sought. This model was
found in only five iterations. A sixth iteration verified that the
procedure had converged and the algorithm stopped on the
criteria that II 1'111 2 < am and Irms error - required rms
error I < 0.05.

EXAMPLES

We present a few examples of the application of our inver-
sion technique. In these examples the model was parame-
terized as loglo (layer resistivities), with the layer thickness
held constant in the log domain. All the data, except for MT
phases, were also parameterized in loglo domain, so the rms
tolerances refer to the misfit in log space. The actual data used
in these inversions are given in Tables 2 through 5.
The Schlumberger data already presented are from Con-

stable et al. (1984). These data are from a deep sounding con-
ducted on the central Australian shield which employed over-
land telephone lines to achieve a maximum electrode spacing
of 200 km. Constable et al. (1984) presented a six-layer model
obtained by a Marquardt method which fits the data to an
rms tolerance of 0.81 when calculated in the manner just de-
scribed. The best 1-D fit to these data is obtained with a
bilayer model (Parker, 1984) which predicts the data to within
an rms misfit of 0.75 (Figure 2). The bilayer model is physi-
cally unrealistic, being only 10m thick and containing layer
resistivities from 10- 1 n· m to 109 n· m, but it does highlight
the non uniqueness problem of electrical sounding inversion.
Models which fit the Schlumberger data to an rms misfit of 1
and which are maximally smooth in a second derivative
(Figure 1) and first derivative (Figure 2) sense are shown. The
conclusions drawn by Constable et al. (1984) from their Mar-

COPROD M.T., rms 1.0
3.0

COPROD Model, rms 1.0
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10 4
Depth (m)

2.8 JONES & HUnON
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FIG. 5. The COPROD data described by Jones and Hutton (1979a), and the smallest first derivative model fitting these
data to an rms tolerance of 1.0. The large error bars in phase represent measurements where phase error was
indeterminate. Also shown is a simple layered model given in Jones and Hutton (1979a) for the same data. The
terminating half-space of the Jones and Hutton model has a resistivity of 1n· m.
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FIG. 1. Models minimizing F[1og c, log (z + zo)] fit to data of
Table I, with misfits (a) X2 = E(X2 ) = 22.0, (b) X2 = 4.73, and
(c) X2 = 33.9.
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Whiteness of fit

loses resolution but reduces the sensitivity to data errors. Re-
quiring a misfit close to the minimum possible X2 requires the
false structures in model lb to fit the noise in the data. Note
that most of the extraneous peaks in model I b correspond to
spikes in the D + model 2b. This correspondence increases as
the misfit of a minimum-structure log c model approaches the
minimum possible.
In comparing misfit statistics, it should be noted that we

measure normalized misfit in terms of Yi = -ljcdEi. Parker's
D+ minimizes the squared misfit in terms of CdE i where Ei is
the estimated standard error in c., so D + does not necessarily
obtain the smallest squared misfit expressed in terms of Yi'
When the relative misfit at each frequency is small (e.g., ::;; 5
percent), the squared misfit is very nearly identical expressed
in Y or c. When the relative misfit is larger, the squared misfit
of D+ expressed in terms of Ymay be somewhat larger than
the minimum possible and may be different from the squared
misfit of D + expressed in terms of c.

The choice of what norm is minimized can affect the color
of the fit significantly. Changing the norm by decreasing 11 in
equation (6) penalizes structure at depth and typically in-
creases the size of the low-frequency residuals relative to the
high-frequency residuals, making for a bluer fit of the model to
the data. In Figure 3, we compare the truth (model 3d) to
flattest models of log o with respect to z, log (z + zo), and
-Ij(z + zo), (models 3a, 3b, 3c) corresponding to 11 = 0, -1,
- 2, respectively. All these flattest models have X2 misfits
equal to its expected value of 22. We plot the normalized
residuals associated with the three models and the truth in
Figure 4. The model flattest with respect to log (z + zo),model
3b, shows the true structure most clearly of the three inver-
sions. The model flattest with respect to z, model 3a, shows
fluctuations at depth which are not present in the true model,
and the structure is less clearly defined near the surface.
Model 3a clearly fits the high frequencies systematically better
than the low frequencies (Figure 4). The model flattest with
respect to -Ij(z + zo) shows less detail at depth, more fluctu-
ations near the surface, and systematically overfits the high
frequencies (Figure 4). Overfitting the low frequencies de-
mands the oscillations at depth, whereas underfitting the high
frequencies loses resolution near the surface. The model flat-
test with respect to log (z + zo), model 3b, achieves a fairly
even fit, resulting in more accurate detail and fewer extraneous
oscillations.
To quantify the color of the fit, we use Spearman's statistic

D. This robust statistic is used to test the significance of a
trend (ef., Bickel and Doksum, 1977, p. 365-369) and is based
on the ranks R, and S, of two variables. The samples of a
variable are arranged by size and the ordered samples are
numbered (e.g., 1, 2, 3, ...). Then the rank of each sample is
simply the number of its place in the ordered set. In our case,
we let R, be the ranks of the sums of the squares of the real
and imaginary parts of the residuals (normalized by their stan-
dard errors) and let Si be the ranks of the corresponding fre-
quencies. Spearman's statistic D is

1cPloS

loSleft
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r·..·--·...:
i 1! \ (a) truth: ; \.------------------- --------, ,, ,
i:: ! (b)O+: :, ,
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t::l -2.5
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FIG. 2. (a) Model from which data of Table I were generated'
2 'X = 25.6. (b) Conductances of best-fitting D+ model scaled
into conductivities by dividing by the midpoint distances be-
tween the conductance spikes; X2 = 3.75.

FIG. 3.Models all with misfit X2 = 22.0 fit to the data of Table
I, minimizing (a) F(log o, z), (b) F(log o, log (z + zo)), and (c)
F(log o, - lj(z + zo»' (d) Model from which data were gener-
ated; X2 = 25.6.

(16)
N

D = I(Si - R;)2
i= 1
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1566 Smith and Booker

CHOOSING THE MODEL VARIABLE
AND RESPONSE FUNCTION

Three possible model variables are conductivity c, resistivi-
ty p = I/o, and log conductivity log cr = - log p. To interpret

lution functions can be quite small, allowing the investigator
the use of resolution functions as a means of quantifying the
resolution of a data set. In contrast we will show that errors
are not small for models of log c (nor of resistivity p), which
may explain some of the erroneous conclusions of Oldenburg
(1981).
All real data have measurement errors, so that it is generally

neither possible nor desirable to fit the data exactly. The chi-
squared statistic

(5)

(2)

(3)

(4)

En = - ;00110crE,

i·", [dm J2F(m,f) = - df(z)
o df(z)

E'(O) roc. E(z)
E(O) = Jo 100110 cr(z) E(O) dz.

We define the complex response

FINDING MINIMUM-STRUCTURE MODELS

A convenient way to minimize structure is to minimize a
norm of a derivative of the model. Models minimizing the first
derivative are commonly called "flattest." We define the flat-
test model as the one that minimizes

for a given value of x'. where m is either c or log c and the
function f controls the norm. The choice off has effects some-
what similar to the choice of layer thicknesses in the fitting of

where By and Ex are the magnetic and electric fields in orthog-
onal horizontal directions. (Note that in all other sections of
this paper Yhas been normalized by dividing by the standard
errors of the measurements of y.) Since Ywould be linear in c
if E(z) were independent of a, Ymay be more linear in rr than
the response c = - l/y used by Weidelt (1972) and Parker
(1970). This motivates our choice. Other choices could be
made, but we are doubtful they would give linearization errors
as small as those we have obtained.

a model as a linearly filtered version of the truth, it is essential
that errors associated with linearization be small. This cannot
be the case for p because adding a thin layer of infinite resist-
ance (zero conductance) has no effect on the response, but can
produce a vastly different filtered model. The same is true for
log p and log c but not for cr. A physical argument in favor of
cr is that it is large in conductors where MT gives the most
information and small in resistors where MT gives the least
information. Thus, a filtered cr is dominated by regions where
we know the most, while a filtered p is dominated by regions
where we know the least. However, despite being more nonlin-
ear than c models, log c models reduce the masking of struc-
ture in resistive zones through side-band leakage from con-
ductive zones because they are less variable. Using log o is
somewhat akin to prewhitening in time series analysis. Mod-
eling log c also ensures that crwill be positive.
Having chosen o as the model variable for which the in-

verse problem is most linear, we select an appropriate re-
sponse to measure based on a heuristic argument. In the I-D
MT problem, assuming a time dependence exp (- ;oot) and a
piecewise-continuous conductivity cr(z), the governing equa-
tion for the horizontal electric field E is

where 110 is the permeability and the left side is differentiated
twice with respect to the vertical coordinate z. The boundary
conditions at the surface and great depth are E(O) = Eo and
E'( XJ) = 0, respectively. Integrating once and normalizing by
the surface field, we get

(I)2 2N [I1YiJ2X = 1: - ,
i= 1 Ei

where I1Yi are the data residuals and &; are the data standard
errors, is a common measure of the misfit between a model
and the data. For I-D data with independent Gaussian errors,
the Xl misfit of the data to the truth is distributed as the
standard Xl for which probabilities are given in most books
on statistics. The expected value of X2 for the misfit of the data
to the truth is 2N for 2N data points. Parker (1980) shows
that when no model fits MT data exactly, the model which
minimizes X2 (which he calls D+) consists of delta functions
with finite conductance but locally infinite conductivity. Other
types of models that approach the same level of misfit develop
oscillations. As Xl decreases, the oscillations increase as they
try to mimic the delta functions of D ". Thus, if one seeks
models with minimum structure, it is a bad idea to demand
that Xl be close to its minimum possible value or be much less
than the expected value 2N. In fact, minimum-structure
models with greater amounts of misfit (such as the 90 percent
or 95 percent confidence limit values of X2 ) may be desired to
place more conservative bounds on the amount of structure
required.
The Xl statistic does not give a complete picture of the

misfit. We call a fit which distributes the normalized residuals
uniformly across the frequency spectrum a white fit, one that
overfits low-frequency data a red fit, and one that overfits
high-frequency data a blue fit. It is important that an inver-
sion not systematically overfit some frequency ranges and un-
der/it others. We show that a red fit results in more structure
than required at depth for a given X2 and less structure than
required in the shallow part of the model. We use a robust
statistic to test for whiteness and show how to make the fit
acceptably white by tailoring the norm that defines the
minimum-structure model. Using artificial data, we show that
the optimum norm produces an inversion which does not in-
troduce false structure and which approaches the true struc-
ture in a reasonable way as the data errors decrease.
We restrict our examples to inversions of artificial L-D data

with Gaussian, zero-mean independent errors of known scale,
so that we can compare to the truth and test statistically the
residuals to compare different inversions. Considerable cau-
tion must be used in interpreting statistical tests made on the
residuals left upon inverting real data, since the distributions
and scales of the errors may be poorly known and the I-D
assumption is at best an approximation.

Do
wn

lo
ad

ed
 0

3/
25

/2
1 

to
 1

42
.1

67
.2

9.
18

2.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 lic

en
se

 o
r c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
DO

I:1
0.

11
90

/1
.1

44
24

38

1566 Smith and Booker

CHOOSING THE MODEL VARIABLE
AND RESPONSE FUNCTION

Three possible model variables are conductivity c, resistivi-
ty p = I/o, and log conductivity log cr = - log p. To interpret

lution functions can be quite small, allowing the investigator
the use of resolution functions as a means of quantifying the
resolution of a data set. In contrast we will show that errors
are not small for models of log c (nor of resistivity p), which
may explain some of the erroneous conclusions of Oldenburg
(1981).
All real data have measurement errors, so that it is generally

neither possible nor desirable to fit the data exactly. The chi-
squared statistic

(5)

(2)

(3)

(4)

En = - ;00110crE,

i·", [dm J2F(m,f) = - df(z)
o df(z)

E'(O) roc. E(z)
E(O) = Jo 100110 cr(z) E(O) dz.

We define the complex response

FINDING MINIMUM-STRUCTURE MODELS

A convenient way to minimize structure is to minimize a
norm of a derivative of the model. Models minimizing the first
derivative are commonly called "flattest." We define the flat-
test model as the one that minimizes

for a given value of x'. where m is either c or log c and the
function f controls the norm. The choice off has effects some-
what similar to the choice of layer thicknesses in the fitting of

where By and Ex are the magnetic and electric fields in orthog-
onal horizontal directions. (Note that in all other sections of
this paper Yhas been normalized by dividing by the standard
errors of the measurements of y.) Since Ywould be linear in c
if E(z) were independent of a, Ymay be more linear in rr than
the response c = - l/y used by Weidelt (1972) and Parker
(1970). This motivates our choice. Other choices could be
made, but we are doubtful they would give linearization errors
as small as those we have obtained.

a model as a linearly filtered version of the truth, it is essential
that errors associated with linearization be small. This cannot
be the case for p because adding a thin layer of infinite resist-
ance (zero conductance) has no effect on the response, but can
produce a vastly different filtered model. The same is true for
log p and log c but not for cr. A physical argument in favor of
cr is that it is large in conductors where MT gives the most
information and small in resistors where MT gives the least
information. Thus, a filtered cr is dominated by regions where
we know the most, while a filtered p is dominated by regions
where we know the least. However, despite being more nonlin-
ear than c models, log c models reduce the masking of struc-
ture in resistive zones through side-band leakage from con-
ductive zones because they are less variable. Using log o is
somewhat akin to prewhitening in time series analysis. Mod-
eling log c also ensures that crwill be positive.
Having chosen o as the model variable for which the in-

verse problem is most linear, we select an appropriate re-
sponse to measure based on a heuristic argument. In the I-D
MT problem, assuming a time dependence exp (- ;oot) and a
piecewise-continuous conductivity cr(z), the governing equa-
tion for the horizontal electric field E is

where 110 is the permeability and the left side is differentiated
twice with respect to the vertical coordinate z. The boundary
conditions at the surface and great depth are E(O) = Eo and
E'( XJ) = 0, respectively. Integrating once and normalizing by
the surface field, we get

(I)2 2N [I1YiJ2X = 1: - ,
i= 1 Ei

where I1Yi are the data residuals and &; are the data standard
errors, is a common measure of the misfit between a model
and the data. For I-D data with independent Gaussian errors,
the Xl misfit of the data to the truth is distributed as the
standard Xl for which probabilities are given in most books
on statistics. The expected value of X2 for the misfit of the data
to the truth is 2N for 2N data points. Parker (1980) shows
that when no model fits MT data exactly, the model which
minimizes X2 (which he calls D+) consists of delta functions
with finite conductance but locally infinite conductivity. Other
types of models that approach the same level of misfit develop
oscillations. As Xl decreases, the oscillations increase as they
try to mimic the delta functions of D ". Thus, if one seeks
models with minimum structure, it is a bad idea to demand
that Xl be close to its minimum possible value or be much less
than the expected value 2N. In fact, minimum-structure
models with greater amounts of misfit (such as the 90 percent
or 95 percent confidence limit values of X2 ) may be desired to
place more conservative bounds on the amount of structure
required.
The Xl statistic does not give a complete picture of the

misfit. We call a fit which distributes the normalized residuals
uniformly across the frequency spectrum a white fit, one that
overfits low-frequency data a red fit, and one that overfits
high-frequency data a blue fit. It is important that an inver-
sion not systematically overfit some frequency ranges and un-
der/it others. We show that a red fit results in more structure
than required at depth for a given X2 and less structure than
required in the shallow part of the model. We use a robust
statistic to test for whiteness and show how to make the fit
acceptably white by tailoring the norm that defines the
minimum-structure model. Using artificial data, we show that
the optimum norm produces an inversion which does not in-
troduce false structure and which approaches the true struc-
ture in a reasonable way as the data errors decrease.
We restrict our examples to inversions of artificial L-D data

with Gaussian, zero-mean independent errors of known scale,
so that we can compare to the truth and test statistically the
residuals to compare different inversions. Considerable cau-
tion must be used in interpreting statistical tests made on the
residuals left upon inverting real data, since the distributions
and scales of the errors may be poorly known and the I-D
assumption is at best an approximation.
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layered models. The simplest choice is j = z. However, this
choice is likely to lead to a red fit with unnecessary structure
at depth, because the resolution of MT data generally de-
creases with depth. The deeper structure required to fit low-
frequency data typically has a longer length scale and contrib-
utes less to F(m, z). Thus, low-frequency data will be easier to
fit and will end up with smaller residuals. To compensate for
this effect, one can contract the effective scale of the derivative
at depth by choosing j(z) such that

(see Oldenburg, 1979). When i = N + 1 to 2N, one takes
the imaginary part and when m = log 0', gi is replaced by
0'0 (Z)gi (z). Letting

dj(z)
-- = (z +
dz

(6)

YI, - Yo, = 1'"'gi(Z) dz.

For m = 0' and i = 1 to N,

(7)

(8)

where

and minimize

(9)

(13)

(15)

(12)

(10)

m' = dmldz.

YI, - Yo, + r i = l aogi(z)ml(z) dz.

Integrating by parts,

YI, - Yo, + r, + Gi(O)ml(O) = laoGim' dz, (11)

we can write

If our goal were to fit the YI,s to the Y, s exactly and ml(O)
were known, replacing YI, with Yi' equation (11) would pro-
vide 2N constraints to the minimization of F. However, since
our goal is to fit the YI,S to the YiS only to some prescribed X;,
we replace YI, by Yi - e l " rewrite equation (11) as

Yi - Yo, + r i - Gi(O)ml(O) = lao Gim' dz + e l " (14)

with the linearized constraints (14).
In the Appendix we show how to choose so that mini-

mizing W(m\, X;, results in the smallest F for a specified
value of X; when the linearization inherent in equation (7) is
valid. If m\(O) is also unknown, we solve simultaneously for
the m\(O) which minimizes W(m\, X;,
Our algorithm is a method of keeping the change to the

model small enough at each iteration so that the linearization
is valid, yet large enough so that the flattest model with the
desired X2 is arrived at quickly, without an excessive number
of forward calculations. The process involves choosing the
target X; < calculating m\ by minimizing W(m1, X;,
using the linearization, and then forward modeling to com-
pute X;, the actual X2 attained by the model mo + and
W(mo + abm, X;, where 0 < a 1. If is small
enough, the linearization will hold; and W(mo+ atsm, X;,
will be smaller than W(mo' its value for the previous
model. We then begin another iteration, further reducing the

and

for some 11 and Zo > O. Equation (6) is a useful parame-
terization for J, since it includes the obvious choices of j = z
and f = log (z + zo). Below, we compare models using j = z,
j = log (z + zo), and j = -1/(z + zo), corresponding to 11 = 0,
-1, and -2.
The constant Zo in the definitions of j ensures that the inte-

gration of dm/dj to recover m is not singular. Physically, Zo is
required because the resolution length approaches a constant
at the Earth's surface rather than approaching zero. We some-
what arbitrarily choose Zo equal to half the penetration depth
Re (c) (Weidelt, 1972) for the highest frequency in the data,
since we cannot hope to resolve structure much shallower
than this. Conceivably, one could adjust the fit of middle fre-
quencies, as compared to high frequencies, by varying Zo .
Marchisio (1985) (see also Marchisio and Parker, 1984) pre-

sents a fully nonlinear inversion which minimizes a quantity
that is a bound on F(log 0', z) when the model is close to a
uniform slab over an infinitely conducting half-space. While a
significant advance in nonlinear inverse theory, Marchisio's
solution is not necessarily the flattest and is likely to produce
a red fit with structure at depth that is not required by the
data. Whittall and Oldenburg (1986) also present several non-
linear inversions which minimize various norms of the impulse
response of the model rather than norms of the model itself.
This is another step in the right direction, but still falls short
of finding truly minimum-structure models.
Constable et al. (1987) present a many-layered, linearized

inversion that minimizes the sum of the squared first differ-
ences (or second differences) of adjacent layers of their models,
for a given misfit. Their inversion minimizing the first differ-
ences should give very similar results to one minimizing F, in
the limit of vanishing layer thicknesses and a sufficiently deep
final layer. Since Constable et al. weight all differences equally,
their choice of layer thicknesses (as a function of depth) plays
the role of the functionj(z) in controlling the "color" of the fit
to the data.
We minimize structure directly by minimizing F(m, f) in a

stable linearized scheme. Let mo (z) be the starting model of 0'0
or log 0'0 for the current step and ml = mo + be the model
considered for the next step. Let Yi for i = 1 to N be the real
part and for i = N + 1 to 2N be the imaginary part of the
measured data normalized by their standard errors Ei . Simi-
larly, let Yo, and YI, be the data predicted by mo and m1

normalized by the standard errors. The normalized misfits
eo, = Yi - Yo, and e l , = Yi - YI, have total squared misfits
and xi, respectively.
If is small, perturbing equation (3) and neglecting

second-order terms in gives
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Smith and Booker (1988)

flattest model

"minimum-structure" inversion

Non-uniqueness!  Well then, let's deal with that.



