

Innovating solutions in EM Geophysics

College of Earth, Ocean, and Atmospheric Sciences

ModEM: A user's guide

Naser Meqbel

3D Consulting-Geo GmbH, Berlin, Germany Observatório Nacional, Rio de Janeiro, Brazil ModEM-Geophysics Inc., OR, USA

Observatório

Nacional

Online Eminar talk: 15th May 2021

Outlines

- Brief introduction on ModEM's structure and the modularity idea
- How to setup ModEM on your server/cluster.
- How to call ModEM with basic options (Forward modelling, Inversion).
- Advanced inversion setting.
- How to perform model resolution studies on your preferred model(s).
- Some examples from few projects on various scales.
- How to control the inversion run (NOT only RMS values) Taking about 3D targets, it is might be NOT appropriate to 2D inversion!

Introduction on ModEM and the Modularity idea

- The modularity idea is already presented in the name: ModEM
- Name Definition: Modular system for ElectroMagnetics

Introduction on ModEM and the Modularity idea

GEOPHYSICAL SOLUTIONS

The Modularity of **ModEM** at a Glance

Further developments include, but limited to:

- Multi-Resolution Grid
- Modified system of Eqs.
- Simple Anisotropy (VTI)
- Joint inversion (EM methods) Contributions by others:
- General Anisotropy
- Apparent Resistivity Tensors
- ... and much more

The Modularity of ModEM at a Glance

Further developments include, but limited to:

- Multi-Resolution Grid
- Modified system of Eqs.
- Simple Anisotropy (VTI)
- Joint inversion (EM methods) • Contributions by others:
- **General Anisotropy**
- **Apparent Resistivity Tensors**
- ... and much more

8

\$ make –f MAKEFILE_FOR_YOUR_COMPLIER

Compiles for serial version

The files we share with you include also

With this you have an executable which you can call:

COMMAND_LINE

- Flags passed to ModEM to perform a specific task:
- -F → To run the forward modelling on a specific model for a given set of sites positions and periods.
- - I \rightarrow To run an inversion for a given dataset.
- -C \rightarrow To apply smoothing (INV/FWD) on a given model.
- -J \rightarrow To compute the sensitivity matrix.

Forward modeling -F

• The command line for calling the forward modeling is: \$ModEM -F

"Basic Input/Output"

Input_Model Input_Data Output_Model_Resp

"Advanced Output"

Input_Model Input_Data Output_Model_Resp [Output_E_solution FWD_para]

Files formats

• Before start discussing the advanced input/output files, let us take a look at the basic input files used for running the forward modelling and later the inversion.

The model and data files formats

ModEM (Input/Output)

• Input_Model Input_Data Example: Model file

of cells in x, y and z directions, and if the resistivity values are LIN or LOGE

1	# 3D MT model	written by M	lodEM in WS	format	Comment	s line
2	78 67 6	5 0 LOGE				
3	12000.000	12000.000	Cell dimension	on (in m)	in x direct	tion
4	17280.000	17280.000	Cell dimensi	on (in m)	in y direc	tion
5	200.000	200.000	Cell dimensi	on (in m)	in z direct	tion
6				•		
7	3.91439E+01	3.91439E+01	3.91439E+0	1 3.91	439E+01	3.91439E
8	3.91439E+01	3.91439E+01	3.91439E+0	1 3.91	439E+01	3.91439E
9	3.91439E+01	3.91439E+01	२ 014२0F⊥∩	1 2 01	430F±01	3 01439E
10	3.91439E+01	3.91439E LOG	E (Resistivity	values) f	or the first	$z slice g_{E}$
11	3.91439E+01	3.91439E+01	3.91439E+0	1 3.91	439E+01	3.91439E
12	3.91439E+01	3.91439E+01	3.91439E+0	1 3.91	439E+01	3.91439E
0.0	<u> </u>	<u> </u>	<u> </u>			<u> </u>

ModEM (Input/Output)

