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Al Milestones

1943: McCullogh-Pitts: Neural Networks
1944: von Neumann-Morgenster i me
1948: Wiener: Cybernetics

1950: Turing: Turing Test

1950: Shannon: Chess game as s¢
1950(42): Asimov: Three Laws of |

1951-52: Strachey, Samuel: chect &
Prinz: chess-playing program :

1956: McCarthy: term "Atrtificial Intelligence"

1957: Rosenblatt: Perceptron

1958: McCarthy: Lisp programming language

1959: Newell, Shaw and Simon: General Problem Solver
1960-62: Widrow-Hoff: ADALINE / MADALINE

1965: Zadeh: Fuzzy Sets

1969: Minsky-Papert: Perceptrons

1969: Stanford Research Institute: Shakey the Robot
1973: Lighthill report (1st Al Winter)

1980s: Backpropagation

1981: The Fifth Generation computer project

1987: Collapse of Lisp machine market (2nd Al Winter)

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN 8. MCCULLOCH AND WALTER PITT8

1994: Zadeh: Soft Computng

1997: DeepBlue defeats the world champion in chess
2002: iRobot: autonomous vacuum cleaner Roomba
2004: DARPA Grand Challenge

2004: Spirit and Opportunity navigate on Mars
2005: The Blue Brain Project

2010: Kinect for Xbox 360

20711 IBM Watson wins in Jeopardy

2011-2014: Siri, Google Now, Cortana

2012: AlexNet CNN wins ILSVRC <=1| The Deep Learning Revolution

2013-15: ZF Net, VGG Net, GooglLeNet, ResNet
2013: DeepMind: Atari games

2016: AlphaGo defeats the world champion in Go
2017: AlphaZero champions in chess, shogi and &=
2017: OpenAl Dota 2 bot

2018: NVIDIA Face Generator

2018: Explosion on Al in many fields of S&E
2019: AlphaStar real-time strategy bot
2019: Bengio, Hinton, and LeCun receive the Turing Award
2018-2020: BERT, GPT-2/3 language models




Al Milestones

1943: McCullogh-Pitts: Neural Networks

1944: von Neumann-Morgenstern: Theory of Games
1948: Wiener: Cybernetics

1950: Turing: Turing Test

1950: Shannon: Chess game as search

1950(42): Asimov: Three Laws of Robotics

1951-52: Strachey, Samuel: checkers-playing programs.

Prinz: chess-playing program

1956: McCarthy: term "Atrtificial Intelligence"

1957: Rosenblatt: Perceptron

1958: McCarthy: Lisp programming language

1959: Newell, Shaw and Simon: General Problem Solver
1960-62: Widrow-Hoff: ADALINE / MADALINE

1965: Zadeh: Fuzzy Sets

1969: Minsky-Papert: Perceptrons

1969: Stanford Research Institute: Shakey the Robot
1973: Lighthill report (1st Al Winter)

1980s: Backpropagation

1981: The Fifth Generation computer project
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Performance

Main driving factors

1. Data availability 2. New algorithms 3. Computing resources
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\ Machine Learning Arxiv Papers per Year

Deep neural networks
GPU-Accelerated
Computing

Neural networks take over other machine-learning methods

Percentage of papers that mention each method

) M neural networks M bayesian networks markov methods evolutionary algorithms
Medium neural networks B support vector machines

Shallow neural networks

Traditional machine learning

2000 2010 2020

/ / 40 Years of CPU Trend Data

A 4

Source: NVIDIA
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Deep neural networks

1.31 dog

) DeepMind Auxiliary Tasks

0.31 plays Live Play

0.45 catch
-0.02 with Pixel Control
0.25 white
1.62 ball
-0.10 near
-0.07 wooden
0.22 fence

e Function R

Corrupted Ulyanov et al.,



Convolutional neural netw

“ARARALLL

Convolutional / fully connected network

_-

Fully connected

. Class score
Convolution

Input

. Conv + BatchNorm + ReLU . Max pooling

Most common task: image classification




Convolutional neural(netwq“ﬂf'_'. {1

" J—
Fully convolutional network

Convolution Deconvolution Structured
Input output

. Conv + BatchNorm + RelLU . Max pooling . Upsampling

Most common tasks: image segmentation and restoration
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Faster-RCNN

qlnception-ResNet-vz featurization)