φd =
M
∑

i=1

(

dobsi − F [m∗]i
σi

)2

Φ = φd + γ φm

a measure of whatever-we-think-will-give-us-a-good-model  (small value good).

"Occam's inversion", "minimum-structure" inversion:

A combination of ...

a measure of how well the observations are reproduced  (small value is good),  and



"Occam's inversion", "minimum-structure" inversion:

Has proved to be very successful:  everyone uses this approach  (gravity,

magnetic, DC/IP, seismic travel-time tomography; and FWI is getting there).

Arguably most important aspect is that chances of a useful model from any one

run are very high (compare with needing to re-start parameter estimation

algorithms from lots of different initial models).  Reliable, robust.
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Fig. 1. Apparent resistivity and E/B phase lag corresponding to the data of Table 1. Error bars correspond to +_ sj 
perturbations in cj. The smooth curve is the response of the best fitting model shown in Figure 2. 

subject to appropriate boundary conditions. For 
sufficiently smooth and strictly positive conductivities the 
spectral function can be inverted by Gelfand and Levitan's 
[1955] method once the system has been converted to a 
Schr6dinger equation [Weldelf, 1972]. Because the solu- 
tion to our inverse problem is not unique, we may choose 
a form for a(X) that fits neatly into our scheme and 
enjoys in addition stable and efficient inversion. Consider 

c(o•) -- 1 + I dE(X) (11) -x/ko/•oo'o X + io• 
where tr 0 > 0 is a fixed parameter of our choosing. If the 
best fitting admittance of this form is found by the 
methods described earlier, a response results: 

where 

c(o.,) = 1 + • -x/ko/xoo'o •.• X.t + iw 

=I aa(x) X+iw 

a(k) 2 [ k ] '/• L = -- + •, AEtH(X- X,) 
qr /.t0o'0 I-I 

(12) 

(13) 

10 5 

•o 10 a 

,o, ' .4o ' ' ' ,4o 
Depth (kin) 

Fig. 2. The best fitting conductivity model corresponding to the 
magnetotelluric data shown in Figure 1. 

and H is the Heaviside unit step function. At this point 
we remark that such a response does not belong to a con- 
ductivity in S +, because the singularities of c are not 
confined to simple poles; in fact it is easily shown [Weidelt, 
1972] that the profile is defined on a semi-infinite interval 
with f • dz unbounded. For this reason, it is essential 
to move the origin of the coordinate system from the bot- 
tom of the layer: in this section we have z positive down- 
ward and z = 0 at the surface in contrast to the conven- 
tion of P1. 

Our treatment follows the original one of Gel'land and 
Levitan rather than that of Weidelt. Consider the eigen- 
value problem 

1 d2e• {- •e•, -- 0 (14) It, Off(Z) dz 2 
subject to the surface boundary condition deu/dz{o- 0 
and normalization of eigenfunctions e•,(0)--1. For the 
conductivities of this section the eigenfunctions have a 
spectrum with a continuous part; they are orthogonal 
under 

I e•,(z)e•,(z')da(•) -- •5(z - z')/l•o•(z) 
lOOO 

• 900 

• 800 

o 
• 700 

• 600 

Acceptable misfit X a 
Fig. 3. Depth below which an arbitrary function may be supplied 
for •r while the attainable misfit of the complete conductivity 
profile does not exceed X 2. 
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and H is the Heaviside unit step function. At this point 
we remark that such a response does not belong to a con- 
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Fig. 7. Two smooth models with values of X 2 as indicated. Each solution is optimal for its parameter it0; these are 
0.41830 S m -1 and 5.0716 S m -1. 

solution and the solution tends to zero at great depth. As 
0.0 grows larger, the peaks become narrower and taller, 
ultimately approaching the solution shown in Figure 2. 

At a fixed level of misfit above Xm2in, the repertoire of 
solutions provided by the algorithms given here is quite 
limited. In P1 it was suggested that one way to expand 
the class of solutions would be to find those that are close 
to preferred models in a well-defined sense. This idea 
should certainly be explored, although preliminary studies 
lead to the conclusion that it is a rather more expensive 
undertaking than the present approach of finding optimal 
solutions in carefully chosen classes. Another way of 
increasing the diversity of solutions is by applying linear 
constraints to the spectral function, or its relatives 
and q(A). Application of an additional linear constraint 
(or more than one) makes available solutions in the par- 
ticular class that are not optimal; for example in H +, such 
solutions would fall in the region above the curve in Fig- 
ure 4. Some linear constraints may be simply interpreted 
in their effects upon the model obtained. The admittance 
c itself is an example of a linear functional of a (X), q (A), 
or fi(X). We have already seen that fixing c(0)--h 
forces the solution to terminate with a perfect conductor at 
a depth h. Similarly, demanding a particular value for the 
response at a high frequency has the effect of constraining 
the surface conductivity. For the degenerate Gel'fand- 
Levitan solution, E A•t is proportional to the surface gra- 
dient of 0.. Generally, however, linear functionals of the 
spectral function are not simply related to the conductivity 
[Parker, 1981 ]. 

The ultimate goal in the solution of this or any other 
geophysical inverse problem is the complete characteriza- 
tion of the set of all acceptable solutions. The methods of 
this paper allow us to explore a small corner of this 
infinite-dimensional manifold. 

APPENDIX 1: RUTISHAUSER'S SECOND ALGORITHM 

Rutishauser [1954, 1957] published two methods for 
transforming a known partial fraction (PF) into a contin- 
ued fraction (CF). Although both are based upon his 
famous quotient-difference (QD) algorithm, only the 
second is numerically stable. The second scheme, which 
we have adopted for numerical work, appears to have 

been published only in a special Eidgen6ssischen Tech- 
nischen Hochschule volume dedicated to E. Stiefel, and 
therefore we believe it is useful to summarize the main 
ideas. W. B. Gragg provided us with the reference and 
with a commentary, some of which is reproduced here. 

The notation of this appendix is largely independent of 
that in the rest of the paper. To understand the algo- 
rithm, the reader must be aware of some standard identi- 
ties and terminology of CF theory. Consider the terminat- 
ing CF, which we shall call a 1/z fraction: 

f (z) - Co 
P• 

z+ 

1+ 0.1 

z+ P2 

co/z 
p•/z 1+ 

1+ 0.1/Z 

1+ p2/z 

Note that (6) and (8) are essentially in this form. Sup- 
pose this object has an even number of levels; then f may 
be rewritten thus 

f(z) = Co 

p10.1 
2 '• pl -- 

2 + (0.1 + P2) -- 020'2 2 + (o'2+P3) .... 
The new CF is called the 'even part' of f; it has half the 
number of levels. When f has an odd number of levels, 
we can find its even part simply by appending a dummy 
tier at the bottom with Pn --0. Similarly, a fraction with 
an odd nt•mber of levels has an 'odd part" 

_-- • COPl f (z) 1 [Co- ] 
2 0'102 2 '•' Q)I '•' 0'1)- 2 + (P2 + 0'2) .... 

See Wall [1948, chapter 1] for proofs. Forming the even 
or odd part of a CF is called 'contraction'; identifying an 
odd or even part with its expanded version is called 
'extension.' 

Parker and Whaler (1981)

Aside "D+" models of Parker (1980)
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Aside "D+" models of Parker (1980)



Finding all models that give a suitable misfit ...  sampling.

Rather than finding a unique model that reproduces the data ...

φd =
M
∑

i=1

(

dobsi − F [m∗]i
σi

)2
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Figure 12. Map of a portion of the airborne FDEM survey lines flown in 2009 in western Nebraska.

Figure 13. Resistivity model along the eastern-most survey line in Fig. 12 recovered using the least-squares inversion algorithm EM1DFM. Vertical dashed
lines indicate locations that are extracted for analysis with the MCMC algorithm.

Fig. 15 provides a summary of the posterior distribution of pa-
rameters for the models in Figs 14(A), (C), (E) and (G). The top
row of histograms (Figs 15A, D, G and J) shows the distribution
of layer interface depths extracted from the ensemble of MCMC
models. Peaks in these histograms correspond with the interface
depths in Table 3, though the widths of the peaks vary with
depth to the interface and resistivity values. The interface depths
at locations II and IV are not as well defined as those at loca-

tions I and III because of the depth of the interface (II) and high
resistivity (IV).

Also superimposed on each figure is a curve that is meant to
be a proxy for the DOI discussed earlier. This curve is defined
by the width of the 95 per cent credible region shown in Fig. 14,
normalized by the width at the maximum depth of 150. Values are
then scaled to the horizontal-axis of the underlying histogram such
that the value at 150 m represents a metric of one. Small values of
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Figure 14. Distribution of MCMC models (A, C, E and G) for each of the locations shown in Fig. 13 along with the most probable model, the model obtained
using EM1DFM, and the 95 per cent model credible region. (B, D, F and H) Measured data with error bars for each sounding, along with the distribution of
predicted data for the various models above each panel.

Table 3. Summary of MCMC most probable model values for the locations
shown in Fig. 13.

I II III IV
(4640N) (4645N) (4650N) (4657.5N)

Layer 1 resistivity (! m) 12.5 63.4 92.8 306.3
Layer 2 resistivity (! m) 6.6 11.4 7.8 82.6
Interface depth (m) 10.6 54.8 22.6 17.7
htx

MCMC − htx
obs(m) –1.3 –3.8 –1.2 +4.1

the DOI-metric represent areas where the resistivity is well defined
within a relatively narrow range of values. Conversely, large values
represent depths where a wide range of resistivity values can be
present and still are consistent with the measured data. There is
generally a rapid increase in the DOI metric at depths greater than
approximately 60 m, indicating a gradually decreasing ability to
resolve layers. This loss of depth-resolution occurs at shallower
depths for resistive layers compared with conductive layers due to
the reduced sensitivity of the FDEM method to resistive features.
Evidence for this asymmetric loss in depth-resolution is evident in
Fig. 14, where the upper limit of the 95 per cent credible region
increases more rapidly than the lower limit.

The middle row of histograms (Figs 15B, E, H and K) shows
the distribution of the number of layers in the ensemble of MCMC
models, all of which are biased towards few-layer models. The bot-
tom row of histograms (Figs 15C, F, I and L) shows the distribution
of transmitter elevation for the various models. At locations I and
III, which have shallow interfaces and relatively low resistivities,
the distribution of transmitter elevations that are consistent with the
data is relatively narrow, and the most probable value is close to
the measured value. At location IV, the resistive near-surface layer
results in a much broader distribution of allowable transmitter ele-
vations, which would extend to greater elevations was it not for the

uniform prior distribution that constrains values to fall within 5 m
of the measured height.

Finally Fig. 16 compares the results from location IV (Fig. 14G)
with data from a borehole drilled approximately 20 m away from the
sounding. Short- and long-normal resistivity logs are superimposed
in yellow, and are generally consistent with both the MCMC and
EM1DFM results. The right-hand side of this figure shows the
general lithology, along with the formation factor (the ratio of the
bulk resistivity to the fluid resistivity) computed from the electric log
data. The upper silt layer observed in this borehole (approximately
25 m depth) is not found in other wells in the area, which typically
indicate a single transition from alluvium to the siltstone aquitard
at depth. This thin silt layer is not interpreted as the base of aquifer,
though it likely complicates the hydrogeology in this portion of the
model. As discussed later, the low resistivity of this layer limits the
ability to accurately constrain the resistivity of the sand and gravel
unit beneath it.

Although the resistivity-log data are consistent with the MCMC
models, the logs indicate a transition to lower resistivity associated
with the first slit and clay layer at approximately 25 m, whereas
the MCMC most probable model indicates a transition at approx-
imately 20 m. This discrepancy could be attributed to differences
in the sensitivity volume for the resistivity log compared with the
airborne footprint and/or a lack of vertical resolution in the airborne
data. The increase in resistivity indicated by the log data from ap-
proximately 40 to 70 m depth is not a pronounced feature in the
MCMC distribution due to the limited sensitivity to resistive targets
at depth, but the distribution of models is somewhat biased towards
greater resistivity values in this depth range. At approximately 70 m
depth, the resistivity logs capture a sharp transition to low resistiv-
ity associated with the silt and clay layers that form the imper-
meable base of the aquifer. While the sensitivity of the airborne
data is significantly limited at this depth, the distribution of MCMC
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Figure 14. Distribution of MCMC models (A, C, E and G) for each of the locations shown in Fig. 13 along with the most probable model, the model obtained
using EM1DFM, and the 95 per cent model credible region. (B, D, F and H) Measured data with error bars for each sounding, along with the distribution of
predicted data for the various models above each panel.

Table 3. Summary of MCMC most probable model values for the locations
shown in Fig. 13.

I II III IV
(4640N) (4645N) (4650N) (4657.5N)

Layer 1 resistivity (! m) 12.5 63.4 92.8 306.3
Layer 2 resistivity (! m) 6.6 11.4 7.8 82.6
Interface depth (m) 10.6 54.8 22.6 17.7
htx

MCMC − htx
obs(m) –1.3 –3.8 –1.2 +4.1

the DOI-metric represent areas where the resistivity is well defined
within a relatively narrow range of values. Conversely, large values
represent depths where a wide range of resistivity values can be
present and still are consistent with the measured data. There is
generally a rapid increase in the DOI metric at depths greater than
approximately 60 m, indicating a gradually decreasing ability to
resolve layers. This loss of depth-resolution occurs at shallower
depths for resistive layers compared with conductive layers due to
the reduced sensitivity of the FDEM method to resistive features.
Evidence for this asymmetric loss in depth-resolution is evident in
Fig. 14, where the upper limit of the 95 per cent credible region
increases more rapidly than the lower limit.

The middle row of histograms (Figs 15B, E, H and K) shows
the distribution of the number of layers in the ensemble of MCMC
models, all of which are biased towards few-layer models. The bot-
tom row of histograms (Figs 15C, F, I and L) shows the distribution
of transmitter elevation for the various models. At locations I and
III, which have shallow interfaces and relatively low resistivities,
the distribution of transmitter elevations that are consistent with the
data is relatively narrow, and the most probable value is close to
the measured value. At location IV, the resistive near-surface layer
results in a much broader distribution of allowable transmitter ele-
vations, which would extend to greater elevations was it not for the

uniform prior distribution that constrains values to fall within 5 m
of the measured height.

Finally Fig. 16 compares the results from location IV (Fig. 14G)
with data from a borehole drilled approximately 20 m away from the
sounding. Short- and long-normal resistivity logs are superimposed
in yellow, and are generally consistent with both the MCMC and
EM1DFM results. The right-hand side of this figure shows the
general lithology, along with the formation factor (the ratio of the
bulk resistivity to the fluid resistivity) computed from the electric log
data. The upper silt layer observed in this borehole (approximately
25 m depth) is not found in other wells in the area, which typically
indicate a single transition from alluvium to the siltstone aquitard
at depth. This thin silt layer is not interpreted as the base of aquifer,
though it likely complicates the hydrogeology in this portion of the
model. As discussed later, the low resistivity of this layer limits the
ability to accurately constrain the resistivity of the sand and gravel
unit beneath it.

Although the resistivity-log data are consistent with the MCMC
models, the logs indicate a transition to lower resistivity associated
with the first slit and clay layer at approximately 25 m, whereas
the MCMC most probable model indicates a transition at approx-
imately 20 m. This discrepancy could be attributed to differences
in the sensitivity volume for the resistivity log compared with the
airborne footprint and/or a lack of vertical resolution in the airborne
data. The increase in resistivity indicated by the log data from ap-
proximately 40 to 70 m depth is not a pronounced feature in the
MCMC distribution due to the limited sensitivity to resistive targets
at depth, but the distribution of models is somewhat biased towards
greater resistivity values in this depth range. At approximately 70 m
depth, the resistivity logs capture a sharp transition to low resistiv-
ity associated with the silt and clay layers that form the imper-
meable base of the aquifer. While the sensitivity of the airborne
data is significantly limited at this depth, the distribution of MCMC
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Figure 14. Distribution of MCMC models (A, C, E and G) for each of the locations shown in Fig. 13 along with the most probable model, the model obtained
using EM1DFM, and the 95 per cent model credible region. (B, D, F and H) Measured data with error bars for each sounding, along with the distribution of
predicted data for the various models above each panel.

Table 3. Summary of MCMC most probable model values for the locations
shown in Fig. 13.

I II III IV
(4640N) (4645N) (4650N) (4657.5N)

Layer 1 resistivity (! m) 12.5 63.4 92.8 306.3
Layer 2 resistivity (! m) 6.6 11.4 7.8 82.6
Interface depth (m) 10.6 54.8 22.6 17.7
htx

MCMC − htx
obs(m) –1.3 –3.8 –1.2 +4.1

the DOI-metric represent areas where the resistivity is well defined
within a relatively narrow range of values. Conversely, large values
represent depths where a wide range of resistivity values can be
present and still are consistent with the measured data. There is
generally a rapid increase in the DOI metric at depths greater than
approximately 60 m, indicating a gradually decreasing ability to
resolve layers. This loss of depth-resolution occurs at shallower
depths for resistive layers compared with conductive layers due to
the reduced sensitivity of the FDEM method to resistive features.
Evidence for this asymmetric loss in depth-resolution is evident in
Fig. 14, where the upper limit of the 95 per cent credible region
increases more rapidly than the lower limit.

The middle row of histograms (Figs 15B, E, H and K) shows
the distribution of the number of layers in the ensemble of MCMC
models, all of which are biased towards few-layer models. The bot-
tom row of histograms (Figs 15C, F, I and L) shows the distribution
of transmitter elevation for the various models. At locations I and
III, which have shallow interfaces and relatively low resistivities,
the distribution of transmitter elevations that are consistent with the
data is relatively narrow, and the most probable value is close to
the measured value. At location IV, the resistive near-surface layer
results in a much broader distribution of allowable transmitter ele-
vations, which would extend to greater elevations was it not for the

uniform prior distribution that constrains values to fall within 5 m
of the measured height.

Finally Fig. 16 compares the results from location IV (Fig. 14G)
with data from a borehole drilled approximately 20 m away from the
sounding. Short- and long-normal resistivity logs are superimposed
in yellow, and are generally consistent with both the MCMC and
EM1DFM results. The right-hand side of this figure shows the
general lithology, along with the formation factor (the ratio of the
bulk resistivity to the fluid resistivity) computed from the electric log
data. The upper silt layer observed in this borehole (approximately
25 m depth) is not found in other wells in the area, which typically
indicate a single transition from alluvium to the siltstone aquitard
at depth. This thin silt layer is not interpreted as the base of aquifer,
though it likely complicates the hydrogeology in this portion of the
model. As discussed later, the low resistivity of this layer limits the
ability to accurately constrain the resistivity of the sand and gravel
unit beneath it.