First well know user's problem

• Input_Model Input_Data Example: Data file

Full Impedances data block

1 2	<pre># Description: # Period(s) Code GG Lage</pre>	at GG Lon X(m) Y(r	n) Z(m) Componen	t Real Imag Er	ror			Со	mments	lines	•
3 4 5	<pre>> Full_Impedance > exp(+i\omega t) > [mV/km]/[nT]</pre>	-		De	efine th	e dat	ta typ	e, sign c	onventio	on and units)
6 7	> 0.00 > -0.090470 0.035974	noriods (nd cito	tation	angle	e and	the Lat/	Long of	Refe. point	
8 9	> 24 420 T O 7.113100E-02 A01	3.432900	-3.095455	392219.800	-348587.500	0.000	ZXX	-2.484316E-2	-1.913996E-2	8.540510E+0	+
10	7.113100E-02 A01	3.432900	-3.095455	392219.800	-348587.500	0.000	ZXY	6.244343E+1	6.274428E+1	4.270255E+0	
11 12	7.113100E-02 A01 7.113100E-02 A01	3.432900	-3.095455	392219.800	-348587.500	0.000	ZYX ZVV	-5.466960E+1	-6.165030E+1	4.270255E+0 8.540510E+0	
13	1 264010F_01 X01	3 432000	-3 005455	302219.000	-348587 500	0.000	777	_3 710875F_2	3 0848028-2	6 367315F10	

Full vertical magnetic transfer functions data block

40329	# Description:											
40330	<pre># Period(s) Co</pre>	de GG_Lat GG	Lon X(m) Y(m	a) Z(m) Componer	nt Real Imag Er	ror						
40331	> Full_Vertica	1_Components										
40332	> exp(+i\omega	t)										
40333	> []											
40334	> 0.00											
40335	> -0.090470 0.	035964										
40336	> 24 420											
40337	7.113100E-02	A01	3.432900	-3.095455	392219.800	-348587.500	0.000	TX	3.765835E-02	4.576977E-02	3.00000E-2	
40338	7.113100E-02	A01	3.432900	-3.095455	392219.800	-348587.500	0.000	TY	2.501445E-02	-1.148927E-02	3.00000E-2	
40339	1.264910E-01	A01	3.432900	-3.095455	392219.800	-348587.500	0.000	TX	2.429581E-02	1.860053E-05	3.00000E-2	
40340	1 264910E-01	201	3 432900	_3 095455	392219 800	-348587 500	0 000	TV	_1 814300F_02	-3 279436F-02	3 0000008-2	

Inversion (Input/Output)

- Input_Model Input_Data
- **Example: Data file**
- **VERY IMPORTANT NOTICE WHEN WORKING WITH TOPO. and/or BATH.**

Please keep in mind that the Z-axis is **POSITIVE** downwards and **NEGATIVE**

Forward modeling -F

"Advanced Input/Output"

Input_Model Input_Data Output_Model_Resp [Output_E_solution FWD_para]

Output_E_solution (Binary format)

- Is a file in which we store the electric field components (E_x, E_y, E_z) at all cell edges for all periods and both polarization,
- is necessary to perform later e.g., the **nested modeling**.

FWD_para (ASCII format)

- An Ascii file in which we define parameters that control the
- It contains the name of Output_E_solution which will be used for the nested modeling.

Why the size of E_solution file is too large

COMMAND_LINE

- Flags passed to ModEM to perform a specific task:
- -F → To run the forward modelling on a specific model for a given set of sites positions and periods.
- -I
 To run an inversion for a given dataset.
- -C \rightarrow To apply smoothing (INV/FWD) on a given model.
- -J \rightarrow To compute the sensitivity matrix.

Inversion -

The command line for calling the Inversion is:
 \$ModEM –I NLCG | DCG | etc.

Basic Input/Output Input_Model Input_Data Advanced-level1 Input_Model Input_data Input_INV_para.

Advanced-level2 Input_Model Input_data Input_INV_para. FWD_para.

Advanced-level3 Input_Model Input_data Input_INV_para. FWD_para. Model_Cov

Advanced-level4

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

Inversion process

• Objective function:

Inversion process

• Objective function:

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov

The basic question is: Do I need to use the model covariances file?