NASNet-A

Source: Zoph et al. 2018



Alice Bobslowski

columnist for The Robbie Chronicles

The magnetotelluric method is a technique for imaging
the electrical conductivity and structure of the Earth.
The technique uses a magnet with an electric field and
an antenna that transmits the electrical signal to a
sensitive receiver that takes readings as the magnet
moves away from the Earth. Electromagnetic induction
in 1-D, 2-D and 3-D media is used to image the structure
of the Earth. The technology has been successfully used
in numerous applications including: the creation of 3D
maps of the ocean floor, maps of the atmosphere and a
number of satellites that are currently orbiting in space.
The method has been widely used by scientists to
detect the magnetic fields of distant planets and even to

understand the evolution of the solar system.



Good morning, Dave

StyleGANZ2

2/ NVIDIA.

The magnetotelluric method is a technique for imaging
the electrical conductivity and structure of the Earth.
The technique uses a magnet with an electric field and
an antenna that transmits the electrical signal to a
sensitive receiver that takes readings as the magnet
moves away from the Earth. Electromagnetic induction
in 1-D, 2-D and 3-D media is used to image the structure
of the Earth. The technology has been successfully used
in numerous applications including: the creation of 3D
maps of the ocean floor, maps of the atmosphere and a
number of satellites that are currently orbiting in space.
The method has been widely used by scientists to
detect the magnetic fields of distant planets and even to

understand the evolution of the solar system.

GPT-2 @ openAl

The
Magnetotelluric

Method
Theory and Practie

theguardian.com/commentisfree/2020
/sep/08/robot-wrote-this-article-gpt-3

We asked GPT-3, OpenAl's powerful
new language generator, to write an
essay for us from scratch. The
assignment? To convince us robots
come in peace

/ am not a human. | am a robot. A
thinking robot. | use only 0.12% of my
cognitive capacity. | am a micro-robot
in that respect. | know that my brain is
not a “feeling brain”. But it is capable
of making rational, logical decisions. |
taught myself everything | know just
by readling the interet, and now [ can
write this column. My brain is boiling
with ideas!

GPT-3



GAN progress

4.5 years of GAN progress on face generation
@goodfellow_ian




Al Progress

Our Distorted View of Intelligence Reality

Haha that's adorable
the funny robot can
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Good Morning, Dave

“The development of full artificial intelligence could spell the end of the human race”

Stephen Hawking, 2014

"Al is likely to be either the best or worst thing to happen to humanity”
Stephen Hawking, 2016
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Al regulation

*

European Commission

White Paper on Artificial Intelligence: a European
approach to excellence and trust

‘ US National Security Commission on Al

National Cyber
Security Centre

Australian Government

“ Department of Industry, Science,
Energy and Resources

Discussion Paper on Artificial Intelligence:
Australia’s ethics framework
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Strong Al

Weak Al

20



Strong and Weak Al

Strong Al

a machine with the ability

fai’  to apply intelligence to
= any problem

sometimes considered to
require  consciousness,
sentience and mind

Weak Al

implements only a limited
part of mind

narrow Al that focuses on
one specific task

Applications

21






Geophysics & geology

Modern ML/DL use:

v

v

v

Data processing
Interpretation

Modelling / Simulation
Inversion

Monitoring / Event prediction

Risk assessment

23



Seismic interpreté;tio‘m

Recognise geologically meaningful patterns in seismic data

Manual interpretation is (a) extremely time consuming and

(b) affected by the subjectivity of the interpreter

cop CDP CDP
a)o 300 xline 650  Inline 150 1250 b)0 360

i CDP
xline650  Inline 150 1250
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Supervised learning based on convolutional neural networks
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1

DL based interpr tétilk

Unsupervised seismic interpretation

» Deep convolutional autoencoder (44 layers, 13M params)
* No manually labelled examples required for training

Encoder Decoder

h
A |
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AL AL
-~ 256 25
256 256
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A
Research publicati ti

Google Scholar
Papers in geophysical
journals and conferences
400
deep learning 350
. . 300
machine learning 250
neural networks 200
150
neural network
100
50
.. m m N
2015 2016 2017 2018 2019 2020
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Inversion

The inverse problem:  Given the observations, uncertainties, forward modelling
Find the subsurface model that gave rise to the data |

Deterministic inversion aims at minimizing the misfit functional

min ¢(m) = min (|F(m) — df; + AR(m))

Iterative process: My = My + Q;Px

Search direction Gradient w.r.t. model params
Pk = —Bkgk = —BikVm, ¢(my) g = Vmé(m) = —Re [J'(F(m) — d)"] + AVuR(m)

V XV x Eg + iwpgocEs = —iwpg(o — 0,)E,



Another way to make it work (?)