Although the resistivity-log data are consistent with the MCMC
models, the logs indicate a transition to lower resistivity associated
with the first slit and clay layer at approximately 25 m, whereas
the MCMC most probable model indicates a transition at approx-
imately 20 m. This discrepancy could be attributed to differences
in the sensitivity volume for the resistivity log compared with the
airborne footprint and/or a lack of vertical resolution in the airborne
data. The increase in resistivity indicated by the log data from ap-
proximately 40 to 70 m depth is not a pronounced feature in the
MCMC distribution due to the limited sensitivity to resistive targets
at depth, but the distribution of models is somewhat biased towards
greater resistivity values in this depth range. At approximately 70 m
depth, the resistivity logs capture a sharp transition to low resistiv-
ity associated with the silt and clay layers that form the imper-
meable base of the aquifer. While the sensitivity of the airborne
data is significantly limited at this depth, the distribution of MCMC
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Bayesian Markov chain Monte Carlo algorithm for model assessment
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MT multiscale 3-D inversion in Mongolia 1005

Figure 1. Topographic map with installed sites in central Mongolia. The location in central Asia is indicated in the smaller inset in the lower left. See Table 1
for abbreviations. The symbol indicates the type of instrument used. Red color indicates the grid sites and blue color the others. The grid sites are indicated
with their numeric designation. Grey lines mark major fault systems (Walker et al. 2008; Styron 2018), the dotted blue line indicates the –250 mGal Bouguer
anomaly (Tiberi et al. 2008), the dotted orange line indicates the 90 mW m–2 high heat flow anomaly (Ionov 2002, and references therein), light blue circles
mark hot spring locations (Ganbat & Demberel 2010; Oyuntsetseg et al. 2015), and the orange patches designate Cenozoic volcanic provinces (Ancuta et al.
2018). The black frame around the survey area indicates the rotated local cartesian coordinate system used for the 3-D inversion.

Furthermore, Fig. 3(b) shows the real part of the C-response,

C = − Z̄1-D

iωµ0
, (8)

calculated for both regional 1-D impedances. It represents the depth
of the ‘centre of mass’ of induced currents for a given period (Wei-
delt 1972) and can be used as a proxy for the penetration depth.
Starting with a penetration depth of 4–15 km at 1 s, the penetration
depth increases to 200 km at the period of 4096 s.

We performed a dimensionality analysis by calculating the phase
tensor strike angle θ and the normalized skew angle # (Booker
2014). The polar histograms of θ in Fig. 4 reveals a preferred
strike direction for periods T > 10 s, namely 15◦ ± 90◦ (clockwise
from magnetic north). With a normalized skew angle of |#| >

6◦ over a wide period range at the majority of the sites (see the

supplementary material, Section S1), the collected data shows a
significant influence of 3-D effects (Booker 2014). Thus a 3-D
inversion is indeed indispensable to retrieve all information from
the data set.

As was previously shown by Tietze & Ritter (2013), when a pre-
dominant geological strike direction exists, it is advantageous to ro-
tate the impedance tensor even for 3-D inversion, thereby improving
inversion convergence and reducing modelling errors. Therefore,
we rotated the impedance tensors by 15◦ counter-clockwise, thus
aligning the principal axes not only with the strike directions but
also the profile directions. An additional benefit of the rotation is
the correction of out of quadrant off-diagonal phases, that can be
observed at some of the sites. This is shown in Fig. 5 for two sites,
2350BL and 4350BL. For both sites ρxy > ρyx, indicating east–west
oriented low resistivity anomalies. A phase tensor analysis of these
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Figure 6. Cutaway view of the coarse (a) and fine (b) inversion meshes as well as a zoomed-in view of the central part. Local Cartesian axes (shown in green)
are rotated by 15◦ clockwise from magnetic north.

Figure 7. Flow chart of the inversion process, consisting of four stages with different model parametrizations and input data. Z̄1-D is the regionally averaged
1-D impedance (eq. 7), while Zgrid and Zprof indicate the 2 × 2 impedance tensors from grid and profile sites (see Fig. 1). e corresponds to the assigned data
error (eq. 13) and the shortest period is denoted by Tmin.

increasing number of sites and a wider period band. As illustrated in
Fig. 7, the final result of each stage is used as the starting model for
the subsequent stage, which is done with a finer mesh and more data.

The objective function (eq. 11) has multiple minima. To prevent
the inversion from getting trapped in a local minimum that may
not correspond to a geologically plausible model, the choice of the

starting model is crucial. Rung-Arunwan et al. (2016) proposed to
use a 1-D model derived from the regional 1-D impedance (eq. 7)
as a starting model. To calculate the regional average, we used
a stochastic inversion algorithm based on the Covariance Matrix
Adaption Evolution Strategy (CMAES, see Grayver & Kuvshinov
2016), followed by a Markov chain Monte Carlo (MCMC) walk
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!e "rst diamond drilling project targeting the C1 conductive 
trend under the C1-West Grid was carried out in 1998. Two 
holes (CLC1-44 and CLC1-45) were drilled at locations that 
were subsequently reoccupied by lines 2400W and 1200W of 
the 2013 MLTEM survey (Figure 3) (Lavoie et al., 1988). 
CLC1-44 successfully reached the fault zone, and graphite was 
recorded. CLC1-45 only recorded minor graphite. A diamond 
drilling project followed in 2015. It targeted the C1 conductive 
trend interpreted from the 2013 MLTEM data. Two holes were 
drilled on the C1-West Grid, and seven holes were drilled on 
the C1-Center Grid. CL-162 (Figure 3) was drilled to test for 
the presence of the C1 conductor under line 1400W. However, 
no graphitic conductor was encountered. A borehole EM survey 
was conducted immediately following the drilling in an attempt 
to better locate the C1 conductor. CL-167 (Figure 3) was then 
drilled based on borehole EM data. However, this hole also 
failed to intersect a conductor. !e vertical section shown in 
Figure 2 is based on these two holes.

Physical property measurements, including resistivity and 
chargeability, have been made on samples from some of the drill 
holes on the C1-Center Grid. Downhole resistivity probing was 
carried out for holes CL-162 and CL-167. Generally, the resistivity 
of the sandstone samples ranges from 1000 to 3000 Ωm. !e 
pelitic gneiss samples collected from the basement are more 

conductive when the degree of alteration is higher. !ey generally 
have a resistivity lower than 1000 Ωm. Samples containing a high 
degree of graphite or pyrite exhibit the lowest resistivity values. 
!e lowest resistivity measured is less than 1 Ωm. Fresh unaltered 
basement rocks have the largest resistivity values, which are 
typically more than 5000 Ωm. 

Modeling of the C1-West Grid
!e trial-and-error modeling presented here aims to model 

the C1 conductor directly under lines 1400W and 2200W of 
the C1-West Grid. !is modeling is guided by the information 
available from drill holes CLC1-44, CLC1-45, CL-162, and 
CL-167. Drill holes existing on the C1-Center Grid and the 
modeling results presented in Lu et al. (2020) for the C1-Center 
Grid have previously been used to build the eastern part of 
the conductor.

Model building and mesh generation. We use a three-step 
procedure to generate the unstructured grids for EM modeling. 
First, we create a surface mesh comprising a tessellation of 
triangular cells using the Triangle program (Shewchuk, 1996). 
!is surface mesh is later used as the air-earth interface. Local 
mesh re"nements are necessary for the transmitter loops and 
receivers to guarantee good accuracy in EM numerical modeling. 
!erefore, extra nodes and edges are added into the surface mesh 
at the transmitter and receiver locations to provide the necessary 
mesh re"nement. !e digital elevation model (downloaded from 
the Geospatial Data Extraction online service provided by the 
Government of Canada) topography data are then interpolated 

Figure 3. C1-West Grid and part of the C1-Center Grid of the 2013 MLTEM survey 
conducted for the Close Lake project. The blue rectangles show the first and last 
transmitters for each survey profile. The red dots show all of the receiver locations 
for each profile. The purple diamonds mark some of the 2015 diamond drilling 
holes along the C1 conductor, the supposed trend of which is shown by the red 
solid line. The green diamonds mark the CLC1-44 and CLC1-45 drill holes from the 
1988 diamond drilling project. The numbers on the left of the map show the local 
coordinates used for the survey grid. (After Lavoie et al., 1988; Richard, 2013; and 
Hutchinson and Zalustskiy, 2015.)

Figure 2. Vertical section based on drill holes CL-162 and CL-167 of the Close 
Lake project (Hutchinson and Zalustskiy, 2015).
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Lu et al. (2021)

64 Tx-Rx pairs in 
C1-West grid 

Moving-loop TEM
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VTEM B-Field Z Component Channel 36, Time Gate 2.021 ms 
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VTEM system specifications:  
  
  Transmitter  

- Transmitter coil diameter: 26 m 
- Number of turns: 4 
- Effective Transmitter coil area: 2123 m2 
- Transmitter base frequency: 30 Hz 
- Peak current: 175 A 
- Pulse width: 7.14 ms 
- Wave form shape: Bi-polar trapezoid   
- Peak dipole moment: 371,650 nIA 
- Actual average EM Bird terrain clearance: 42 metres above the ground 

    
  Receiver  

- X Coil diameter: 0.32 m 
- Number of turns: 245 
- Effective coil area: 19.69 m2 
- Z-Coil coil diameter: 1.2 m 
- Number of turns: 100 
- Effective coil area: 113.04 m2 

 
 

 
Figure 5: VTEMplus System Configuration. 

50m & 100m line spacing
900 line-km

vertical and in-line components
45 time channels

Tx-Rx location every ~2m
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Figure 17. A zoomed-in perspective view of the mesh used for the Ovoid model. The mesh is locally refined at the observation locations in the air. The X, Y
and Z axes shown here represent Easting, Northing and depth respectively.

Figure 18. A comparison of the gauged FE and HEM survey data for the
in-phase and quadrature parts of the magnetic field for the Ovoid model.
The field is normalized by the free space field in ppm.

acceptable. In order to show the field penetration and also the cur-
rent distribution in the ore body, the field and currents are calculated
at a vertical section along the observation line for a configuration
where the dipole source is approximately located above the centre
of the Ovoid at (555 837.5, 6 243 201, 110) m. For this setup, Fig. 19
shows the attenuation of the electric field (top panels), and also the
distribution of the current density (bottom panels) in both the Ovoid
body and host. It is confirmed here that as a result of energy loss
for the considered frequency, the current density is concentrated
very much at the surface of the conducting Ovoid body.

The inductive and galvanic parts of the gauged field are also
investigated for this example. It is observed that the field and
currents are significantly distorted around and inside the Ovoid
body because of its complex geometry. Nevertheless, for a depth of
58 m where the amplitude of the current density is relatively large
in magnitude near the top surface of the Ovoid (see the real part
of J in Fig. 19), Fig. 20 shows the horizontal components of the

inductive, galvanic and total current densities. It is seen here that for
the real part the coupling between the dipole source and the Ovoid
is dominantly in the inductive phase if considering the orientation
of arrows at the centre of the Ovoid and also in the surrounding
host. The non-negligible contribution from the galvanic part is also
important here as its superposition with the inductive part reduces
the total currents away from the centre of the conductor towards
its surface. The galvanic current also contributes to cancelling
the inductive currents inside the tail of the Ovoid in addition to
shaping the total current arrows at the boundaries of the Ovoid. For
the imaginary parts the combination of the inductive and galvanic
parts minimizes the accumulation currents inside the Ovoid body.

5 C O N C LU S I O N S

As the main achievement of this study we have developed a gauged
finite-element solution of the potential formulation of the geophys-
ical EM problem for the case where vector basis functions, or edge-
elements, are used for approximating the vector potential field. This
was necessary because gauged potential solutions provide a unique,
correct representation of both the vector and scalar potentials that
can be linked to truly simulating the inductive and galvanic parts of
the EM field. This was not the case with the incomplete-gauged for-
mulation. In terms of the numerical difficulties, it is demonstrated
here that despite using the divergence-free vector basis functions
for the vector potentials and also adequately refining the mesh,
the naturally formulated (or incomplete-gauged) potential system
is still contaminated by noisy modes. In particular, this numerical
leakage, as demonstrated for the grounded wire and prism example,
has caused an inadequate fulfilment of the continuity of normal and
tangential components of both the vector and scalar potentials at
interfaces between cells in the computational domain. Moreover, as
illustrated in this work, the final solution for the potentials calculated
using the incomplete-gauged system is susceptible to the choice of
using an iterative or direct solution method. Specifically, for the
two benchmark examples presented here the iterative solver (i.e.
GMRES here) produced potentials that are substantially different
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meshes: they are reasonably easy to generate and adapt, 
numerical methods for synthesizing data using these meshes are 
natural extensions of those for rectilinear meshes, and these 
numerical methods retain some of the numerical “niceness” that 
the corresponding methods for rectilinear meshes exhibit. Also, 
OcTree meshes can be locally refined or coarsened. However, 
fundamentally the cell boundaries in an OcTree mesh are still all 
aligned with the Cartesian axes, and, even although the ability 
for local refinement can lessen this issue, it is impossible to 
avoid some amount of stair-casing when building arbitrarily 
oriented surfaces. The use of non-conforming, OcTree meshes 
for EM modelling and inversion has been presented by, for 
example, Haber and Heldmann (2007), Haber and Schwarzbach 
(2014) and Grayver and Bürg (2014), and for magnetic inversion 
by Davis and Li (2013). 
 

 
Figure 4: An example of an OcTree mesh. This mesh shows 
local refinement around a source-receiver location for an 
airborne EM survey (blue: air; yellow: ground; black lines: cell 
boundaries). (From Haber and Schwarzbach, 2014.) 

Geophysical Models: Unstructured 
Tetrahedral Meshes 

Rectilinear and OcTree meshes are not directly compatible with 
geological models parameterized in terms of surfaces: the 
surfaces will invariably cut through the brick-like cells in the 
mesh, with the cut cells having to be assigned an average of the 
physical properties from the two sides of the surface. Performing 
such averaging so that the data synthesized using the rectilinear 
mesh are faithful to the original, interface-based geological 
model is not necessarily difficult (although not trivial for some 
physical properties and geophysical methods, most notably 
electrical conductivity and electrical and EM methods), and the 
synthesized data can be accurate enough if the rectilinear or 
OcTree mesh is of a sufficiently fine discretization. However, an 
alternative means of parameterizing the geophysical Earth 
model is to discretize the volumes between the surfaces in the 
geological Earth model using an unstructured tetrahedral mesh 
(Figure 5). In principle, one can take each triangular facet in a 
tessellated surface, construct a tetrahedral cell that has this 
triangular facet as one of its faces, and build outwards from the 
surface filling up the volumes with tetrahedral cells. The 
volumetric discretization is then entirely consistent with the 
tessellated surfaces. These meshes are unstructured in the sense 

that there is not a simple recipe for locating a particular cell, as 
is the case for rectilinear meshes for which one can prescribe the 
number of cells one has to go in the x-, y- and z-directions to 
reach the cell of interest. Hence, the numerical methods for 
synthesizing data using rectilinear meshes do not naturally 
extend to unstructured tetrahedral meshes, and numerical 
methods using tetrahedral meshes generally require wholesale 
derivation from scratch. 
 
As with OcTree meshes, unstructured tetrahedral meshes can be 
locally refined or coarsened. In a similar manner to the triangles 
of a tessellated surface, the cells in an unstructured tetrahedral 
mesh can grow or shrink as one moves from one part of the 
mesh to another. Tetrahedral meshes are therefore particularly 
well suited to refinement around transmitters and observation 
locations, which can be important for accuracy when 
synthesizing data, and to coarsening away from regions of 
interest and in the outer parts of a model, thus being economical 
in terms of the total numbers of cells in a mesh. 
 

 
Figure 5: An example of a geophysical Earth model 
parameterized in terms of an unstructured tetrahedral mesh. This 
view shows (in orange) the Ovoid ore-body at Voisey’s Bay, 
Labrador, Canada, extruding from a section through a 
homogeneous background (red), the true topography (red-black 
interface), and refinement around the source and receiver 
locations for a DIGHEM flight line. The white lines indicate the 
edges of the tetrahedral cells. (From Ansari et al., 2017.) 
 
There has been a surge over the past decade in the development 
of modelling and inversion techniques that use unstructured 
tetrahedral meshes. Rücker et al. (2006) and Günther et al. 
(2006) describe modelling and inversion of DC resistivity data, 
and consider, in particular, the ability of unstructured tetrahedral 
meshes to accurately represent real topography. Ren and Tang 
(2010) and Weiss et al. (2016) also consider DC resistivity, with 
Weiss et al. using unstructured tetrahedral meshes to model 
highly conducting fractures and borehole casing. Um et al. 
(2010), Schwarzbach and Haber (2013), Puzyrev et al. (2013), 
Ansari and Farquharson (2014), Jahandari and Farquharson 
(2014) and Usui (2015) are examples for EM methods. Lelièvre 
et al. (2012b) consider gravity and seismic travel-time data in a 
mineral exploration context, and Jahandari and Farquharson 
(2013) synthesize gravity data via the solution of Poisson’s 
equation. 
Unstructured tetrahedral meshes can conform exactly with 
surfaces tessellated in terms of triangles in geological Earth 

Haber and Schwarzbach (2014)

growth in iterations is rather moderate and overall the solver re-
mains robust. Of particular importance for large-scale problems
is the fact that the number of MPI processes used to solve a
problem does not affect convergence of the solver for any polyno-
mial degree.
To test the robustness of the solver on nonconforming unstruc-

tured and locally refined meshes, we constructed a model with un-
dulated topography. Specifically, we used the topography of the
Kronotsky volcano located at the Kamchatka peninsula. In this ex-
ample, the electric field was calculated at the frequency of 1 Hz
using Nédélec elements of degree p ¼ 2. The initial mesh was
adaptively refined using goal-oriented error estimator with
θ ¼ 0.65. Figure 3 displays the initial and refined meshes with po-
sitions of the receivers. Table 5 summarizes the number of outer and
inner iterations that were required to solve the resulting systems at
different refinement steps. Clearly, the solver remains robust and the
number of iterations is virtually constant despite the unstructured
mesh and local refinement that we used.
Then, we investigated the strong scalability of the solver. To this

end, a uniformly refined version of the model shown in Figure 2
with 8,265,408 DoFs was taken and the solution at the frequency
of 0.1 Hz was calculated using p ¼ 1 and p ¼ 2. The model con-
sisted of 1,351,680 and 168,960 cells for p ¼ 1 and p ¼ 2, respec-
tively. Figure 4 illustrates computational time versus the number of
MPI processes used to calculate the solution. In addition to the time
required by the solver, we have also plotted the time spent on the
system matrix and the right-side vector assembly. These two oper-
ations comprise most of the total required CPU time. Quadratic el-
ements (p ¼ 2) have roughly four times more DoFs per elements
than lowest order p ¼ 1 elements. This increases the coupling be-
tween elements and results in more nonzero entries in the system
matrix. Therefore, given the same number of DoFs, higher polyno-
mial degrees incur more computational time because of lower spar-
sity. Evidence for this is seen in Figure 4a and 4b with quadratic
elements being roughly three times more expensive. At the same
time, better scalability is observed for p ¼ 2 because of the higher
computation-to-communication ratio. This can be seen when com-
paring time required by the solver for p ¼ 1; 2 in Figure 4a and 4b.
For the lowest polynomial degree, the time does not decrease pro-
portionally to the number of MPI processes used, indicating sub-
optimal scalability.