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov Example: Model_Cov (ASCII Format)

Basically, the model covariance file contains the **indices of each model parameter**. You can index the model parameters by any number; Model parameter with an index of **0 or 9** will be fixed automatically during the inversion, e.g., Air and Water

1	++
2	This file defines model covariance for a recursive autoregression scheme.
3	The model space may be divided into distinct areas using integer masks.
4	Mask 0 is reserved for air; mask 9 is reserved for ocean. Smoothing between
5	air ocean and the rest of the model is turned off automatically. You can
6	also 1e (in exception to overside smoothing petwee any five model steas.
7	To tulnOf I shoked nj seta Ute kere Api debit r ti i te i tuli dhha t
8	1. Grid dimensions excluding air layers (Nx Ny NzEarth)
9	1 2. smooth toph the dmodel covariance file.
10	3. Smoothing in the Y direction (NzEarth real values)
11	4. Vertical smoothing (1 real value)
12	5. Number of times the smoothing should be applied (1 integer >= 0)
13	6. Number of exceptions (1 integer >= 0)
14	7. Exceptions in the form e.g. 2 3 0. (to turn off smoothing between 2 & 3)
15	8. Two integer layer indices and Nx x Ny block of masks repeated as needed.
16	++
17	
18	88 82 65
19	
20	
21	
22	0.3
23	2
25	2
26	0
27	
28	
29	1 1
30	
31	

Inversion (Input/Output) -> Level 3

Indices and electrical conductivity of each model parameter

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov Example: Model_Cov (ASCII Format)

- An important option is located at line # 6 after in the header (line # 26 in this example file).
- With this option you can switch off or define a specific smoothing between any two regions in the model domain (key word: **tear zone**)

	1	++
	2	This file defines model covariance for a recursive autoregression scheme.
	3	The model space may be divided into distinct areas using integer masks.
	4	Mask 0 is reserved for air; mask 9 is reserved for ocean. Smoothing between
	5	air ocean and the rest of the model is turned off automatically. You can
	6	also define exceptions to override smoothing between any two model areas.
	7	To turn off smoothing set it to zero. This header is 16 lines long.
	8	1. Grid dimensions excluding air layers (Nx Ny NzEarth)
	9	2. Smoothing in the X direction (NzEarth real values)
	10	3. Smoothing in the Y direction (NzEarth real values)
	11	4. Vertical smoothing (1 real value)
	12	5. Number of times the smoothing should be applied (1 integer >= 0)
	13	6. Number of exceptions (1 integer >= 0)
	14	/. Exceptions in the form e.g. 2 3 0. (to turn off smoothing between 2 & 3)
	16	6. Two integer layer indices and NX X Ny block of masks repeated as needed.
١	17	**
	18	88 82 65
1	19	
	20	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
	21	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
	22	0.3
	23	
	24	2
t	25	
	26	0
Ļ	27	
	28	
	29	1 1
	30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 1	31	

•••

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov Example: Model_Cov (ASCII Format)

- The ocean cells with an index of 9 are automatically fixed.
- Switching off the smoothing between the highlighted area and the rest of the model parameters. To do that assign the index 2 for all cells located inside the white rectangle.
- At line # 6 in the model covariance file we need to write:

1 120

This means that we have ONE exception which is switching off smoothing between **1** and **2**

GEOPHYSICAL SOLUTIONS

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

To use the optional model perturbation file (**model_prm**) as an input we need first to understand few things:

• The output files after each iteration are:

***_NLCG_060.rho → Inverted model
***_NLCG_060.dat → Predicted data
***_NLCG_060.prm → Transformed model parameter (rough)
***_NLCG_060.res → Data residuals

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

The most obvious use of the *.prm file is the following case: For some technical reasons, the inversion stops after 60 iterations while the inversion's stopping criteria still didn't reach! What to do?