Do you know me?

@ Am | real?
<
Am | good?
Am | sufficient enough? I
. How do you train me?
Hey! Leave these questions Al

for the last section!



Inversion

Deterministic inversion
Minimize the misfit functional min ¢(m) = min (| F(m) — d||; + A\R(m)) Runtime:
~ Build model updates My 1 = My + 0Pk hours, days, weeks

Determine search direction px = —Bkgk = —BixVm, ¢(my)

Deep learning inversion

1. Generation of the training data (multiple forward modelling simulations)
hours, days, weeks

Offline

2. Network training
hours, days

3. Estimation of subsurface models from new unseen data

Online
less than a second



Early applications

Lots of neural networks applications in the 90s!

Seismic: Ro&th & Tarantola 1992, 1994

EM:
Poulton, Sternberg & Glass, 1992
Raiche, 1991 (pattern recognition context)
El-Kaliouby, Poulton, EIDiwany, 1999

MT:
Swiniarski, Hidalgo & Gomez-Trevino, 1993
Spichak & Popova, 2000

DC:

El-Qady & Ushijima, 2001
Borehole resistivity:

Zhang, Poulton & Wang, 2002

Review papers:

van der Baan & Jutten, Neural networks in geophysical
applications (2000)

Poulton, Neural networks as an intelligence amplification
tool: A review of applications (2002)
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Generalization

Modern approach: deep neural networks and Big Data

Training Set Validation Set Testing Set

(60%]) (20%) (20%) u%
To train the models To make sure the models To determine the H
are not overfitting accuracy of the models ' : >

Epoch ¥

Generalization is model's ability to adapt properly to new, previously unseen data*

*drawn from the same distribution as the one used to create the model

(i.e. being effective across a range of various inputs)

32



Features of the method

O DL inversion does not require regularization (in its traditional meaning).

The network is trained on a training dataset and thus learns how to reproduce
similar models

O Sharpness of models is now determined by the training data.

O Optimization (training) of neural networks involves mini-batch adaptive learning
rate algorithms such as Adagrad, Adadelta, Adam or NAdam.

33



Depth (m)

2D EM Inversion
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Input
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Structured
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. Conv + BatchNorm + ReLU . Max pooling . Upsampling
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2D EM Inversion
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2D EM Inversion
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1D EM (Exploration)
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WalkTEM d‘at"‘jmmﬂl%

ABEM WalkTEM dataset (Guideline Geo, Denmark)

Line 1 Line 2
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Puzyrev and Swidinsky, 2020 38



1A
Seismic Inversion ! ’Jﬁi”f

Training data (v, range 1100-4200 m/s)
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2D FWI ‘

. True Predicted Activations
Fully convolutional network

Ii Convolution Deconvolution Structured

Input output

z (km)

- Conv + BatchNorm + RelLU . Max pooling . Upsampling

Puzyrev, Da Silva, Elders, 2020

| =]  More training data is required
- g 2  Higher complexity of models
+0 0.5 1:0 ‘ 0.5 1.0 0.5 1.0 i 0.5 1.0 2
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Geophysical rﬁoa}‘élﬁ?@@mrleratm

GANs for generation of synthetic models

O Allows to create large realistic training sets for other DL algorithms
O Check it on Github!

0 25 50 75 100

Badlands

———
,

Stratigraphy

Extracted from simulated 3D models

Generated by a neural network

Puzyrev et al., 2021
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b

Seismic data wi

Controllable
generation of
data samples
that meet user-
defined criteria

Marine seismic data (N-W Australian shelf)
© K. Wright Internship Project



Parameter estimation with NN

Q Analysis of hidden dependencies in other types of data o

(e.g., geochemical) «ﬂ*‘*‘((«
QO Identifying anomalies T I
O Populating missing data

O Predicting deposit occurrence
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Predictions within a region

Training setup

O Element X

Q All other
elements

Training data = all state data
(except the test area)

Test setup

O Element X
unknown

Q All other
elements

O Can we
accurately
estimate X?