Convergence study

Having confirmed that the presented solver is robust and scalable,
we have not yet answered the question of whether higher polyno-
mial degrees are advantageous for geoelectromagnetic modeling. In
this section, we study the convergence of several different discre-
tization strategies. We considered four scenarios:

1) Uniform h-refinement — At each subsequent step, a mesh is
globally refined in all three dimensions.

2) Uniform p-refinement — At each subsequent step, the poly-
nomial degree is globally increased by one.

3) Adaptive h-refinement — The mesh is locally refined using a
goal-oriented error estimator and fixed fraction strategy de-
scribed in the section on error estimation. The lowest order
edge-based elements were used; i.e., p ¼ 1.

4) Adaptive h-refinement and uniform p-refinement — The same
as the previous, but with higher polynomial degrees p > 1.

For this test, we have chosen the COMMEMI 3D-2 model (Fig-
ure 5). This model contains two extensive 3D anomalies that cause
the solution to have large gradients and be discontinuous in the
vicinity of the conductivity contrasts. It is important to use a model
that has nonsmooth solution with discontinuities because this
behavior occurs in many practical scenarios. Because no analytic
solution exists for this model, the solution error was estimated using
equation 17. This error estimator was shown to represent the sol-
ution error well (Chen et al., 2010; Bürg, 2012b; Zhong et al.,
2012). The goal-oriented error estimator was run for 64 receivers
uniformly spaced along the x-direction from −40 to 40 km (see Fig-
ure 5) and θ ¼ 0.75. In what follows, the error for x polarization is
shown. Among the two polarizations, this one is more challenging
to resolve accurately due to the geometry and position of the anoma-

Figure 3. (a) Initial and (b) adaptively refined meshes of the Kro-
notsky volcano model with 11,752 and 169,966 cells, respectively.
Receivers are depicted with white rectangles. The air layer on the
top is not shown.

Table 5. Numerical results for the model shown in Figure 3
and 18 refinement steps. The number of outer FGMRES and
the average numbers of inner CG iterations are denoted by
Niter and !NCG

iter , respectively.

Refinement step Number of DoFs Niter N̄CG
iter

0 647,544 22 3
6 786,436 22 3
12 2,044,156 23 3
18 9,291,488 24 4
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Figure 1. Schematic representation (1) of a simple Earth resistivity model. The small red dots (4) illustrate regular distributed nodes. Interfaces !itf between
two materials (inside the earth or between the air–earth layer) are (2). The outer boundaries for the model, where we impose Dirichlet !g or Neumann !h

boundary conditions, are marked with (3).

Furthermore α and β describe the diffusion coefficient and the
absorption coefficient (for two different materials, e.g. α1, α2, u1,
u2). A point inside the domain is denoted by x ∈ $. If we relate
these model equations to the actual physical notation we can set the
unknowns according to the eqs (3) and (4)

Electrical field Magnetic field

u Ex Hx

α
1

iωµ

1
σ

β σ iωµ

s 0 0

!g Ea
x H a

x

!h 0 0

!i t f 0 0

2.2.2 Weak formulation: MLPG

We transform the general form of the boundary value problem to a
weak formulation with the weighted residual method. This is also a
typical step in finite element analysis. Therefore, u is approximated
by uh ∈ H1($) and the weighted (with a test function w), residual
of eq. (9) will be integrated over $
∫

$

[
∇ ·

(
α∇uh

)
− βuh − s

]
w d$ = 0, ∀ uh ∈ H1($). (14)

Here, the 2-D Hilbert space (i.e. for u) is defined as

H1 ($) =
{
u | u ∈ L2 ($) , ∂u/∂xi ∈ L2 ($) , i = 1, 2

}
.

L2($) are the square-integrable functions on $. Thus, for an ar-
bitrarily chosen f(x) :

∫ ∞
−∞ | f (x)|2dx < ∞ . We finally derive the

general weak form of (9) by separating (14) into parts

∫

!

[
wα

∂uh

∂n

]
d! −

∫

$

[
α∇w · ∇uh

]
d$ −

∫

$

wβuhd$

=
∫

$

ws d$. (15)

A common vector identity (w∇ · (α∇uh) = ∇ · (wα∇uh) − ∇w·
(α∇uh)) and the divergence theorem is used to derive the first inte-
grals in (15). Also, n is the unit normal outwards to the boundary !.
Now, the general weak statement of (9) will be transformed to the
MLPG formulation. Within the MLPG we define local subdomains
$s and set them equal to the definition domain of the weight func-
tion $te for one arbitrarily chosen node i. This definition is the main
idea in the MLPG-fomulation. In a conventional finite element or
EFG method, the weak form of (9) is used all over the model do-
main. In an MLPG-formulation we use small subdomains inside
the global domain $. So we get a system of overlapping patches
which covers the whole model domain. If a set of nodes i = 1, . . . ,
N belongs to the model domain, a patch of {$i

s} subdomains covers
the whole model domain. Each node creates its own subdomain. As
mentioned before, it is a Petrov–Galerkin formulation, so the ap-
proximation of the boundary value problem can be done with shape
and weight functions from different function spaces. In Atluri et al.
(1999), six different weight functions are examined which led to
several different MLPG schemes. Eq. (15) transforms to

∫

!i
s

[
wiα

∂uh

∂n

]
d! −

∫

$i
s

[
α∇wi · ∇uh

]
d$ −

∫

$i
s

wiβuhd$

=
∫

$i
s

wi sd$d$. (16)
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Figure 8. Run-times for different parts of the mesh-free calculation in
seconds. The pre-processing stage includes memory allocations and con-
figuration/nodes file reading. In the solving stage, eq. (33) is solved. In the
post-processing stage the program calculates the field derivatives using (25),
saves the results and frees the memory. In the assembling stage the list in
Section 2.3 is carried out.

Figure 9. Conductivity models used in this comparison. Panel (a) is the
COMMEMI 2D-1 model and panel (b) is the simple radiomagnetotelluric
model. The red dots describe the nodes distribution.

Figure 10. Calculation and comparison for the COMMEMI 2D-1 model
(Fig. 9a) for the frequencies f = 10 Hz and f = 0.1 Hz, TE mode. Topmost
panel: apparent resistivities, bottom panel: phases.

4 C O N C LU S I O N S

The MLPG method has been adapted for the first time to simulate
the magnetotelluric response of a 2-D Earth conductivity structure.
We presented the formulation of this method and gave some in-
sights into its successful implementation. In a first investigation, a
simple homogeneous half-space test problem was examined and it
was found out that the algorithm convergence towards lower errors
can be achieved by increasing the nodal distance. A good conver-
gence rate can be achieved when using a quadratic basis, within the
interpolated shape function.

Compared to a basic finite element analysis, we observe similar
discretization errors. Even with randomly distributed nodes this
behaviour can be reproduced well.

Furthermore, we presented magnetotelluric mesh-free model
studies in comparison to results derived by finite element calcu-
lations. All results agree well compared to the traditional method.
The examples given above show that the results obtained by both
methods are very similar.

A smooth conductivity model has been presented in mesh-free
computations. The results are meaningful and correspond to the
physical expectations. Though this method does not use a mesh,
one has to design the models carefully. There are some special is-
sues when a mesh-free numerical method is used. The wide range
of parameters in the whole mesh-free formulation makes the calcu-
lation not as simple as a finite element simulation. Especially one
of these parameters, the integration area !i

s , has to be chosen care-
fully. Another trait of function interpolation in mesh-free methods is
the evaluation of the interpolation system. High condition numbers
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Figure 17. Perspective 3-D views of the Dublin test model 1 (DTM-1) at the section x = 0. Panels (a) and (b) show the plane of the cross-section and the three
blocky targets at two different angles. Panel (c) shows the mesh-free point discretization around the x = 0 section that was used in the mesh-free calculation.

behaviours of the above components are also plotted in the case of using the RBF-FD mesh-free method without incorporating the continuity
condition (referred to as the continuous version of the RBF-FD) for comparison and are shown in Fig. 10. It can be clearly seen from Fig. 10
that, while the computed potentials (Ax and ψ) are still continuous, the computed (∇ψ)x and Ex are over-smoothed across the conductivity
discontinuities, causing the spurious solutions in the MT responses as seen in Fig. 11. In addition, due to the overall smoothing effect, the
values of the computed potentials are also deviated from the correct ones when compared to the results in Fig. 9.

Fig. 12 shows the 2-D vector arrows of computed E field in the horizontal plane with z = −500 m using the mixed RBF-FD mesh-free
method. The 2-D vector arrows give a visual description of the vector E field, thus providing a good illustration of the overall undesired
smoothing effect if using a standard mesh-free method without considering the continuity conditions. In Fig. 12, the computed E fields for
both source polarization modes are displayed. It is observed here that for both modes, there are clear and abrupt changes in the magnitude
of the normal electric field across the conductivity contrasts, and there are also anticipated channelling effects of the electric field along the
conductivity contrasts that are parallel to the polarization direction. However, these physically anticipated behaviours are not captured when
using the continuous version of the RBF-FD mesh-free method (Fig. 13).

The gauge condition applied to the vector potential, ∇ · A = 0, is implicitly enforced when solving the pair of eqs (8) and (7). However,
∇ · A = 0 will not be satisfied exactly, but will rather be satisfied approximately in a numerical solution. To demonstrate this, Table 2 lists
the computed normalized l2 norm of ∇ · A for coarse to finer quasi-uniform discretizations (i.e. uniform unstructured points without local
refinements). The normalized l2 norm of ∇ · A is obtained by first calculating the values of ∇ · A at each point of the mesh-free discretization,
then the square sum of the resultant vector values is normalized in the square root:

||∇ · A||2 =

√√√√ 1
N

N∑

j=1

(∇ · A)2
j , (37)

where N is the total number of points. It is seen in Table 2 that for both frequencies (0.1 and 10 Hz) considered here, ||∇ · A||2 has the
order of magnitude of 10−9 to 10−8. Note that the density of discretization does not significantly affect the order of magnitude of ||∇ · A||2,
although using a finer discretization improves the numerical accuracy. The accuracy of computed impedance using the discretization with 58
044 points in total in Table 2 is comparable to that shown in Fig. 7. But the computed impedance has obvious fluctuations when the total
number of points is reduced to 7414. The similar accuracy difference can also be observed in the calculated ∇ · A. Figs 14 and 15 show
plots of numerically calculated ∇ · A, ∇ · (iωA) and ∇ · (∇ψ) in the horizontal plane z = −500 m, which cuts through the conductor in the
background half-space, for the two frequencies of 0.1 and 10 Hz, respectively. In both figures, the results of using two discretizations are
shown. A uniform grid of sampling sites (250 × 250 points) for divergence calculation was used for both discretizations to minimize any
possible differences in generating 2-D images here. It is observed that the use of finer discretization clearly enhances the numerical accuracies.
Another observation here is that the divergence of A has uniform values, although subject to numerical errors, within the computational domain
which are small as predicted by the gauge condition. The comparison between ∇ · (iωA) and ∇ · (∇ψ) shows that the main contribution to
∇ · E = ∇ · (−iωA − ∇ψ) comes from ∇ · (∇ψ) at the conductivity jumps (i.e. the interface between the conductor and the background
earth here). This is due to the build-up of charges at the conductivity jumps.

7.2 Dublin test model

The second model is called the Dublin test model 1 (Miensopust et al. 2013) and features high conductivity contrasts among three blocky
targets and their background Earth region. The geometries of the targets are shown in Fig. 16. The origin of the coordinate system is located
at the air-Earth surface and is at the centre (in lateral directions) of the first block (ρ1). Fig. 16 also shows the four measurement lines
originally designed in the comparison study reported by Miensopust et al. To compare the mesh-free results to those from the comparison
study, the computational region was set as −40 km ≤ x ≤ 40 km, −40 km ≤ y ≤ 40 km and −60 km ≤ z ≤ 20 km. A total number of 21
periods logarithmically equispaced in the range [0.1, 10000] s were used in the calculation of MT responses. Similar to most of the numerical
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Figure 17. Perspective 3-D views of the Dublin test model 1 (DTM-1) at the section x = 0. Panels (a) and (b) show the plane of the cross-section and the three
blocky targets at two different angles. Panel (c) shows the mesh-free point discretization around the x = 0 section that was used in the mesh-free calculation.

behaviours of the above components are also plotted in the case of using the RBF-FD mesh-free method without incorporating the continuity
condition (referred to as the continuous version of the RBF-FD) for comparison and are shown in Fig. 10. It can be clearly seen from Fig. 10
that, while the computed potentials (Ax and ψ) are still continuous, the computed (∇ψ)x and Ex are over-smoothed across the conductivity
discontinuities, causing the spurious solutions in the MT responses as seen in Fig. 11. In addition, due to the overall smoothing effect, the
values of the computed potentials are also deviated from the correct ones when compared to the results in Fig. 9.

Fig. 12 shows the 2-D vector arrows of computed E field in the horizontal plane with z = −500 m using the mixed RBF-FD mesh-free
method. The 2-D vector arrows give a visual description of the vector E field, thus providing a good illustration of the overall undesired
smoothing effect if using a standard mesh-free method without considering the continuity conditions. In Fig. 12, the computed E fields for
both source polarization modes are displayed. It is observed here that for both modes, there are clear and abrupt changes in the magnitude
of the normal electric field across the conductivity contrasts, and there are also anticipated channelling effects of the electric field along the
conductivity contrasts that are parallel to the polarization direction. However, these physically anticipated behaviours are not captured when
using the continuous version of the RBF-FD mesh-free method (Fig. 13).

The gauge condition applied to the vector potential, ∇ · A = 0, is implicitly enforced when solving the pair of eqs (8) and (7). However,
∇ · A = 0 will not be satisfied exactly, but will rather be satisfied approximately in a numerical solution. To demonstrate this, Table 2 lists
the computed normalized l2 norm of ∇ · A for coarse to finer quasi-uniform discretizations (i.e. uniform unstructured points without local
refinements). The normalized l2 norm of ∇ · A is obtained by first calculating the values of ∇ · A at each point of the mesh-free discretization,
then the square sum of the resultant vector values is normalized in the square root:

||∇ · A||2 =

√√√√ 1
N

N∑

j=1

(∇ · A)2
j , (37)

where N is the total number of points. It is seen in Table 2 that for both frequencies (0.1 and 10 Hz) considered here, ||∇ · A||2 has the
order of magnitude of 10−9 to 10−8. Note that the density of discretization does not significantly affect the order of magnitude of ||∇ · A||2,
although using a finer discretization improves the numerical accuracy. The accuracy of computed impedance using the discretization with 58
044 points in total in Table 2 is comparable to that shown in Fig. 7. But the computed impedance has obvious fluctuations when the total
number of points is reduced to 7414. The similar accuracy difference can also be observed in the calculated ∇ · A. Figs 14 and 15 show
plots of numerically calculated ∇ · A, ∇ · (iωA) and ∇ · (∇ψ) in the horizontal plane z = −500 m, which cuts through the conductor in the
background half-space, for the two frequencies of 0.1 and 10 Hz, respectively. In both figures, the results of using two discretizations are
shown. A uniform grid of sampling sites (250 × 250 points) for divergence calculation was used for both discretizations to minimize any
possible differences in generating 2-D images here. It is observed that the use of finer discretization clearly enhances the numerical accuracies.
Another observation here is that the divergence of A has uniform values, although subject to numerical errors, within the computational domain
which are small as predicted by the gauge condition. The comparison between ∇ · (iωA) and ∇ · (∇ψ) shows that the main contribution to
∇ · E = ∇ · (−iωA − ∇ψ) comes from ∇ · (∇ψ) at the conductivity jumps (i.e. the interface between the conductor and the background
earth here). This is due to the build-up of charges at the conductivity jumps.

7.2 Dublin test model

The second model is called the Dublin test model 1 (Miensopust et al. 2013) and features high conductivity contrasts among three blocky
targets and their background Earth region. The geometries of the targets are shown in Fig. 16. The origin of the coordinate system is located
at the air-Earth surface and is at the centre (in lateral directions) of the first block (ρ1). Fig. 16 also shows the four measurement lines
originally designed in the comparison study reported by Miensopust et al. To compare the mesh-free results to those from the comparison
study, the computational region was set as −40 km ≤ x ≤ 40 km, −40 km ≤ y ≤ 40 km and −60 km ≤ z ≤ 20 km. A total number of 21
periods logarithmically equispaced in the range [0.1, 10000] s were used in the calculation of MT responses. Similar to most of the numerical
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the coefficient matrix). The enforcement of the Coulomb gauge
condition by either the explicit or implicit methods also introduces
more nonzero elements into the coefficient matrix. The implicit
enforcement method, despite having only two equations, demands
the largest amount of memory. This is caused by the grad div
operator coupling more edges together. However, the significant in-
crease of memory consumption (almost three times for the explicit
enforcement method) by the A − ϕ methods over the E-field meth-
ods increased the computation time by only approximately 80%.
The exact reason is unknown.

Example 2

This example considers a horizontal conductive slab buried in a
homogeneous half-space. As depicted in Figure 7, the conductive
slab is 30 m thick with a dimension of 200 m in the x- and
y-directions. A 100 × 100 m2 loop source is laid on the ground.
The conductivity values of the slab and homogeneous half-space
are 1 and 0.01 S/m, respectively. The center of the source is initially
50 m above the center of the conductor. To study the EM field
response within the slab, we placed a grid of 1,296 receivers inside
and outside the slab on the plane z ¼ −65 m and refined the
mesh quality around these receivers by inserting regular tetrahedra
with an edge length of 2 m. These receivers cover an area of
350 × 350 m2. The distances between adjacent receivers in the
x- and y-directions are all equal to 10 m.
The mesh along each side of the loop source is refined by

inserting 20 edges each with a length of 5 m along the source wire
location. In total, TetGen generates a mesh with 1,133,463 edges
and 974,791 elements. The relatively large number of edges is
caused mainly by the refinement for the 1296 receivers. The mod-
eling considers a step-off transmitter waveform, with the source
amplitude decreased from 1 A to 0 within 10−8 s. The modeling
is carried out until t ¼ 100 ms. The initial time step is 10−8 s,
and it is doubled after every 200 steps. In total, 16 sections and
3,106 iteration steps are required to finish the modeling. The mod-
eling takes approximately 2 h and 17 min to finish on the same
workstation as described in the first example.
The left, center, and right columns of Figure 8 show the horizon-

tal components of the electric field, the part of the electric field that
is associated with A, and the part of the electric field that is asso-
ciated with ϕ, respectively, over the horizontal plane of receivers.
The electric field is predominantly horizontal on this plane because
of the geometry of the conductor and the location of the transmitter.
Figure 9 shows the corresponding current densities. Note that in the
vector plots, all of the arrows representing the vector fields start
from a regular grid. Because of their different directions, some
of the plots in Figures 8 and 9 may seem to have been rotated.
The A part of the electric field would be thought of as the induc-

tive part if the conductor were in free space; with the coupling be-
tween the transmitter and the slab being via the time-varying
magnetic field only with no flow of current between the slab
and the host. The ϕ part of the electric field would be considered
as the galvanic part for DC problems because there would be no
change in the magnetic field with time and thus no coupling be-
tween different parts of the domain via a time-varying magnetic
field. However, for the general case, the A and ϕ parts cannot be
decoupled. Consequently, it is unclear whether the solenoidal part
of the electric field −∂A∕∂t and the irrotational part of the electric
field −∇ϕ can be identified with purely inductive and galvanic

phenomena, respectively. Nonetheless, we still shall refer to the
solenoidal and irrotational parts of the electric field as inductive
and galvanic parts.
The electric fields and current densities in Figures 8 and 9 cor-

respond to three times: t ¼ 0.018 ms (top row), t ¼ 1.000 ms

(middle row), and t ¼ 31.623 ms (bottom row). At the earliest time,
the total electric field (Figure 8a) is just starting to penetrate into the
conductive slab, and with the expected circular pattern. The corre-
sponding total current density (Figure 9a) is relatively weak inside
the slab (compared to later times) and clearly is strongest right at the
edge of the slab. In addition, the total electric field and current den-
sity show subtle current channeling behavior into and out of the slab
at the slab corners, which distorts the field and current in the host
from being purely circular.
The inductive (Figure 8b) and galvanic (Figure 8c) parts of the

electric field have a more complicated pattern compared to the elec-
tric field itself. The galvanic part has the pattern of a DCR-like field
generated by charges on the edges of the slab, with opposite charges
on the first and second halves of each edge. The inductive part loops
into and out of the slab at the corners. The normal components of
the two parts generally have opposite directions and similar mag-
nitude such that their summation becomes largely tangential to the
edge of the slab. In addition, the inductive and galvanic parts cancel
each other out within most of the slab to give the weak internal field
at this early time. The galvanic part is large close to the edges of the
slab, but it rapidly becomes small away from the edges. The induc-
tive part dominates in the host, consistent with the total field being
essentially circulatory in the background.
The total electric field (Figure 8d) and current density (Figure 9d)

at t ¼ 1.000 ms have become more evenly distributed inside the
conductor, with the current in the slab now much stronger than in
the background. The inductive part (Figures 8e and 9e) now has
become dominant, and with the expected circulatory pattern. The
galvanic part (Figures 8f and 9f) has the same pattern as for the
previous time, namely, a DCR-like field generated by charges on
the edges of the slab. Again, the galvanic part is strong only close

Figure 12. A diagram showing the configuration of a loop source
survey for a vertical conductor model in a homogeneous half-space.
The center of the loop source is located at (0, 0, 0) m, and the top
center of the conductor is located at (600, 0, −100) m. There are
1886 receivers placed on the vertical plane along the x-direction
at y ¼ 0 above and below the ground.