***_NLCG_060.rho → Inverted model
***_NLCG_060.dat → Predicted data
***_NLCG_060.prm → Transformed model parameter (rough)
***_NLCG_060.res → Data residuals
Input_Model Input_data Input_INV_para. FWD_para. Model_Cov ***_NLCG_060.prm
Prior model Starting model

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

This command line is used when want to perform Model Resolution Studies

Best explained using a real world example

Model Resolution studies (Example)

3D inversion of 164 MT sites

Data:

- Broad Band from 100 Hz to ~0.001 Hz
- Full Impedance tensor
- Min. site spacing, ~ 500 m
 Model:
- 75 x 60 x 83 cells in X, Y and Z
- Min. cell size in X and Y, 500 m
- Topography included → carful Z gridding
 Inversion:
- Prior model: 500 ohm.m
- Error setting: Gradual decreasing approach
- 130 NLCG iterations in total

Model Resolution studies (Example)

- Use appropriate tools to modify the resistivity values in your preferred model.
- "Reset" the resistivity values of your target feature(s) with the resistive value of the prior model

Preferred model

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

We have a Modified model and we want to re-run the inversion

Modified_Model Input_data Input_INV_para. FWD_para. Model_Cov

Input_Model Input_data Input_INV_para. FWD_para. Model_Cov model_prm

We have a Modified model and we want to re-run the inversion

\$ModEM – C INV Modified_Model rough_pertur.prm Model_Cov Input_Model

What is the mathematical meaning of this operation?

Mathematical meaning of –C INV flag

$$\mathbf{m}_{k} = \mathbf{C}_{m}^{1/2} \Delta \mathbf{m}_{k} + \mathbf{m}^{pre}$$
$$\Delta \mathbf{m}_{k} = \mathbf{C}_{m}^{-1/2} (\mathbf{m}_{k} - \mathbf{m}^{pre})$$

\$ModEM – C INV modified_preferred.rho rough_pertur.prm Model_Cov Input_Model

The RMS or nRMS

$$nRMS = \sqrt{\frac{1}{N} \sum_{N} \left(\frac{(d - f(m))}{err}\right)^2}$$

- \rightarrow This is ONE single number (the overall RMS) which is computed over:
- All sites
- All periods
- All components

The overall RMS during the inversion run

 \rightarrow info. are found in *.log file

1	The initial damping parameter lambda is 1.0E+00
2	The initial line search step size (in model units) is 1.000000
3	START: f=2.569494E+02 m2=0.000000E+00 rms= 16.029641 lambda=1.000000E+00 alpha=2.000000E+01
4	GRAD: initial norm of the gradient is 1.92105E+00
5	The initial value of alpha updated to 5.20549E-01
6	Starting line search
7	STARTLS: f=2.550518E+02 m2=2.677376E-06 rms= 15.970340 lambda=1.000000E+00 alpha=5.205487E-01
8	QUADLS: f=1.946348E+02 m2=4.500683E-03 rms= 13.950998 lambda=1.000000E+00 alpha=2.134253E+01
9	Sufficient decrease condition satisfied, exiting line search
10	Completed NLCG iteration 1
11	with: f=1.946348E+02 m2=4.500683E-03 rms= 13.950998 lambda=1.000000E+00 alpha=3.410858E+01
12	Starting line search
13	STARTLS: f=1.583420E+02 m2=1.359147E-02 rms= 12.582861 lambda=1.000000E+00 alpha=3.410858E+01
14	QUADLS: f=7.160089E+01 m2=9.994167E-02 rms= 8.455823 lambda=1.000000E+00 alpha=1.660742E+02
15	Sufficient decrease condition satisfied, exiting line search
16	Completed NLCG iteration 2
17	with: f=7.160089E+01 m2=9.994167E-02 rms= 8.455823 lambda=1.000000E+00 alpha=2.095854E+02
18	Starting line search
19	STARTLS: f=4.589573E+01 m2=1.674052E-01 rms= 6.762272 lambda=1.000000E+00 alpha=2.095854E+02
20	QUADLS: f=1.869711E+01 m2=3.612538E-01 rms= 4.282039 lambda=1.000000E+00 alpha=6.121357E+02
21	Sufficient decrease condition satisfied, exiting line search
22	Completed NLCG iteration 3
23	with: f=1.869711E+01 m2=3.612538E-01 rms= 4.282039 lambda=1.000000E+00 alpha=7.221589E+02
24	Starting line search
25	STARTLS: f=1.18664/E+01 m2=4.838602E-01 rms= 3.3/3812 lambda=1.000000E+00 alpha=/.221589E+02
26	QUADLS: f=8.780962E+00 m2=6.159943E-01 rms= 2.857441 lambda=1.000000E+00 alpha=1.378442E+03
27	Sufficient decrease condition satisfied, exiting line search
28	Completed NLCG iteration 4
29	with: f=8./80962E+00 m2=6.159943E-01 rms= 2.85/441 lambda=1.000000E+00 alpha=1.5629/8E+03
30	Starting line search
31	STARTLS: I=6.124809E+00 m2=7.390348E-01 rms= 2.320727 lambda=1.000000E+00 alpha=1.562978E+03
32	QUADLS: I=5./59886E+00 m2=/.965438E-01 rms= 2.227856 lambda=1.000000E+00 alpha=2.183524E+03
33	Sufficient decrease condition satisfied, exiting line search
34	Completed NLCG iteration 5
35	With: I=5./59886E+00 m2=/.965438E-01 rms= 2.22/856 lambda=1.000000E+00 alpha=2.305/5/E+03