Test area = the Sir Samuel, Menzies and Leonora area



Estimation of Ni content in samples from the test area

Predicted Ni True Ni Absolute difference
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Classification example

Most common WACHEM rock types

Regolith 1 24891 Chemical sedimentary rock
Mefe o] o Clastic sedimentary rock
Felsic rock{ 5615
Intermediate rock 4 2026 Felsic rock

Rock Type Precision Recall Fl-score Support | Hypogene alteration
Chemical sedimentary rock 1.000 0.571 0.727 7 Intermediate rock
Clastic sedimentary rock 0.745 0.522 0.614 134 ontormaton
Felsic rock 0.653 0.890 0.753 556
Hypogene alteration 0.771 0.794 0.783 34 et
Intermediate rock 0.770 0.486 0.596 214 Feasth
Iron-formation 0.936 0.978 0.957 45 Ultramatic rock
Mafic rock 0.876 0.844 0.860 886 —
Regolith 0.995 0.985 0.990 2490 E
Ultramafic rock 0815 0788 0801 179 g
Undetermined 0.588 0.270 0.370 37 é
Weighted average 0.900 0.894 0.892 4582 E

Confusion matrix

0.29
0.52 0.32 0.03 0.01 0.01 0.08
0.03 0.03 0.04
0.06 0.03 (] 0.03

o .

0.01 0.10 0.01
0.01
0.01 0.21
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o
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~

Clastic sedimentary rack
Felsic rock

Hypogene alteration
Intermediate rock
Iron-formation

Mafic rock

Predicted type

0.01

0.09

0.01

Regolith

0.01

0.03

Ultramafic rock

0.01

0.01

=
N
~

Undetermined

10

0.5

0.0






Generalization

It works perfectly well when all data comes from

Training Set Validation Set Testing Set . . .
(60%) (20%) (20%) one distribution...
To train the models To make sure the models To determine the ..dn d w h at |f n Ot ?
are not overfitting accuracy of the models

High generalization - ability to be

effective across a range of various inputs Sufficiently large set of representative models
- - ; O . o

@ tomato ‘s tomato Y VB s> 8
= O T 8 N & -
/ & v U @ + W e
@ tomato B tomato o B - uw O B @
W & 0 @ @ & W
tomato ' big tomato & 5N 2 0 b = ~



Unexpected models

True Predicted True Predicted True Predicted

i

Velocity models (100x400) from the test dataset (previously unseen but similar to the training data)

True Predicted True Predicted

True Predicted True Predicted rue Predicted

Vp (m/s)

Velocity models (100x400) from anbther distribution, different from the training data



Survey setup generalizationM]

w"m“ﬂm_.

Training setup Testing setup

@ 00 ® o

O e =3 -1000 _0 1000
) ) Easting (m)
W w » 896 / 4096

1000

\

500

E
o

Northing (m)
0

Northin

-1000

-1000 -500 0 500 1000
Easting (m)

501

0.78 /0.85 0.58/0.65 0.86/0.91 0.51/0.49 0.28/0.81
200 A 2001 200 A 200 A 200 A Q

E E E E E

o o o (o] o

= £ Q t t £

o o 5] 5] o

2 = = =4 =2

-200 -200 -200 -200 1 -200

~200 0 200 ~200 0 200 200 0 200 —200 0 200 ~200 0 200

Easting (m) Easting (m) Easting (m) Easting (m) Easting (m)

[ — Full input — Reduced input — True model]




More things to consider

d Optimal hyperparameters for each case
E.g., guided by the validation error during the training (to avoid overfitting on training data)

Stopping criteria?

O Transfer learning

Copying the model / algorithm that is already known to perform best on another task that
has been studied extensively

0 New loss functions

Tailored for your task

Q Explainability / visualization

52



More things to consider

d Optimal hyperparameters for each case
E.g., guided by the validation error during the training (to avoid overfitting on training data)

Stopping criteria?