3D finite-volume time-domain modeling E233
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to the edges of the block, especially around the four corners. Current
channeling into and out of the slab can be seen at its corners. The
total electric field and current density at the edges of the slab more
closely follow the square shape of the slab than the inductive parts
themselves. The total electric field and current at this time are
predominantly circulatory and inductive, with a small galvanic,
DCR-like contribution from current flowing into and out of the
corners of the slab. The fields and currents behave similarly at
t ¼ 31.623 ms (the bottom row in Figures 8 and 9) except that
the magnitude has decreased significantly.

The electric field and current density, and the inductive and gal-
vanic parts, shown in Figures 8 and 9, are symmetrical because the
source was deliberately placed symmetrically above the center of
the plate. With this particular geometry, the electric field and current
density are predominantly inductive, with the galvanic part contrib-
uting only at the edges of the slab. However, when the symmetry of
the configuration is removed, the galvanic part of the electric field
can end up contributing more to the total electric field than in
the symmetric case. Consider the same conductor model as shown
in Figure 7 but with the source moved so that its center is now

Figure 13. Perspective view of the EM fields at t ¼ 0.447 ms calculated at the 1886 receivers over the y ¼ 0 plane. The red rectangle marks
the boundary of the conductor. The horizontal blue rectangle marks the location of the transmitting source. The green line shows the ground
surface. The same colorbar is used for the electric field and its galvanic and inductive parts for the same time instant.
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located over the center of the conductor’s left edge. The electric
field and currents on the horizontal plane through the center of
the slab at three different times and the corresponding inductive
and galvanic parts for this asymmetrical situation are given in
Figures 10 and 11.
It can be seen that at the earliest time shown (t ¼ 0.018 ms) the

total electric field (Figure 10a) in the background is rather circular
and is centered on the horizontal location of the center of the source.
The inductive part (Figure 10b) has a clear pattern centered on the
transmitter, and it somewhat resembles what one would expect for

the total field if the slab were not there. The galvanic part (Fig-
ure 10c) is like a dipolar DCR field with a positive charge source
at the top-left corner of the slab and a negative charge source at the
bottom-left corner of the slab. The combination of the inductive and
galvanic parts results in a very small electric field and current den-
sity pointing into the slab at the bottom (in terms of the figure) and
out of the slab at the top. At t ¼ 1.000 ms, the total electric field
(Figure 10d) and its inductive part (Figure 10e) become very similar
inside the conductor with a clear circular pattern centered just to the
left of the center of the slab. The galvanic part (Figure 10f) is like a

Figure 14. Perspective view of the EM fields at t ¼ 9.457 ms calculated at the 1886 receivers over the y ¼ 0 plane. The red rectangle marks
the boundary of the conductor. The horizontal blue rectangle marks the location of the transmitting source. The green line shows the ground
surface. The same colorbar is used for the electric field and its galvanic and inductive parts for the same time instant.
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DCR field for charge accumulations on the top and bottom edges of
the slab, and, as for the symmetric case, it decreases very rapidly
away from the edges of the slab. Outside the conductor, the total
electric field with its mostly circulatory pattern is similar to the in-
ductive part, except around the four corners of the slab where the
behavior of the electric field is closer to that of the galvanic part. At
t ¼ 31.623 ms, the inductive part (Figure 10h) looks like it is cir-
culating around a point somewhere to the left of the conductor and
its maximum magnitude already has moved away to the right of the
conductor: it resembles the field that would exist if the slab were
not present. The galvanic part (Figure 10i) is similar to that for
t ¼ 1.000 ms, that is, a DCR-like field for charge concentrations

on the upper and lower edges of the slab (in relation to the figure)
but which does not fall off as rapidly away from the slab. However,
the combination of the inductive and galvanic parts results in the clear
circulation of the total electric field (Figure 10g), and current density
(Figure 11g), localized within the conductor; that is, the galvanic part
(the part associated with ϕ and charges on conductivity jumps) is
critical in producing what would be considered the circulatory, “in-
ductive” pattern of the total electric field and current in the conductor.
This example shows that the galvanic part of the electric field cer-
tainly is not negligible when there is flow of current from a host into
a conductive anomaly and, hence, charges created on the conductivity
discontinuity, even for a clearly inductive source.

Figure 15. Perspective view of the EM fields at t ¼ 200.000 ms calculated at the 1886 receivers over the y ¼ 0 plane. The red rectangle marks
the boundary of the conductor. The horizontal blue rectangle marks the location of the transmitting source. The green line shows the ground
surface. The same colorbar is used for the electric field and its galvanic and inductive parts for the same time instant.
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of A have been computed, they can be used repeatedly to solve the forward problem 
for different source configurations at little additional expense. 

CALCULATION OF DIFFERENTIAL SENSITIVITIES 
Given that the forward problem can be expressed as a boundary-value problem, 
there are three ways to obtain the sensitivities. In the first method, the sensitivities 
are computed from their finite-difference approximations, each requiring the solu- 
tion of the forward problem with the corresponding parameter slightly perturbed. In 
the second method, a new boundary-value problem is derived for each of the sensiti- 
vities, and the sensitivities are solved for directly. In the third, the sensitivities are 
computed using the solution to an adjoint Green’s function problem. 

Perturbation approach 

approximate them using the one-sided finite-difference formula 
The most straightforward way to calculate the differential sensitivities is to 

aFJ(m) FXm + Amk) - F,(m) 
x 

Amk 
(47) 

The perturbed forward response FJ(m + Amk) is obtained by re-solving the forward 
problem after the kth parameter has been perturbed by an amount Amk. Since the 
model must be altered to compute the perturbed responses, each sensitivity requires 
the solution of a completely new problem. As such, this ‘brute force’ method is 
inefficient, but it can nevertheless yield useful results (e.g. Edwards, Nobes and 
Gomez-Trevifio 1984). 

Sensitivity equation approach 
In the sensitivity-equation method, a new forward problem is derived whose 

solution is the desired sensitivity function 4k(x). Problems which have been 
addressed using this approach include the 2D magnetotelluric problem (Rodi 1976; 
Jupp and Vozoff 1977; Cerv and Pek 1981; Hohmann and Raiche 1988), the 2D 
electromagnetic problem (Oristaglio and Worthington 1980) and computer-aided 
design problems (Brayton and Spence 1980). Vemuri et ai. (1969), McElwee (1982) 
and Townley and Wilson (1985) use the approach to address problems in ground- 
water flow. 

To illustrate the technique, we consider the steady-state diffusion problem given 
in (3). Taking p(x) to be the model, and assuming the parameterization p(x) = If”= p l  Jll(x), we obtain 

(48b) 
au 
an cr(x)u + p(x) - = O on aD. 

McGillivray and Oldenburg (1990)

"Perturbation" approach:

Compute Jacobian one column at a time using forward-modelling routine.
Requires N forward modellings (where N is the number of model parameters).



McGillivray at al. (1994)"Sensitivity equation" approach:
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Forward modelling, 
matrix equation:

Differentiate w.r.t. model 
parameter:

Compute Jacobian one column at a time using forward-modelling routine.
Requires N forward modellings (where N is the number of model parameters).
(But what if a direct solver has been used for the forward problem, and the factorization available?)
(What if only one column of the Jacobian matrix is required?)



us to write 

1 ( - au - aE) J,-M. ·-+J. ·- dv = E · EV!k(x) dv. D oak oak D 
(12) 

This is the main result and shows that the sensitivity for E or 
H can be obtained by appropriately specifying the sources 
for the auxiliary fields and by integrating the dot product of 
the primal and auxiliary electric fields over the region on 
which Vik is non-zero. For example, to obtain the 

for Hz at an observation location Xtl, let 
M. = o(x- Xtl)z and i. = 0. Then (12) becomes 

(13) 

The primal problem is solved for the electric field E 
throughout the domain. The auxiliary problem, with a unit 
vertical magnetic dipole source placed at x0 , is solved for the 
auxiliary electric field E throughout the domain. The 
quantity E. E is then integrated to generate a HZ/ aak. 
· To compute the sensitivities· for the magnetic field in any 

other direction, the source for the auxiliary problem must be 
a unit magnetic dipole in the same direction placed at the 
observation location. To compute the sensitivities of the 
electric field, the source must be a unit electric dipole. In all 
cases the auxiliary electric field is computed using (7), and 
(12) is then evaluated to generate the desired sensitivity. 

EXAMPLE 

As a demonstration of the ease with which sensitivities can 
be derived with the above method, we present a simple 
example. Let us assume we have a whole space of constant 
conductivity a 0 with a plane y-polarized electromagnetic 
field propagating in the z direction with angular frequency 
w. The primal electric field is given by 

E(x, y, z) = ye-ikz. (14) 

Let us assume that we wish to compute the sensitivity of the 
magnetic field strength component Hz located at the origin 
with respect to variations in conductivity of a 2 fu x 2 lly x 
21lz m 3 cell centred at (x, y, z) =(xu y 1 , z1). Then, we 
need to compute the auxiliary electric field resulting from a 
unit amplitude harmonic vertical magnetic dipole located at 
the origin. The auxiliary electric field (Ward & Hohmann 
1988, eq. 2.56) is 

- iwp, . (z y ) E(x, y, z) =
4
----z (ikr + 1)e-•kr -y- -z 
nr r r 

where r = Vx2 + y 2 + z2 and k = Vp,Ew2
- ip,a0 w. 

Substituting eqs (14) and (15) into (13) yields 

oHz J --= a a 

fz,+az r,+ay r'+L'u: iwp,z 
= z1-az Jy1-ay 4nr3 

X (ikr + 1)e-ik(z+r) dx dy dz. 

(15) 

(16) 

The frequency-domain electromagnetic problem 3 
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APPENDIX 1 

The quantity 

EX---XH ·nds l (- au aE -) 
aD Oak oak 

(17) 

on the left-hand side of eq. (11) can be shown to be 
identically zero under the condition that the domain D is 
finite and that the auxiliary and primal problems satisfy the 
same boundary conditions. Use of vector identities 
A· (B X C)= C ·(A X B)= B · (C X A) permits the left-
hand side of eq. (17) to be written as 

l [ au - _ ( aE) J -·(iiXE)-H· fiX- ds 
aD oak Oak 

or as (18) 

l [- ( au) aE - J - E · ii X- --· (ii X H) ds. 
aD oak oak 

Using eq. (1) with the assumption that the sources Js and Ms 
are finite and confined inside the domain D, the boundary 
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"Adjoint equation" approach

Requires M forward modellings (where M is the number of data).
Compute Jacobian one row at a time using forward-modelling routine.
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McGillivray at al. (1994)

Forward modelling, 
PDE:

Green's function 
solution:
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In a typical minimum-structure algorithm, the computational do-
main is divided into elements which are piecewise constant with
respect to conductivity and the inversion aims at finding a solu-
tion model that sufficiently reproduces the observed data dt while
keeping the model as simple as possible. This goal is achieved by
iteratively minimizing an objective function ! which is the sum of
measures of data misfit φd and model structure φm. For iteration
number n, this relation can be expressed as

!n = φn
d + φn

m . (10)

The data misfit is

φn
d = ‖Wd

(
dt − dn

)
‖2 (11)

where ‖ · ‖ represents the l2-norm and Wd is a diagonal matrix
whose elements are the reciprocals of the standard deviations of the
observed data:

Wd = diag {1/s1, 1/s2, . . . , 1/si }; i = 1, . . . , N (12)

dn is the current calculated data and is related to the previous itera-
tion by

dn = dn−1 + δ dn . (13)

Since F is linearized, the data perturbation δ dn can be linked to the
model perturbation δ mn using the Jacobian or sensitivity matrix as

δ dn = Jn−1 δ mn . (14)

δ mn is used to update the model:

mn = mn−1 + δ mn . (15)

The model structure is composed of roughness φn
r and smallness

φn
s measures:

φn
m = βn

(
αr φn

r + αs φn
s

)
, (16)

where αr and αs are constant scalars and βn regularizes the inver-
sion by adjusting the relative importance of φd and φm. βn follows
a cooling strategy by starting from a large value for the first iter-
ation, decreasing linearly by a constant factor (βn = βn − 1c) and
being kept constant once the target misfit N is reached (see e.g.
Farquharson 2008).

φn
r is a measure of the roughness of the current model mn:

φn
r = ‖Wr mn‖2, (17)

where Wr is a first order spatial FD matrix which operates on the
centroids of adjacent tetrahedra in the active part of the mesh (see
e.g. Lelièvre & Farquharson 2013). φn

s is a measure of the closeness
of mn to a reference model mf:

φn
s = ‖Ws

(
mn − m f

)
‖2, (18)

where Ws contains weights to control this closeness for the active
cells.

The system of normal equations for the GN method is derived
by taking the derivative of !n with respect to δ mn and equating to
zero:

∂ φn
d

∂ δ mn
+ βnαr

∂ φn
r

∂ δ mn
+ βnαs

∂ φn
s

∂ δ mn
= 0 (19)

where

∂ φn
d

∂ δ mn
= −2 Jn−1T

WT
d Wd (dt − dn−1 − Jn−1 δ mn) (20)

Figure 1. The COMMEMI 3D-1A model used for generating the synthetic
data in the first example. The anomalous block is shown in grey. The obser-
vation points are shown by discs in the top panel. (The star and the square
indicate the sites used in Fig. 9.)

∂ φn
r

∂ δ mn
= 2 WT

r Wr (mn−1 + δ mn) (21)

∂ φn
s

∂ δ mn
= 2 WT

s Ws(mn−1 + δ mn − m f ). (22)

Substitution and re-arranging gives

{Jn−1T
WT

d Wd Jn−1 + αrβ
n WT

r Wr + αsβ
n WT

s Ws} δ mn

= Jn−1T
WT

d Wd (dt − dn−1) − αrβ
n WT

r Wr mn−1

+ αsβ
n WT

s Ws(m f − mn−1), (23)

where the left-hand side matrix and the right-hand side vector are, re-
spectively, the Hessian and gradient of !n. For solving this problem
at each GN iteration, GMRES iterative solver from the SPARSKIT
package (Saad 1990) is used (for pre-conditioning, ILUT, which
uses a dual threshold incomplete LU factorization is used). As a
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Mackie and Madden (1993)

Compute product of Jacobian with vector using forward-modelling routine.
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Iterative solution requires results of:

From "sensitivity equation" approach:

But do this using forward-solving routine:

Don't have to construct and store Jacobian matrix.

Matrix equation to be solved for model update (for example):

(Trade memory for computations.)
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In a typical minimum-structure algorithm, the computational do-
main is divided into elements which are piecewise constant with
respect to conductivity and the inversion aims at finding a solu-
tion model that sufficiently reproduces the observed data dt while
keeping the model as simple as possible. This goal is achieved by
iteratively minimizing an objective function ! which is the sum of
measures of data misfit φd and model structure φm. For iteration
number n, this relation can be expressed as

!n = φn
d + φn

m . (10)

The data misfit is

φn
d = ‖Wd

(
dt − dn

)
‖2 (11)

where ‖ · ‖ represents the l2-norm and Wd is a diagonal matrix
whose elements are the reciprocals of the standard deviations of the
observed data:

Wd = diag {1/s1, 1/s2, . . . , 1/si }; i = 1, . . . , N (12)

dn is the current calculated data and is related to the previous itera-
tion by

dn = dn−1 + δ dn . (13)

Since F is linearized, the data perturbation δ dn can be linked to the
model perturbation δ mn using the Jacobian or sensitivity matrix as

δ dn = Jn−1 δ mn . (14)

δ mn is used to update the model:

mn = mn−1 + δ mn . (15)

The model structure is composed of roughness φn
r and smallness

φn
s measures:

φn
m = βn

(
αr φn

r + αs φn
s

)
, (16)

where αr and αs are constant scalars and βn regularizes the inver-
sion by adjusting the relative importance of φd and φm. βn follows
a cooling strategy by starting from a large value for the first iter-
ation, decreasing linearly by a constant factor (βn = βn − 1c) and
being kept constant once the target misfit N is reached (see e.g.
Farquharson 2008).

φn
r is a measure of the roughness of the current model mn:

φn
r = ‖Wr mn‖2, (17)

where Wr is a first order spatial FD matrix which operates on the
centroids of adjacent tetrahedra in the active part of the mesh (see
e.g. Lelièvre & Farquharson 2013). φn

s is a measure of the closeness
of mn to a reference model mf:

φn
s = ‖Ws

(
mn − m f

)
‖2, (18)

where Ws contains weights to control this closeness for the active
cells.

The system of normal equations for the GN method is derived
by taking the derivative of !n with respect to δ mn and equating to
zero:

∂ φn
d

∂ δ mn
+ βnαr

∂ φn
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+ βnαs

∂ φn
s

∂ δ mn
= 0 (19)

where

∂ φn
d

∂ δ mn
= −2 Jn−1T

WT
d Wd (dt − dn−1 − Jn−1 δ mn) (20)

Figure 1. The COMMEMI 3D-1A model used for generating the synthetic
data in the first example. The anomalous block is shown in grey. The obser-
vation points are shown by discs in the top panel. (The star and the square
indicate the sites used in Fig. 9.)
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where the left-hand side matrix and the right-hand side vector are, re-
spectively, the Hessian and gradient of !n. For solving this problem
at each GN iteration, GMRES iterative solver from the SPARSKIT
package (Saad 1990) is used (for pre-conditioning, ILUT, which
uses a dual threshold incomplete LU factorization is used). As a
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e.g. Lelièvre & Farquharson 2013). φn

s is a measure of the closeness
of mn to a reference model mf:

φn
s = ‖Ws

(
mn − m f

)
‖2, (18)

where Ws contains weights to control this closeness for the active
cells.