Better to look at the RMS at:
each site
Component
Period range

Much better, Looking at the sounding curves and analyse what is fitted and what is NOT

• When running ModEM, several outputs are printed on the screen. Among others, the solver's convergence.

This part shows to	385	node[002]:	finished divergence correction: 34 0.9141071E-07
which tolerance the	386	node[007]:	finished divergence correction: 52 0.5182069E-07
divergence correction	387	node[003]:	finished divergence correction: 45 0.9712197E-07
is converged	388	node[011]:	finished divergence correction: 44 0.5198138E-07
13 converged	389	node[006]:	finished divergence correction: 47 0.6373914E-07
	390	node[010]:	finished divergence correction: 47 0.5125431E-07
	391	node[009]:	finished divergence correction: 45 0.7901899E-07
	392	node[020]:	finished divergence correction: 44 0.8510626E-07
Solver (OMR) tolerance	393	node[020]:	finished solving: 158 0.9794737E-07
	394	node[020]:	time taken (mins) 1.414193
	395	node[0201:	Waiting for a message from Master
If you observe large nun	nbers	for the error	S, nished divergence correction: 42 0.7204920E-07
nlease check the mode	land	/or data files	finished solving: 158 0.9159841E-07
piedse encek the mode	i ana		time taken (mins) 1.439974
\rightarrow Large solver's error m	neans	that the E	aiting for a message from Master
solution is not wall com	nutor		nished divergence correction: 48 0.5907255E-07
solution is not well com	pulei		<pre>nished divergence correction: 44 0.8513982E-07</pre>
process (FWD and/or IN	V) Wi	li fail.	nished divergence correction: 41 0.9407652E-07
			finished solving: 174 0.7914782E-07
			time taken (mins) 1 538411

Take Home messages

- You only have the measured data when you start any kind of inversion → understanding and analysing the data is the key point to understand your inversion results and models later.
- There is NO a ready to use recipe to run the inversion → each dataset has its own characteristic and needs to be handled with some attentions.
- PLEASE KEEP IN MIND: At the end of the day, any code works with what you provide and it doesn't do MAGIC→ If you feed it with noisy and/or physically meaningless data you will get meaningless models.

Summary

A modular system for regularized inversion of frequency domain EM data has been developed. In principle this:

 \rightarrow Supports multiple inversion algorithms

 \rightarrow Is adaptable to a wide range of EM geophysical problems (different sources/receivers; joint inversion)

and is designed to make it easy to

- \rightarrow Change model parameterization, regularization
- \rightarrow Add new data types

 $\rightarrow \dots$ etc

A stable version with basic capabilities is freely available for noncommercial use

Mod3DMT: Version of ModEM suitable for 3D inversion of MT data was made available for academic use

Now over 400 registered users of Mod3DMT around the globe

At least 50 referred publications cite use of Mod3DMT for 3D inversion of real MT datasets to address diverse problems in applied and basic Earth Science research at a range of scales (many more abstracts)

We are proud to see that Mod3DMT is most used code in the academic world

Thank you for your attention