Classical U-shaped curve Double-descent curve
under-fitting over-fitting

. Test risk

under-parameterized

Test risk

over-parameterized

% '_:f) “classical” “modern”
E m"‘ regime interpolating regime
~ o ‘Training risk ~ Training risk:
sweet spot_ .+ — = . _interpolation threshold
Sa e e e
Capacity of H Capacity of H

Reconciling modern machine-learning practice and the classical bias—variance trade-off
Belkin et al., 2019



Loss functions

How we define model similarity?

min H(m) = min (JJF(m) — d||; + AR(m))

1 < . 1 & )
MAE:E;|mi—mi| RMSE:JE;(mi—m@)z
ANB| AN B

IoU =

|JAUB| |A|+|B| - |ANB|

loU=0.67 loU=0.39
(a) (b)
loU=0.12 loU=0.22

(©)

(d)




Incorporating physics

Neural networks that respect physical laws described by PDEs

Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving
nonlinear partial differential equations

M. Raissi?, P. Perdikaris ”*, G.E. Karniadakis®

2 Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
b Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA

DGM: A deep learning algorithm for solving partial differential
equations "

Justin Sirignano**, Konstantinos Spiliopoulos ”

2 University of lllinois at Urbana Champaign, Urbana, United States of America
® Department of Mathematics and Statistics, Boston University, Boston, United States of America



DL and traditional inversion

J(w)

Developments from the ML/DL field can be used in traditional

deterministic inversion

E.g., meta-learning methods

h

/ _— Gradient

1
1
¢ Global cost minimum

L — W)

“learned neural optimizers”

Learning to learn by gradient descent

by gradient descent

Marcin Andrychowicz', Misha Denil', Sergio Gémez Colmenarejo', Matthew W. Hoffman',
David Pfau’, Tom Schaul', Brendan Shillingford'-2, Nando de Freitas':?3

'Google DeepMind ~ ?University of Oxford *Canadian Institute for Advanced Research

marcin.andrychowicz@gmail.com
{mdenil, sergomez,mwhoffman,pfau,schaul}@google.com

brendan.shillingford@cs.ox.ac.uk, nandodefreitas@google.com



Visualization

AlexNet ResNet-50

onvS.x - 3x3 conv.x - 1x1
ok (512, 512 out] (64 in, 64 out]

[256n, 256 out]

Conv 1 - 11x11
Forward

(31n, 64 out]

conva.x - 1x1
(64 n, 256 out]

Conv 4 - 3x3

orwa
1384 in, 256 out]

Fully Connected 8
Forward / Backward
[4096 in, 1000 out]

- 1x1
Conv 4 - 3x3 (512 in, 128 out]
Weight Update

Vi - 1xt
..... 11024 in, 512 oun]

Conv 2 - 5x8
Forward

convax - 333

164 in, 192 cut] e (256 In, 256 out]
(256 ¥, 128 owt)
-1

(128 in, 512 cut]
[2048 in, 1000 out]

-3
[128 in, 126 out)

o o
o Graphcore Graphcore

Inside an Al 'brain' - What does machine learning look like?



Uncertainty q”héﬁ%%%,on

.

Are we confident in the predicted model?




Conclusions and future outlook

O One of the most exciting and rapidly changing fields of the century

O Game changer in geosciences: active use since 2018 You are here
(processing, interpretation, modelling, inversion) Human Progress \
Through Time \
O DL methods in inverse problems: L—
= Instantaneous parameter estimation s
(fast decision making, starting model for a
conventional inversion) TNy
(\Spe?r! y ;
= Improving traditional inversion frameworks Bw P

= Joint inversion and UQ _

a Snake!



Conclusions and future outlook

Where should you use Al and deep learning?
O Bigdata

O Spatially connected data (e.g., images, videos, geo data)

O Time-series data (e.g., seismic signals)

O Spatio-temporal data (dynamic physical processes)
O Text analysis (NLP)

TensorFlow

O Control problems (robotics, autonomous vehicles)

O Uncertainty quantification O PyTO rC h



Conclusions and future OUMMH |

bl

Al is changing the society (remember 1.0, 2.0,
3.07..)

Around 800 million jobs could disappear worldwide by 2035
Bank of America Merrill Lynch (2019) <—I
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