The system of normal equations for the GN method is derived
by taking the derivative of !n with respect to δ mn and equating to
zero:

∂ φn
d

∂ δ mn
+ βnαr

∂ φn
r

∂ δ mn
+ βnαs

∂ φn
s

∂ δ mn
= 0 (19)

where

∂ φn
d

∂ δ mn
= −2 Jn−1T

WT
d Wd (dt − dn−1 − Jn−1 δ mn) (20)

Figure 1. The COMMEMI 3D-1A model used for generating the synthetic
data in the first example. The anomalous block is shown in grey. The obser-
vation points are shown by discs in the top panel. (The star and the square
indicate the sites used in Fig. 9.)

∂ φn
r

∂ δ mn
= 2 WT

r Wr (mn−1 + δ mn) (21)

∂ φn
s

∂ δ mn
= 2 WT

s Ws(mn−1 + δ mn − m f ). (22)

Substitution and re-arranging gives

{Jn−1T
WT

d Wd Jn−1 + αrβ
n WT

r Wr + αsβ
n WT

s Ws} δ mn

= Jn−1T
WT

d Wd (dt − dn−1) − αrβ
n WT

r Wr mn−1

+ αsβ
n WT

s Ws(m f − mn−1), (23)

where the left-hand side matrix and the right-hand side vector are, re-
spectively, the Hessian and gradient of !n. For solving this problem
at each GN iteration, GMRES iterative solver from the SPARSKIT
package (Saad 1990) is used (for pre-conditioning, ILUT, which
uses a dual threshold incomplete LU factorization is used). As a
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M I N I M U M - S T RU C T U R E I N V E R S I O N

In a typical minimum-structure algorithm, the computational do-
main is divided into elements which are piecewise constant with
respect to conductivity and the inversion aims at finding a solu-
tion model that sufficiently reproduces the observed data dt while
keeping the model as simple as possible. This goal is achieved by
iteratively minimizing an objective function ! which is the sum of
measures of data misfit φd and model structure φm. For iteration
number n, this relation can be expressed as

!n = φn
d + φn

m . (10)

The data misfit is

φn
d = ‖Wd

(
dt − dn

)
‖2 (11)

where ‖ · ‖ represents the l2-norm and Wd is a diagonal matrix
whose elements are the reciprocals of the standard deviations of the
observed data:

Wd = diag {1/s1, 1/s2, . . . , 1/si }; i = 1, . . . , N (12)

dn is the current calculated data and is related to the previous itera-
tion by

dn = dn−1 + δ dn . (13)

Since F is linearized, the data perturbation δ dn can be linked to the
model perturbation δ mn using the Jacobian or sensitivity matrix as

δ dn = Jn−1 δ mn . (14)

δ mn is used to update the model:

mn = mn−1 + δ mn . (15)

The model structure is composed of roughness φn
r and smallness

φn
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φn
m = βn

(
αr φn

r + αs φn
s

)
, (16)

where αr and αs are constant scalars and βn regularizes the inver-
sion by adjusting the relative importance of φd and φm. βn follows
a cooling strategy by starting from a large value for the first iter-
ation, decreasing linearly by a constant factor (βn = βn − 1c) and
being kept constant once the target misfit N is reached (see e.g.
Farquharson 2008).

φn
r is a measure of the roughness of the current model mn:

φn
r = ‖Wr mn‖2, (17)

where Wr is a first order spatial FD matrix which operates on the
centroids of adjacent tetrahedra in the active part of the mesh (see
e.g. Lelièvre & Farquharson 2013). φn

s is a measure of the closeness
of mn to a reference model mf:

φn
s = ‖Ws

(
mn − m f

)
‖2, (18)

where Ws contains weights to control this closeness for the active
cells.

The system of normal equations for the GN method is derived
by taking the derivative of !n with respect to δ mn and equating to
zero:

∂ φn
d

∂ δ mn
+ βnαr

∂ φn
r

∂ δ mn
+ βnαs

∂ φn
s

∂ δ mn
= 0 (19)

where

∂ φn
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∂ δ mn
= −2 Jn−1T

WT
d Wd (dt − dn−1 − Jn−1 δ mn) (20)

Figure 1. The COMMEMI 3D-1A model used for generating the synthetic
data in the first example. The anomalous block is shown in grey. The obser-
vation points are shown by discs in the top panel. (The star and the square
indicate the sites used in Fig. 9.)

∂ φn
r

∂ δ mn
= 2 WT

r Wr (mn−1 + δ mn) (21)

∂ φn
s

∂ δ mn
= 2 WT

s Ws(mn−1 + δ mn − m f ). (22)

Substitution and re-arranging gives

{Jn−1T
WT

d Wd Jn−1 + αrβ
n WT

r Wr + αsβ
n WT

s Ws} δ mn

= Jn−1T
WT

d Wd (dt − dn−1) − αrβ
n WT

r Wr mn−1

+ αsβ
n WT

s Ws(m f − mn−1), (23)

where the left-hand side matrix and the right-hand side vector are, re-
spectively, the Hessian and gradient of !n. For solving this problem
at each GN iteration, GMRES iterative solver from the SPARSKIT
package (Saad 1990) is used (for pre-conditioning, ILUT, which
uses a dual threshold incomplete LU factorization is used). As a
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Table 1. Computation time and memory usage for the factorization
phase of MUMPS in the first example for different numbers of cores per
solution task (each core uses a single OpenMP thread).

No. of cores Time (s) Memory (MB)

1 1041 4491
2 592 5372
4 344 5832
8 205 7328
12 153 9420
24 90 8808
32 46 8480

Figure 4. Data misfit function φd, model roughness φr and smallness φs,
and regularization parameter β for the inversions in the first example. a, b and
c panels correspond to the Z, MTF and their joint inversions, respectively.

primarily used to verify the inversion algorithm, the second exam-
ple further examined the application of tetrahedral grids in a more
realistic scenario. The first example was also used to investigate
the effect of parameters involved in the iterative solution of the GN
system, and also to compare the presented model-space technique
with its data-space counterpart in terms of computation resources.
Here, TetGen (Si 2004) and Paraview (Ahrens et al. 2005) were
used for generating and visualizing the meshes, respectively.

Figure 5. Vertical sections along the y axis of the inversion models in the
first example. Top, middle and bottom sections correspond to the Z, MTF
and joint inversions, respectively. The rectangles show the outline of the
conductive prism in the true model.

Fig. 1 shows the COMMEMI 3D-1A model and the 81 obser-
vation sites that were used (the separation of the sites was 500 m).
The conductivities of the block and the half-space were 2 and
0.01 S m−1, respectively. A fine mesh with 339 816 tetrahedra was
used for generating the synthetic data for the five frequencies of 0.1,
0.3, 1, 3 and 10 Hz. Gaussian noise with zero mean and standard
deviations of 2 and 5 per cent were added to the Z and MTF values,
respectively: for Z, 2 per cent of the RMS of the off-diagonal com-
ponents of the tensors for each frequency, and for MTF, 5 per cent
of the largest components of the vectors for each frequency. The
mesh that was used for the inversion is shown in Fig. 2. It consisted
of 224302 tetrahedra, and the number of complex-valued unknowns
for the forward problems was 261 171 (the number of tetrahedra in
the active part of the mesh was 181 902). For refining the mesh at
each site in this inversion mesh, a tetrahedron with the edge size of
10 m was positioned inside the grid at that point. (Fig. 3 shows the
refinements at the observation points.) Both the initial and the ref-
erence models were homogeneous half-spaces of 0.01 S m−1. The
Z and MTF data were inverted separately and together. The cooling
factor for β was 0.9, and the target data misfit values for the Z, MTF
and the joint inversions were 3240, 1620 and 4860, respectively.

MPI was used to run the inversions in parallel over frequencies
on cluster nodes with Intel(R) Xeon(R) 2.8 GHz CPU and 24 GB
of RAM. MUMPS used about 4.5 GB of RAM for solving each
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Figure 14. Vertical sections of the synthetic and inversion models in the
second example for conductivity along the general strike of the anomalous
region. From top to bottom, the figures correspond to the synthetic model
and Z, MTF and joint inversion results, respectively.

and the corresponding data, the joint inversions which incorporated
both the impedance and tipper values required more effort for con-
vergence but also gave more accurate solutions compared to the
separate inversions.

The first example was also used to further study the parameters
involved in the iterative solution of the GN system, and also to com-
pare this implicit model-space method with its implicit and explicit
data-space equivalents. For this example, the explicit data-space

Table 2. Computation time, memory usage and the number of GN itera-
tions required to reach the target data-misfit (with Z data) using different
iterative solvers. The times correspond to a diagonal pre-conditioning
and solution for a single GN step with 200 iterations. The memory val-
ues are the maximum run-time RAM usages. (For GMRES, the size of
the Krylov subspace was 200.)

Solver GMRES MINRES CG

Time (s) 1 416 1 402 1 412
Memory (GB) 5.9 5.7 5.7
GN iterations 31 36 41

Table 3. Computation time, memory usage and GMRES convergence
rates for several ILUT lfil values, using the first example. The times
correspond to preconditioning and solution for a single GN step with
500 GMRES iterations. The memory values are the maximum run-time
RAM usages, and the convergence rates are in orders of magnitudes.
(The size of the Krylov subspace was 200.)

ILUT lfil 0 3 5 10

Time (s) 3003 3061 3082 3156
Memory (GB) 5.9 5.9 5.9 5.9
Convergence rate 9 11 13 15

approach was four times slower and its maximum memory usage
was six times greater than for the implicit methods. As described
above, the implicit model- and data-space methods used a combina-
tion of iterative and direct solvers, they avoided the formation and
storage of sensitivities or operations including any explicitly formed
dense matrices. The explicit data-space method, however, used only
a direct solver, it required the formation and storage of the sensi-
tivities and demanded operations involving these dense matrices to
form the data-space system. For the relatively small example used
here, this system was solved efficiently. However, for larger num-
bers of cells and data, the resource requirements for the data-space
method can become prohibitively large. The implicit methods have
an important advantage here: the number of data has a minimal ef-
fect and the only major effect of the number of cells is on the forward
solution. (In fact, as long as the computers can handle forward solu-
tions for the number of frequencies involved, the implicit inversions

Table 4. Computation time, memory usage and GMRES convergence
rates for several sizes of Krylov subspace, using the first example. The
times correspond to pre-conditioning and solution for a single GN step
with 500 GMRES iterations. The memory values are the maximum run-
time RAM usages, and the convergence rates are in orders of magnitudes.
(lfil was 3.)

Krylov subspace 20 200 500

Time (s) 2950 3061 3196
Memory (GB) 5.7 5.9 6.3
Convergence rate 5 11 14

Table 5. Maximum memory usage (RAM) and computation times for the most time-demanding components of the implicit (Imp.) model-space method
and its implicit and explicit (Exp.) data-space counterparts (the sensitivities J, matrix D, the time for solving the model/data-space systems, Sys. sol.).
Tot. iter. corresponds to a complete GN iteration cycle including forward solutions. OMP signifies the number of OpenMP threads used. (For the
implicit methods, 500 GMRES iterations were used, the Krylov subspace value was 200 and ILUT with lfil = 0 was used.)

Inversion algorithm OMP J (s) D (s) Sys. sol. (s) Tot. iter. (s) RAM (GB)

Imp. model-space 1 – – 2812 4212 5.9
Imp. data-space 1 – – 2897 4347 5.9
Exp. data-space 12 12 164 3437 5 17 739 38
Exp. data-space 1 12 527 23 952 5 37 431 38
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Descent-based, gradient-based optimization:

NLCG, Rodi and Mackie (2001):

Data space, Siripunvaraporn and Egbert (2000):

A variant of conjugate gradients applied directly to the function being minimized.

Avoids the Hessian matrix, thus needs fewer forward modelling, and so faster than GN.

Any less "powerful" than GN?

Transform GN matrix equation from  N × N  to  M × M  (N is number of model parameters).

Smaller matrix to invert/solve.

How expensive are the matrix operations for the transformation?



Descent-based, gradient-based optimization, complex objective function:

model, displayed in Figure 1c and 1d are summed for each cell: To
obtain the value for a single cell, we calculate the root-mean-square
(rms) value across all data observation locations and then adjust for
(divide by) the volume of the cell.
Gravity sensitivities are highest close to the data locations and

decrease quickly with distance from them. Consequently, with re-
spect to inversion, the gravity data have little power to resolve the
model away from the boreholes. The traveltime sensitivities can be
thought of as a proxy for ray density; to aid our discussion, we will
treat the path of the first-arrival energy in terms of rays, despite rays
not actually being used in the calculations of Lelièvre et al. (2011b).
The nonzero traveltime sensitivities are of course restricted to the
area between the two boreholes, between transmitters and receivers.
The first-arrival rays travel preferentially through the higher veloc-
ity units: The consequence is that fewer rays travel through the
slower sulfide lens, bending around it instead, and the data are less
sensitive to that body. There is little direct information about the
velocity of the sulfides, and an inversion of these data may have
trouble recovering them. Considering the different characteristics
of the gravity and traveltime sensitivities, a joint inversion should
provide improved results over independent inversions for this
scenario.

METHODS

Joint inversion

Here, we provide a summary of our joint-inversion methods,
which are covered in detail in Lelièvre et al. (2011b, 2012) and Le-
lièvre and Farquharson (2013). The 2D subsurface is discretized on
an unstructured mesh containing many triangular cells. The two
physical properties p1 and p2 (density and seismic slowness in
our examples) are constant inside each cell, and the property vectors
p1 and p2 contain those property values. We also define model vec-
tors m1 and m2 containing scaled versions of the property values.
The scaled values, in what we denote “m-space,” are related to the
true values in “p-space” as follows:

p1 ¼ a1m1 þ b1

p2 ¼ a2m2 þ b2: (1)

This allows us to scale the two physical properties such that the two
models lie on comparable ranges. Our joint-inversion algorithm
deals with models in m-space only. The importance of doing so
is explained further below.
We work in a standard deterministic framework in which the fol-

lowing objective function Φ is minimized as

Φðm1;m2Þ ¼ λ1Φd1ðm1Þ þ λ2Φd2ðm2Þ
þΦm1ðm1Þ þΦm2ðm2Þ þ ρΨðm1;m2Þ: (2)

The two data misfit terms Φd1 and Φd2 measure the difference be-
tween measured survey data d, and the data generated for a candi-
date model FðmÞ divided by estimated uncertainties σ as

Φd ¼
XN

i¼1

!
FiðmÞ − di

σi

"
2

; (3)

where N is the number of data types.

The two regularization terms Φm1 and Φm2 measure the amount
of structure in each of the two physical property models:

Φm ¼ αskWsmk2 þ αmkWmmk2: (4)

Reference models can also appear in the two terms (e.g., see Li and
Oldenburg, 2000), but we avoid this here for clarity. The operator
Ws contains cell volume information along its diagonal, and the
operator Wm calculates spatial model gradients using the methods
described in Lelièvre and Farquharson (2013). Depth-, distance-, or
sensitivity-based weighting can be incorporated into the Ws and
Wm operators when inverting gravity data to counteract the decay
of the gravity kernels, as in Li and Oldenburg (2000). The first term
in equation 4 encourages small values in the recovered model.
When using this term, it is important to remove background values
from the physical properties, using the values b1 and b2 in equa-
tion 1, such that the term penalizes property values that deviate from
the background values instead of zero. The second term in equa-
tion 4 encourages smoothness in the recovered models. The αs
and αm parameters in equation 4 are held constant throughout an
inversion and can be used to encourage different spatial character-
istics in the recovered model.
The joint coupling term Ψ in equation 2 measures the similarity

between the two models. In this study, we consider a coupling mea-
sure based on the FCM clustering approach of Paasche et al. (2010)

Ψðm1;m2Þ ¼
XC

i¼1

XM

k¼1

w2
ikz

2
ik

z2ik ¼ ðm1;k − u1;iÞ2 þ ðm2;k − u2;iÞ2; (5)

where M is the number of model cells, C is the number of a priori
clusters, u1;i and u2;i define the center of the ith cluster, and the
membership weights wik relate the physical property values for
the kth cell to the ith cluster. Our implementation uses

wik ¼ z−2ik η
−1
k

ηk ¼
XC

j¼1

z−2jk : (6)

With this coupling approach, we can specify a relationship be-
tween the physical properties that comprises discrete clusters, fol-
lowing the characteristics of the joint physical property distributions
determined a priori. Our approach requires that cluster centers are
prescribed a priori: The clusters do not change throughout the in-
version. Paasche and Tronicke (2007) and Sun and Li (2013) work
differently, determining the cluster centers iteratively, allowing
them to change throughout the inversion process, and guiding them
toward a priori cluster centers if included. Their approach is sensible
when a priori information regarding the rock units is absent. We are
interested in scenarios in which that information is present, as it
would be in an advanced exploration project during the delineation
of an ore deposit. With the cluster centers prescribed a priori, the
joint coupling has more potential to reduce the space of acceptable
models in the inverse problem and provide improved results.
In equation 5, a Euclidean distance is calculated between the

model values and cluster centers. It is important to scale the physical
properties, using the values a1 and a2 in equation 1, such that they
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model, displayed in Figure 1c and 1d are summed for each cell: To
obtain the value for a single cell, we calculate the root-mean-square
(rms) value across all data observation locations and then adjust for
(divide by) the volume of the cell.
Gravity sensitivities are highest close to the data locations and

decrease quickly with distance from them. Consequently, with re-
spect to inversion, the gravity data have little power to resolve the
model away from the boreholes. The traveltime sensitivities can be
thought of as a proxy for ray density; to aid our discussion, we will
treat the path of the first-arrival energy in terms of rays, despite rays
not actually being used in the calculations of Lelièvre et al. (2011b).
The nonzero traveltime sensitivities are of course restricted to the
area between the two boreholes, between transmitters and receivers.
The first-arrival rays travel preferentially through the higher veloc-
ity units: The consequence is that fewer rays travel through the
slower sulfide lens, bending around it instead, and the data are less
sensitive to that body. There is little direct information about the
velocity of the sulfides, and an inversion of these data may have
trouble recovering them. Considering the different characteristics
of the gravity and traveltime sensitivities, a joint inversion should
provide improved results over independent inversions for this
scenario.

METHODS

Joint inversion

Here, we provide a summary of our joint-inversion methods,
which are covered in detail in Lelièvre et al. (2011b, 2012) and Le-
lièvre and Farquharson (2013). The 2D subsurface is discretized on
an unstructured mesh containing many triangular cells. The two
physical properties p1 and p2 (density and seismic slowness in
our examples) are constant inside each cell, and the property vectors
p1 and p2 contain those property values. We also define model vec-
tors m1 and m2 containing scaled versions of the property values.
The scaled values, in what we denote “m-space,” are related to the
true values in “p-space” as follows:

p1 ¼ a1m1 þ b1

p2 ¼ a2m2 þ b2: (1)

This allows us to scale the two physical properties such that the two
models lie on comparable ranges. Our joint-inversion algorithm
deals with models in m-space only. The importance of doing so
is explained further below.
We work in a standard deterministic framework in which the fol-

lowing objective function Φ is minimized as

Φðm1;m2Þ ¼ λ1Φd1ðm1Þ þ λ2Φd2ðm2Þ
þΦm1ðm1Þ þΦm2ðm2Þ þ ρΨðm1;m2Þ: (2)

The two data misfit terms Φd1 and Φd2 measure the difference be-
tween measured survey data d, and the data generated for a candi-
date model FðmÞ divided by estimated uncertainties σ as

Φd ¼
XN

i¼1

!
FiðmÞ − di

σi

"
2

; (3)

where N is the number of data types.

The two regularization terms Φm1 and Φm2 measure the amount
of structure in each of the two physical property models:

Φm ¼ αskWsmk2 þ αmkWmmk2: (4)

Reference models can also appear in the two terms (e.g., see Li and
Oldenburg, 2000), but we avoid this here for clarity. The operator
Ws contains cell volume information along its diagonal, and the
operator Wm calculates spatial model gradients using the methods
described in Lelièvre and Farquharson (2013). Depth-, distance-, or
sensitivity-based weighting can be incorporated into the Ws and
Wm operators when inverting gravity data to counteract the decay
of the gravity kernels, as in Li and Oldenburg (2000). The first term
in equation 4 encourages small values in the recovered model.
When using this term, it is important to remove background values
from the physical properties, using the values b1 and b2 in equa-
tion 1, such that the term penalizes property values that deviate from
the background values instead of zero. The second term in equa-
tion 4 encourages smoothness in the recovered models. The αs
and αm parameters in equation 4 are held constant throughout an
inversion and can be used to encourage different spatial character-
istics in the recovered model.
The joint coupling term Ψ in equation 2 measures the similarity

between the two models. In this study, we consider a coupling mea-
sure based on the FCM clustering approach of Paasche et al. (2010)

Ψðm1;m2Þ ¼
XC

i¼1

XM

k¼1

w2
ikz

2
ik

z2ik ¼ ðm1;k − u1;iÞ2 þ ðm2;k − u2;iÞ2; (5)

where M is the number of model cells, C is the number of a priori
clusters, u1;i and u2;i define the center of the ith cluster, and the
membership weights wik relate the physical property values for
the kth cell to the ith cluster. Our implementation uses

wik ¼ z−2ik η
−1
k

ηk ¼
XC

j¼1

z−2jk : (6)

With this coupling approach, we can specify a relationship be-
tween the physical properties that comprises discrete clusters, fol-
lowing the characteristics of the joint physical property distributions
determined a priori. Our approach requires that cluster centers are
prescribed a priori: The clusters do not change throughout the in-
version. Paasche and Tronicke (2007) and Sun and Li (2013) work
differently, determining the cluster centers iteratively, allowing
them to change throughout the inversion process, and guiding them
toward a priori cluster centers if included. Their approach is sensible
when a priori information regarding the rock units is absent. We are
interested in scenarios in which that information is present, as it
would be in an advanced exploration project during the delineation
of an ore deposit. With the cluster centers prescribed a priori, the
joint coupling has more potential to reduce the space of acceptable
models in the inverse problem and provide improved results.
In equation 5, a Euclidean distance is calculated between the

model values and cluster centers. It is important to scale the physical
properties, using the values a1 and a2 in equation 1, such that they
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the left of the receiver borehole and to the right of the transmitter
borehole are not of interest to us in the inversions, we must include
them because the gravity data have influence there; it would un-
fairly influence the inversion results if we were to remove this
material from the example and its contribution to the gravity data.
For all inversions presented in this section and those that follow,

we scaled the physical properties following equation 1 such that
the inversion models lie on similar ranges: We used a1 ¼ 1.0

and b1 ¼ 0.0 g∕cm3 for densities, and we used a1 ¼ 0.02 and
b2 ¼ 0.1815 s∕km for slowness (inverse velocity). Refer to Table 1
for a list of the scaled and unscaled property values for the true
model. Within the inversions, calculations were performed in terms
of scaled slowness (see Lelièvre et al., 2012); however, all results
will be discussed in terms of absolute velocity. In all inversions, we
prescribed a gravity target misfit, equation 3, equal to the number of
gravity data and a traveltime target misfit equal to 1.1 times the
number of traveltime data. This slightly higher misfit for the trav-
eltimes accounts for modeling errors associated with finite mesh

discretization (a mesh fine enough to attain perfectly accurate trav-
eltimes was time prohibitive in the inversion). The inversions were
terminated when the target misfits reached within 10% of their tar-
get values. We set αs ¼ 0 and αm ¼ 1 in equation 4. All starting
models were zero-valued. A lower bound was set on the possible
velocity values such that they remained nonnegative (negative val-
ues are physically meaningless); no bounds were placed on the pos-
sible density values. In the clustered inversions, we heated ρ in
equation 2 from 0.0 to 1.0 over eight iterations; these values were
chosen empirically.

Example 1: Independent inversions without clustering

The first results we present are for traveltime and gravity inver-
sions run completely independently of one another. The recovered
models are in Figure 5a and 5b, and the predicted data synthesized
for these models are in Figures 6 and 7. The predicted data match
the observed data well and are typical of the results attained in
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Figure 5. Density (a, d, and g), slowness (b, e, and h), and zoned (c, f, and i) models recovered from: (a-c) independent inversions without
clustering (example 1), (d-f) independent inversions with FCM clustering (example 2), and (g-i) joint inversion with FCM clustering (example
3). The colors in the zoned model are arbitrary, but we have chosen blue for the background unit, green for the intrusive, and red for the lens. In
the zoned models, the cells with lower membership values are plotted more lightly (closer to white). The color scales used here for density and
velocity are identical to those used in Figure 1.

W6 Carter-McAuslan et al.

Do
wn

lo
ad

ed
 0

3/
28

/2
1 

to
 1

42
.1

67
.2

9.
18

2.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 lic

en
se

 o
r c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
DO

I:1
0.

11
90

/g
eo

20
14

-0
05

6.
1

Carter-McAuslan et al. (2017)

Design an objective/cost/penalty function that gives us what we want.
Then go ahead and minimize (!).



Outline

Inversion optimization background:


Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms

The Conclusion

Future work/thoughts

different models, different approaches?

D+ ?

why optimization

data misfit

minimizing data misfit, non-uniqueness

measure of model somethingorother

descent-based, gradient-based optimization (linearization)

or sampling and selection of collections of models we like



Outline

Inversion optimization background:


Forward modelling

Sensitivities

Descent/gradient/derivative/linearization-based algorithms

The Conclusion

Future work/thoughts

different models, different approaches?

D+ ?

why optimization

data misfit

minimizing data misfit, non-uniqueness

measure of model somethingorother

descent-based, gradient-based optimization (linearization)

or sampling and selection of collections of models we like



The Conclusion

"Occam", minimum-structure inversion is very effective — it gets 
the job done — and hence useful and popular.
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rocks of the Snow Lake arc assemblage in the
eastern Flin Flon greenstone belt (Bailes et al.,
2016). The arc assemblage section is ≥ 6 km
thick comprising three phases of volcanic se-
quences and affected by at least four episodes
of deformation (Galley et al., 1993). Deforma-
tions include fold-and-thrust-style stacking and
interleaving of volcanic assemblages and sedi-
mentary rocks during the Trans-Hudson orogeny
(Kraus and Williams, 1999). The arc assemblage
has undergone metamorphism at lower to middle
almandine-amphibolite facies after the formation
of the arc assemblage (Bailes and Galley, 1999;
Bailes et al., 2016). Figure 1 shows a southwest–
northeast-oriented cross section of the studied
mine camp (modified from Schetselaar et al.,
2017). As shown here, the Chisel sequence is
subdivided into the Lower and Upper subsequen-
ces corresponding to the footwall and hanging
wall of the mineralized horizon. The Chisel-
Lalor structural contact (CHLSC in Figure 1), in-
terpreted as a fault, is located 10–200 m above
the upper most lenses of the VMS deposit. The
VMS deposit, hosted in the Lower Chisel se-
quence, consists of a number of mineralized
zones that start at a depth of 570 m and extend
down to 1160 m. The ore lenses are thin with an
average size of 12 m varying in size and grade.
The zinc-rich zones of the deposit comprise near-
massive to massive sulfide mineralization, in par-
ticular, sphalerite to pyrite crystals. The gold-rich
zones of the deposit are disseminated with string-
ers of sulfide mineralization. The extension of
the gold-copper mineralization found in the
deeper part of the deposit remains an open explo-
ration target to investigate. A large hydrothermal
alteration system is developed in the footwall of
the Zn-rich VMS deposit that is associated with
the magmatic evolution of the Richards subvol-
canic intrusion, which is considered as the prob-
able heat source of the ore-forming hydrothermal
system (Bailes et al., 2016).

Model construction from
lithostratigraphic units

The 3D surfaces corresponding to lithostrati-
graphic contacts are constructed using their
corresponding drillhole markers and surface-
mapped contacts as constraints. These surfaces
provide a generalized representation of the con-
tacts between the lithostratigraphic units depicted
in Figure 1. The 3D geologic model is used as
input for our meshing workflow here. The geo-
logic modeling is performed using Paradigm’s
3D SKUA/GOCAD (structural knowledge uni-
versal approach) structure and stratigraphy (SnS)
workflow, which produces a number of wire-
framed triangulated surfaces for the contacts
(Figure 2a). The triangles are discontinuous at

Figure 1. A southwest–northeast cross section of the Lalor VMS deposit. Here, CHLSC
and THDSZ represent the Chisel-Lalor structural contact and Threehouse ductile shear
zone, respectively. The square on the Canadian map shows the location of the Lalor
deposit.

Figure 2. Workflow of sewing geobodies in SKUA-GOCAD: (a) a view of all of the
lithostratigraphic contacts in SKUA-GOCAD, in which nodes are discontinuous at the
contacts; (b) a demonstration of the branching problem after SKUA generates the initial
block model; (c) the volumetric 3D geologic model separating the regions between gen-
eralized lithostratigraphic units and sealing the model at the top, bottom, and side boun-
daries; and (d) a view of all of the surfaces resampled with the user-picked resolution
showing the triangles properly sewn at all of the contact lines between the geobodies.
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rocks of the Snow Lake arc assemblage in the
eastern Flin Flon greenstone belt (Bailes et al.,
2016). The arc assemblage section is ≥ 6 km
thick comprising three phases of volcanic se-
quences and affected by at least four episodes
of deformation (Galley et al., 1993). Deforma-
tions include fold-and-thrust-style stacking and
interleaving of volcanic assemblages and sedi-
mentary rocks during the Trans-Hudson orogeny
(Kraus and Williams, 1999). The arc assemblage
has undergone metamorphism at lower to middle
almandine-amphibolite facies after the formation
of the arc assemblage (Bailes and Galley, 1999;
Bailes et al., 2016). Figure 1 shows a southwest–
northeast-oriented cross section of the studied
mine camp (modified from Schetselaar et al.,
2017). As shown here, the Chisel sequence is
subdivided into the Lower and Upper subsequen-
ces corresponding to the footwall and hanging
wall of the mineralized horizon. The Chisel-
Lalor structural contact (CHLSC in Figure 1), in-
terpreted as a fault, is located 10–200 m above
the upper most lenses of the VMS deposit. The
VMS deposit, hosted in the Lower Chisel se-
quence, consists of a number of mineralized
zones that start at a depth of 570 m and extend
down to 1160 m. The ore lenses are thin with an
average size of 12 m varying in size and grade.
The zinc-rich zones of the deposit comprise near-
massive to massive sulfide mineralization, in par-
ticular, sphalerite to pyrite crystals. The gold-rich
zones of the deposit are disseminated with string-
ers of sulfide mineralization. The extension of
the gold-copper mineralization found in the
deeper part of the deposit remains an open explo-
ration target to investigate. A large hydrothermal
alteration system is developed in the footwall of
the Zn-rich VMS deposit that is associated with
the magmatic evolution of the Richards subvol-
canic intrusion, which is considered as the prob-
able heat source of the ore-forming hydrothermal
system (Bailes et al., 2016).

Model construction from
lithostratigraphic units

The 3D surfaces corresponding to lithostrati-
graphic contacts are constructed using their
corresponding drillhole markers and surface-
mapped contacts as constraints. These surfaces
provide a generalized representation of the con-
tacts between the lithostratigraphic units depicted
in Figure 1. The 3D geologic model is used as
input for our meshing workflow here. The geo-
logic modeling is performed using Paradigm’s
3D SKUA/GOCAD (structural knowledge uni-
versal approach) structure and stratigraphy (SnS)
workflow, which produces a number of wire-
framed triangulated surfaces for the contacts
(Figure 2a). The triangles are discontinuous at

Figure 1. A southwest–northeast cross section of the Lalor VMS deposit. Here, CHLSC
and THDSZ represent the Chisel-Lalor structural contact and Threehouse ductile shear
zone, respectively. The square on the Canadian map shows the location of the Lalor
deposit.

Figure 2. Workflow of sewing geobodies in SKUA-GOCAD: (a) a view of all of the
lithostratigraphic contacts in SKUA-GOCAD, in which nodes are discontinuous at the
contacts; (b) a demonstration of the branching problem after SKUA generates the initial
block model; (c) the volumetric 3D geologic model separating the regions between gen-
eralized lithostratigraphic units and sealing the model at the top, bottom, and side boun-
daries; and (d) a view of all of the surfaces resampled with the user-picked resolution
showing the triangles properly sewn at all of the contact lines between the geobodies.
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Ansari et al. (2020)

3-D computer  *geology*  models

Lalor VMS deposit
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Figure 7. Two representative geological sections of the Touro deposit: (A) Section 2000 in Fuente Rosas and (B) Section 

8200 in Vieiro. Both sections were selected from 87 sections generated from drilling data. For an explanation, see text. 
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Figure 8. A 3D view, from the southwest, of the Fuente Rosas modeled area. The amphibolites are represented in pink, the 
massive sulfides in red and the stringer zone, which is mainly included in the amphibolites, in green. 
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traces are included. 
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25–30� to the east, and the stringer zone (in green) is located below the massive sulfides at a low angle to them. The drill
traces are included.
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Touro VMS deposit, NW Spain
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!e "rst diamond drilling project targeting the C1 conductive 
trend under the C1-West Grid was carried out in 1998. Two 
holes (CLC1-44 and CLC1-45) were drilled at locations that 
were subsequently reoccupied by lines 2400W and 1200W of 
the 2013 MLTEM survey (Figure 3) (Lavoie et al., 1988). 
CLC1-44 successfully reached the fault zone, and graphite was 
recorded. CLC1-45 only recorded minor graphite. A diamond 
drilling project followed in 2015. It targeted the C1 conductive 
trend interpreted from the 2013 MLTEM data. Two holes were 
drilled on the C1-West Grid, and seven holes were drilled on 
the C1-Center Grid. CL-162 (Figure 3) was drilled to test for 
the presence of the C1 conductor under line 1400W. However, 
no graphitic conductor was encountered. A borehole EM survey 
was conducted immediately following the drilling in an attempt 
to better locate the C1 conductor. CL-167 (Figure 3) was then 
drilled based on borehole EM data. However, this hole also 
failed to intersect a conductor. !e vertical section shown in 
Figure 2 is based on these two holes.

Physical property measurements, including resistivity and 
chargeability, have been made on samples from some of the drill 
holes on the C1-Center Grid. Downhole resistivity probing was 
carried out for holes CL-162 and CL-167. Generally, the resistivity 
of the sandstone samples ranges from 1000 to 3000 Ωm. !e 
pelitic gneiss samples collected from the basement are more 

conductive when the degree of alteration is higher. !ey generally 
have a resistivity lower than 1000 Ωm. Samples containing a high 
degree of graphite or pyrite exhibit the lowest resistivity values. 
!e lowest resistivity measured is less than 1 Ωm. Fresh unaltered 
basement rocks have the largest resistivity values, which are 
typically more than 5000 Ωm. 

Modeling of the C1-West Grid
!e trial-and-error modeling presented here aims to model 

the C1 conductor directly under lines 1400W and 2200W of 
the C1-West Grid. !is modeling is guided by the information 
available from drill holes CLC1-44, CLC1-45, CL-162, and 
CL-167. Drill holes existing on the C1-Center Grid and the 
modeling results presented in Lu et al. (2020) for the C1-Center 
Grid have previously been used to build the eastern part of 
the conductor.

Model building and mesh generation. We use a three-step 
procedure to generate the unstructured grids for EM modeling. 
First, we create a surface mesh comprising a tessellation of 
triangular cells using the Triangle program (Shewchuk, 1996). 
!is surface mesh is later used as the air-earth interface. Local 
mesh re"nements are necessary for the transmitter loops and 
receivers to guarantee good accuracy in EM numerical modeling. 
!erefore, extra nodes and edges are added into the surface mesh 
at the transmitter and receiver locations to provide the necessary 
mesh re"nement. !e digital elevation model (downloaded from 
the Geospatial Data Extraction online service provided by the 
Government of Canada) topography data are then interpolated 

Figure 3. C1-West Grid and part of the C1-Center Grid of the 2013 MLTEM survey 
conducted for the Close Lake project. The blue rectangles show the first and last 
transmitters for each survey profile. The red dots show all of the receiver locations 
for each profile. The purple diamonds mark some of the 2015 diamond drilling 
holes along the C1 conductor, the supposed trend of which is shown by the red 
solid line. The green diamonds mark the CLC1-44 and CLC1-45 drill holes from the 
1988 diamond drilling project. The numbers on the left of the map show the local 
coordinates used for the survey grid. (After Lavoie et al., 1988; Richard, 2013; and 
Hutchinson and Zalustskiy, 2015.)

Figure 2. Vertical section based on drill holes CL-162 and CL-167 of the Close 
Lake project (Hutchinson and Zalustskiy, 2015).
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Lu et al. (2021)

Uranium exploration, 
Athabasca Basin 
(geological section).
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correspond to the southern side of a possible trough in the response 
curves that would become apparent if the MLTEM survey 
extended farther to the north. !is suggests that there may be a 
minor (or shallower) conductor immediately north of the last 
stations in both pro"les.

!e vertical-component data from the stations on line 2200W 
south of the hypothesized conductor have a noticeably larger value, 
which makes the southern shoulder of the peak (x = –500 m) in 
the response caused by the C1 conductor only recognizable at the 
early time channels. !is makes the real data di#erent from what 
one would expect from a typical single dipping conductor. !is 
was interpreted to be caused by an approximately south–north-
oriented conductor located southwest of line 2200W in the original 
survey report (Richard, 2013). !e conductor was clearly visible 
in an earlier MEGATEM survey $own in 2004 (Bingham, 2004). 
!e early time inline component responses of line 1400W show a 
wider anomaly compared to typical responses from a single thin 
conductor. !e corresponding vertical component also shows a 
slightly elevated response at stations north of the C1 conductor. 
A shallower conductive structure in the basin may exist, causing 
these subtle anomalies. To get a better match between the modeled 
and real data, we added two extra conductors (referred to as C1-N 
and C1-S) to the model.

All conductors start from the unconformity and extend to 
deeper parts of the basement (z = –2000 m). In order to be able 
to adjust the conductivity within these conductors, we further 
divided them vertically and horizontally. As shown in Figure 8, 
all three of the basement conductors were divided into four parts 
vertically using the same basement interfaces. !e C1 conductor 
was also divided into four parts horizontally to enable varying 
conductivities under each pro"le. !e C1-N conductor was divided 

into two parts horizontally for the same reason. However, the 
C1-S conductor was not divided horizontally. Here, we number 
the parts of the subdivided conductors from west to east and from 
shallow to deep. For example, the eastern part of the second layer 
of the C1-N conductor is named C1-N-4. See Figure 7 for the 
"nal wireframe model of the conductors.

To construct the wireframes representing the interfaces 
between di#erent geologic units, we inserted control nodes into 
the wireframe model for each interface using FacetModeller 
(Figure 7). !e coordinates of the control nodes were either 
obtained directly from drilling data or inferred from MLTEM 
data. After inserting all necessary nodes, we connected them to 
triangular or polygonal facets to create the wireframes. 

After the wireframe model containing all of the basement 
conductors and their subdivisions, as well as all of the subdivisions 
of the basement and sandstones, is constructed, FacetModeller 
saves the wireframe model in the form of a piecewise linear complex 
(Miller et al., 1996). !is can be recognized by the tetrahedral 
mesh generator TetGen (Si, 2015). In the third step of our mesh 
generation process, TetGen is used to create a quality unstructured 
tetrahedral mesh that incorporates all of the nodes, edges, and 
facets in the wireframe model. !is includes all of the triangular 
cells on the earth-air interface as well as the facets created within 
FacetModeller for the conductors, sandstone layers, and basement. 
!e unstructured tetrahedral mesh generated by TetGen can be 
read by our FVTD code, which then computes the MLTEM 
responses. Figure 9 shows the unstructured tetrahedral mesh 
generated by TetGen for the wireframe model shown in 
Figures 7 and 8. 

Modeling results. After many iterations of re"ning, which 
included changing conductivities of various components of the 

geologic model as well as adjusting loca-
tions and orientations of the compo-
nents, we obtained a "nal model that 
generates computed data that are ade-
quately close to the real data. !e resis-
tivities used for each unit in the model 
are shown in Table 1. Figures 4 and 5 
show the comparison between three-
component responses calculated for the 
"nal 3D model and the real data.

For line 1400W, the inline com-
ponent of the real data at early times 
shows a wider peak around the conduc-
tor, as opposed to the calculated data 
where the peak is typical of a thin 
dipping conductor. At later times, the 
peak from the real data narrows and 
is closer to the modeled data. !e 
broader anomalous response observed 
at early times indicates that other 
conductive features may exist at a shal-
lower depth. !e crossline component 
of the calculated data is generally close 
to the real data in terms of both 
response amplitude and pattern. !is 
nonnegligible crossline component 

Figure 8. View of the three conductors under the surface mesh (cropped and only partly shown), which shows the 
refinement along the two profiles in the C1-West Grid. The C1 conductor is divided into four parts both horizontally 
and vertically. The C1-N conductor is divided into four parts vertically and two parts horizontally. The C1-S 
conductor is divided into four parts vertically. Each distinct region in each conductor is colored randomly to show 
how the conductors are subdivided.
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response con!rms that the strike of the C1 conductor is not 
exactly perpendicular to the pro!le direction. Our modeling 
also shows that the C1 conductor does not become east–west-
oriented immediately after passing under line 1400W. "e 
amplitude of the crossline component of the real data would be 
much smaller if that were the case. 

For the vertical component, modeling experiments show that 
when the shallower parts of the conductor immediately below 
line 1400W are set to be as conductive as the deeper parts, the 
trough in the modeled data becomes narrower and the amplitudes 
at its two shoulders increase signi!-
cantly. "is causes a large mismatch 
between the two data sets. We believe 
that this may also explain why CL-162 
and CL-167 did not intersect any graph-
ite as indicated by the !nal conductivity 
model immediately adjacent to the two 
drill holes (Figure 10). "ere were no 
sample resistivity measurements carried 
out for CL-162 and CL-167. However, 
downhole resistivity logging (probing) 
for CL-162 showed that resistivity 
around the unconformity is more than 
1000 Ωm. For CL-167, downhole resis-
tivity logging indicated that the resistiv-
ity brie$y reduces to an average of 775 
Ωm around the unconformity before it 
quickly increases to more than 
10,000 Ωm in the basement (Hutchinson 
and Zalustskiy, 2015). In reality, the 
conductor may start at a greater depth 
as suggested by our 3D model (the 

conductive region starts at z = –150 m instead of at the uncon-
formity at z = 80 m). However, lower conductivity in the shallower 
part of the conductor caused the response to be heavily in$uenced 
by adjacent more conductive parts of the C1 conductor to the 
northwest. "is dragged the minimum value of the trough in the 
modeled data to the north at early times. "e suspected extra 
conductor needed to account for the wider anomaly in the early 
time inline component real data may also be able to shift the 
trough of the modeled data to the south. We did not attempt to 
model this suspected extra conductor.

Table 1. Conductivities of each unit in the final 3D model.

Unit Resistivity (Ωm) Unit Resistivity (Ωm) Unit Resistivity (Ωm)

C1-1 6.7 C1-2 6.7 C1-N-1 50
C1-3 1000 C1-4 14.3 C1-N-2 100
C1-5 10 C1-6 10 C1-N-3 25
C1-7 1000 C1-8 10 C1-N-4 100
C1-9 66.7 C1-10 40 C1-N-5 3.3
C1-11 0.8 C1-12 0.8 C1-N-6 50
C1-13 2.5 C1-14 2.2 C1-N-7 2
C1-15 0.9 C1-16 0.9 C1-N-8 200
Overburden 2000 Background 417 C1-S-1 50
MFc West 2000 MFc East 166.7 C1-S-2 25
MFb West 2500 MFb East 5000 C1-S-3 2.2
PW SW 285.7 PW NW 5000 C1-S-4 10
PW SE 10,000 PW NE 666.7 BSMT3 SW 10,000
BSMT1 SW 20,000 BSMT1 NW 100,000 BSMT3 NW 10,000
BSMT1 SE 10,000 BSMT1 NE 10,000 BSMT3 SE 333.3
BSMT2 SW 10,000 BSMT2 NW 20,000 BSMT3 NE 400
BSMT2 SE 10,000 BSMT2 NE 10,000 BSMT4 West 2500
Air 108 BSMT4 East 1250

Figure 9. The unstructured tetrahedral mesh generated for the wireframe model shown in Figures 7 and 8. Note 
that the basement units are not shown in order to expose the three basement conductors.
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!e "rst diamond drilling project targeting the C1 conductive 
trend under the C1-West Grid was carried out in 1998. Two 
holes (CLC1-44 and CLC1-45) were drilled at locations that 
were subsequently reoccupied by lines 2400W and 1200W of 
the 2013 MLTEM survey (Figure 3) (Lavoie et al., 1988). 
CLC1-44 successfully reached the fault zone, and graphite was 
recorded. CLC1-45 only recorded minor graphite. A diamond 
drilling project followed in 2015. It targeted the C1 conductive 
trend interpreted from the 2013 MLTEM data. Two holes were 
drilled on the C1-West Grid, and seven holes were drilled on 
the C1-Center Grid. CL-162 (Figure 3) was drilled to test for 
the presence of the C1 conductor under line 1400W. However, 
no graphitic conductor was encountered. A borehole EM survey 
was conducted immediately following the drilling in an attempt 
to better locate the C1 conductor. CL-167 (Figure 3) was then 
drilled based on borehole EM data. However, this hole also 
failed to intersect a conductor. !e vertical section shown in 
Figure 2 is based on these two holes.

Physical property measurements, including resistivity and 
chargeability, have been made on samples from some of the drill 
holes on the C1-Center Grid. Downhole resistivity probing was 
carried out for holes CL-162 and CL-167. Generally, the resistivity 
of the sandstone samples ranges from 1000 to 3000 Ωm. !e 
pelitic gneiss samples collected from the basement are more 

conductive when the degree of alteration is higher. !ey generally 
have a resistivity lower than 1000 Ωm. Samples containing a high 
degree of graphite or pyrite exhibit the lowest resistivity values. 
!e lowest resistivity measured is less than 1 Ωm. Fresh unaltered 
basement rocks have the largest resistivity values, which are 
typically more than 5000 Ωm. 

Modeling of the C1-West Grid
!e trial-and-error modeling presented here aims to model 

the C1 conductor directly under lines 1400W and 2200W of 
the C1-West Grid. !is modeling is guided by the information 
available from drill holes CLC1-44, CLC1-45, CL-162, and 
CL-167. Drill holes existing on the C1-Center Grid and the 
modeling results presented in Lu et al. (2020) for the C1-Center 
Grid have previously been used to build the eastern part of 
the conductor.

Model building and mesh generation. We use a three-step 
procedure to generate the unstructured grids for EM modeling. 
First, we create a surface mesh comprising a tessellation of 
triangular cells using the Triangle program (Shewchuk, 1996). 
!is surface mesh is later used as the air-earth interface. Local 
mesh re"nements are necessary for the transmitter loops and 
receivers to guarantee good accuracy in EM numerical modeling. 
!erefore, extra nodes and edges are added into the surface mesh 
at the transmitter and receiver locations to provide the necessary 
mesh re"nement. !e digital elevation model (downloaded from 
the Geospatial Data Extraction online service provided by the 
Government of Canada) topography data are then interpolated 

Figure 3. C1-West Grid and part of the C1-Center Grid of the 2013 MLTEM survey 
conducted for the Close Lake project. The blue rectangles show the first and last 
transmitters for each survey profile. The red dots show all of the receiver locations 
for each profile. The purple diamonds mark some of the 2015 diamond drilling 
holes along the C1 conductor, the supposed trend of which is shown by the red 
solid line. The green diamonds mark the CLC1-44 and CLC1-45 drill holes from the 
1988 diamond drilling project. The numbers on the left of the map show the local 
coordinates used for the survey grid. (After Lavoie et al., 1988; Richard, 2013; and 
Hutchinson and Zalustskiy, 2015.)

Figure 2. Vertical section based on drill holes CL-162 and CL-167 of the Close 
Lake project (Hutchinson and Zalustskiy, 2015).
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For line 2200W, the match between the modeled inline 
component response and the real data is arguably better than 
for line 1400W. !e patterns in the modeled and real data are 
similar and the magnitudes are very close for stations near the 
conductor from early to middle times. !e match deteriorates 
at later times due to an increased noise level in the real data. 
!e modeled data clearly show a second peak toward the north 
end of the pro"le, which is caused by the C1-N conductor. 
Although the responses of the real data toward the north end 
seem to be elevated, the amplitude is much smaller than what 
appears in the modeled data. Compared to the inline component, 
crossline component responses in the real data are even noisier, 
starting from the "rst gate. A trough at stations south of the 
conductor is vaguely discernible in the real data, while the trough 
is very obvious in the modeled data. Also, the amplitude of the 
trough is larger for the modeled data. 

For the vertical component, the match is also good at early 
times, just as for the good match observed at early times for the 

inline component. !e presence of the C1-N conductor made it 
possible for the modeled data to match the real data at the last 
northern stations. Without the C1-N conductor, the modeled 
data would become #at (for a typical layered-earth response) 
shortly after the peak north of the trough. South of the trough, 
the real and modeled data show elevated responses toward the 
southern end of the pro"le. !is is caused by the south–north-
oriented C1-S conductor. !e north shoulder of the trough 
caused by the C1 conductor in the modeled data is larger in 
amplitude than that in the real data in the middle channels. 
!is mismatch cannot be reduced by adjusting the C1-N conduc-
tor. Nevertheless, the match between modeled and real data for 
all three components and for all time channels is good, with the 
features and trends present in the real data matched by the 
modeled data.

Conclusion
We have applied our 3D trial-and-error modeling method 

to the modeling of an MLTEM data set collected in the 
Athabasca Basin for uranium exploration in order to better 
understand the characteristics of the graphitic fault conductors 
in the survey area. By using unstructured grids and a three-step 
model-building process, we are able to create a realistic 3D 
geoelectric model that not only includes the conductive geologic 
targets but also less conductive background units that a$ect 
the MLTEM data. !e constructed model generally conforms 
to what is known about the subsurface geology from drilling 
and gives modeled responses that closely match all three com-
ponents of the collected real data from early to late times. !e 
"nal model con"rms the existence of the main anomalous 
target in the region, the C1 conductor, and suggests its likely 
location over the entire survey area. !is information is useful 
in guiding future exploration activities. !e constructed 3D 
model also con"rms the existence of the south–north-oriented 
C1-S conductor, which was identi"ed from earlier geophysical 
surveys. !e modeling suggests the possible existence of another 
smaller conductor located north of the survey grid. Our trial-
and-error modeling suggests a deeper burial depth of the C1 
conductor under line 1400W, which explains why two drill 
holes failed to intersect graphitic zones at the top of the base-
ment in this area. 
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Figure 10. The vertical slice of the final conductivity model (as listed in Table 1) 
superimposed on a simplified version of Figure 2. The basin and basement units 
in Figure 2 have been made transparent. The remaining geologic units are shown 
with a reduced opacity to better expose the conductivity model. The white lines 
indicate the boundaries between regions with different conductivities.
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C3 structure to the north east of Olympic Dam, consistent with the 2D model section in both depth, location 
and strike (Fig. 3(a): "ts of MT and tipper data are shown in Supplementary Fig. S6). At 50 km in Fig. 3(b) the 
low-resistivity region is not imaged in the uppermost mantle, although with all MT models it is di#cult to infer 
much below a conductive lower crust.

Discussion
Melts and $uids released from a mantle thermal perturbation in a form of a plume21 or delamination of the sub 
continental lithospheric mantle propagate upwards utilising a Moho o%set as imaged in the seismic transect16,17. 
Metalliferous $uids then reach a rheological barrier ponding beneath the brittle-ductile boundary, before migrat-
ing to the surface by hydro-fracturing where hydrostatic pressures are greater than lithostatic pressure22. &e 
high seismic re$ectivity zone above and in-between the conductive pathways re$ects the brittle-ductile transition 
itself, which is known to have a quick succession of strong and weak layers separated by mid-crustal detachment 

Figure 2. (a) 2D resistivity model of Pro"le A-A’ to a depth of 60 km. (b) &e central part of the pro"le is 
expanded to a depth of 20 km. &e Archean Gawler Craton on the le'-hand side, and Proterozoic mobile belt on 
the right-hand side are characterized by very high resistivity (blue colour, R1 and R2) to a depth of more than 
60 km. A striking high conductivity structure (C3) is situated at the margins of the Archean Gawler Craton at a 
depth 15–40 km in the mid to lower crust. In addition, three narrow low-resistivity pathways (C2) extend from 
conductor C3 to the surface, which link the lower crust with major IOCG-U mineral deposits. (c) 2D Seismic 
depth converted image17 showing zones of reduced re$ectivity (C2 and C3) under all major mineral deposits. 
WW, OD and VC denote the major occurrences at Wirrda Well, Olympic Dam and Vulcan, respectively as 
shown in Fig. 1.

Heinson et al. 
(2018)
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in the horizontal direction along the profile, is minimized
simultaneously with misfit. Beginning with the responses
obtained from a 2-D start model, RLM2DI iteratively solves
for small changes in the conductivity below each site, such
that each newer model produces a smaller residual error
between the modelled data and measured data at each
station.

The best fitting model found is shown in Fig. 11, without
any vertical exaggeration. This model simultaneously fits the
TE, TM, and GTF data, as well as possible over eight decades
of period from 10 000 Hz to 10 000 s from 47 of the 56
AMT+MT sites along the profile. The MT data observed and
the model responses are shown in Fig. 12. The model clearly
fits the apparent resistivity data well over the whole bandwidth,
and most of the phase data, but systematically underfits the
long period phase data. This is in keeping with the minimum
structure concept of the modelling algorithm — more features
and structure are permissible in the mantle, but not fewer.
Seven features are identified in the model, labelled with letters
from A to G. The tectonic domain is shown along the top
using the same colour scheme as Fig. 3.

High resistivity is observed in the upper crust of the Hearne
craton, and feature A indicates that the lower crust of the
Hearne craton is, away from the orogen boundary, anoma-
lously conductive with resistivity of 10 Ω⋅m and lower. The
cause of lower crustal conductivity is contentious (e.g., Jones
1992; Duba et al. 1994; Yardley and Valley 1997; Wannamaker
1997), and candidates fall into two camps: (1) ionic conduction
in saline waters and partial melts and (2) electronic conduc-
tion in graphitic, sulphidic, and iron oxide metasediments or
in carbon-grain boundary films. For old, cold, cratonic lower
crust, partial melt can readily be excluded and petrological
arguments are against free fluids existing in Precambrian
regions. Thus, we must consider tectonic emplacement of
metasediments deep into the crust during an orogenic event
as the likely cause of lower crustal conductivity. A conducting
lower crust is also observed beneath the Hearne craton at its

northern limit south of Baker Lake (Jones et al. 2002a), but
not beneath the Rae craton to the north of the Hearne craton
(Jones et al. 2002a) nor beneath the Anton complex of the
Slave craton (Jones and Ferguson 2001).

Feature B is the NACP anomaly within the crust, and a
more detailed model of its geometry is given in Jones et al.
(1993).

Feature C is the highly resistive crust beneath the Glennie
domain and the Hanson Lake block. This feature we can asso-
ciate with the Sask craton, and note that there is no conduc-
tive lower crust associated with it. This feature is discussed
in more detail in Ferguson et al. (2005).

Feature D is the ALCA discussed in Ferguson et al. (1999).
Feature E is a mid-crustal anomaly in the Kisseyney gneiss

belt. There are too few sites on this anomaly for precise geo-
metric definition.

Feature F is the highly resistive crust associated with the
Superior craton. A more detailed geometry of this boundary
is presented in White et al. (1999).

Feature G is perhaps the most novel of the features in the
model and is an unexpected result. Prior interpretations of
the MT data focussed primarily on crustal features for
comparison with the seismic reflection images. However,
this model, derived from including the longer period data to
10 000 s, shows the existence of a low conductivity region
within the upper mantle of the western internides of the
orogen directly beneath the crustal structures associated with
the NACP anomaly. Feature G comes primarily from the
TE-mode apparent resistivity data and is evident in the
apparent resistivity minimum observed in the pseudosection
in Fig. 12 (left column, top plot).

Discussion

North American Central Plains
The NACP zone of enhanced conductivity has been imaged

electrically from the USA–Canada border to northern Saskatche-

Fig. 11. Two-dimensional inversion resistivity model for profile L. The seven labelled features are discussed in the text. WFB,
Wollaston fold belt; RD, Rottenstone domain; LRB, La Ronge belt; HLB, Hanson Lake block; KGB, Kisseynew gneiss belt; TB,
Thompson belt. VE, vertical exaggeration.

Jones et al. (2005)



period sites near the volcanic arc and overlying conductors, resolution is poorer at depth beneath the
volcanic arc.

All apparent resistivity and phase data fit curves for the constrained and unconstrained inversions are shown
in supporting information Figure S1 and the inversion data fit is shown for sites CLP016, P08, CLP008, and

Figure 5. The preferred 2‐D inversion model along the magnetotelluric (MT) profile for both the slab constrained (a) and unconstrained (b) cases. Broadband MT
sites are shown as green inverted triangles, and long‐period MT sites are shown as yellow inverted triangles on the surface of the model. Conductors are labeled C1
through C8, and resistors are labeled R1 through R3. The shallow surface conductor in the Central Valley is labeled S1, and deeper slab‐side conductor is
labeled A1. The location of the subducting slab is taken from Hayes et al. (2012) and shown as a thick black dashed line. This is the location of the tear which
constrained the inversion to have zero smoothing across the boundary. The Moho discontinuity, shown as a thin black line, is taken from the Crust1.0 model of
Laske et al. (2013). The location of the 2010 Maule earthquake is shown as a yellow star. Earthquake epicenters are shown as small white dots. TSP = Tatara‐San
Pedro. LdMVF = Laguna del Maule Volcanic Field. The lower panel (c) shows root‐mean‐square (r.m.s.) misfit for both constrained and unconstrained
cases for each station along profile. It also shows the static shift parameters applied to the constrained inversion.

10.1029/2018GC008167Geochemistry, Geophysics, Geosystems

CORDELL ET AL. 1826

Cordell et al. (2019)
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subject 
to 

appropriate boundary conditions. 
For 

sufficiently sm
ooth and strictly positive conductivities the 
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elfand and Levitan's 

[1955] m
ethod once the system
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n in Figure 1. 

and H is the Heaviside unit step function. At this point 
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1972] that the profile is defined on a sem
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The Conclusion

"Occam", minimum-structure inversion is very effective — it gets 
the job done — and hence useful and popular.



The End.


