

Anisotropy From basics to 3D modeling

Andreas Junge

Goethe-Universität Frankfurt am Main, Germany

Thanks to collaborators of my MT working group

Michael Häuserer (Rwenzori, Uganda) Alexander Löwer (Rhenish Massif, Germany) Marcel Cembrowski (Pyrenees, Spain) Lourdes Gonzales (Tierra del Fuego, Argentina) Philip Hering (Ceboruco, Mexico) Ying Liu (Western Junggar, China) Colin Hogg (Sao Miguel, Azores) Sharare Zhian (Zagros, Iran) César Castro (Tepic-Zacoalco, Mexico)

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world

Starting with a numerical simulation **3D inversion (ModEM)** of simulated data (full impedance tensor and tipper) for 6 periods between 1 – 100 s at 441 sites equally distributed in 20 km x 20 km

(Löwer&Junge, PAGEOPH 2017 (online))

According to Occam's Principle, what model do you prefer?

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world

3D Model Study

 ho_a anisotropic: $ho_1=1000~\Omega m$ $ho_2=10~\Omega m$

 $\rho_n = 100 \ \Omega m$

10 sec

 $\rho_a = 10 \ \Omega m$

Apparent resistivity

10 sec

 $\rho_a = 10 \ \Omega m$

Apparent resistivity

10 sec

 $\rho_a = 10 \ \Omega m$

Phase

Resistor isotropic

10 sec

$\rho_a = 1000 \ \Omega m$

Apparent resistivity

Resistor isotropic

10 sec

 $\rho_a = 1000 \ \Omega m$

Phase

10 sec

 $\rho_a = 10 \ \Omega m$

Apparent resistivity

10 sec

 $\rho_a = 10 \ \Omega m$

Phase

Some MT Definitions

Impedance Tensor
$$\mu \mathbf{Z}$$
:
 $\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{pmatrix} \begin{pmatrix} B_x \\ B_y \end{pmatrix}$ or $\underline{E} = \mathbf{Z}\underline{B}$
Apparent Resistivity ρ_a : $\rho_{a,xy} = \frac{\mu}{\omega} |Z_{xy}|^2$, Phase: $\varphi_{xy} = \tan^{-1} \left(\frac{\Im Z_{xy}}{\Re Z_{xy}} \right)$

Phase Tensor
$$\mathbf{\Phi}$$
: $\boldsymbol{\phi} = (\Re Z)^{-1}(\Im Z)$ (Caldwell et al., 2004)

Apparent Resistivity Tensor ρ : $\rho = (i\mu/\omega)det(Z)Z(Z^{-1})^T$ (Brown, JGR 2017)

Apparent Current Density \underline{J} : $\underline{E} = \rho \underline{J}$ (Brown, JGR 2017)

Phase Tensor Φ : $\phi = (\Re Z)^{-1}(\Im Z)$ (Caldwell et al., 2004)

Apparent Resistivity Tensor ρ : $\rho = (i\mu/\omega)det(Z)Z(Z^{-1})^T$ (Brown, JGR 2017) $\rho = U_a + iV_a$ $\phi_a = (U_a)^{-1}(V_a)$

Phase Tensor $\mathbf{\Phi}$:

Apparent Resistivity Tensor ρ : $\rho = ({}^{i\mu}/_{\omega})det(Z)Z(Z^{-1})^T$ (Brown, JGR 2017) $\rho = U_a + iV_a$ $\phi_a = (U_a)^{-1}(V_a)$

Phase Tensor Φ : $\phi = (\Re Z)^{-1} (\Im Z)$ (Caldwell et al., 2004)

Apparent Resistivity Tensor ρ : $\rho = (i\mu/\omega)det(Z)Z(Z^{-1})^T$ (Brown, JGR 2017) $\rho = U_a + iV_a$ $\phi_a = (U_a)^{-1}(V_a)$

In general for 1D subsurface:

Behaviour of B and E with depth and period

$$\begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{pmatrix} \begin{pmatrix} B_x \\ B_y \end{pmatrix}$$

$$\rho_{axy} = \rho_{ayx}$$

$$\varphi_{xy} = \varphi_{yx} + \pi$$

$$B_{y}(z) = B_{y0}e^{-\sqrt{i\frac{\mu_{0}}{\rho}\omega}z}$$

$$Z_{xy} = \frac{E_x}{B_y}$$
$$E_x = (1+i) \sqrt{\frac{\rho\omega}{2\mu_0}} B_y$$

Azimuthal anisotropic Conductivity

Generally
$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ \sigma_{xy} & \sigma_{yy} & 0\\ 0 & 0 & \sigma_3 \end{pmatrix} = \boldsymbol{R}_{\alpha}^T \boldsymbol{\sigma}' \boldsymbol{R}_{\alpha}$$

Ohm's law

$$J_{x} = \sigma_{xx}E_{x} + \sigma_{xy}E_{y}$$
$$J_{y} = \sigma_{xy}E_{x} + \sigma_{yy}E_{y}$$

$$\rightarrow \underline{J} \not\parallel \underline{E}$$

Behaviour of B and E with depth and period

Anisotropic homogeneous halfspace, $\alpha = 0^{\circ}$

Behaviour of B and E with depth and period

Anisotropic homogeneous halfspace, $\alpha = 90^{\circ}$

Behaviour of B and E with depth and period

Anisotropic homogeneous halfspace, $\alpha = 30^{\circ}$

Behaviour of B, E and J with depth and period Isotropic

Behaviour of B, E and J with depth and period

Isotropic, Anisotropic Layer, α = -20°

x-axis y-axis

Behaviour of B, E and J with depth and period

Isotropic, Anisotropic Layer, α = -20°

(Hering et al., 2018)

y-axis

(a)
3D isotropic - anisotropic: What happens inside the body?

<u>3 Studies:</u>

- Anisotropic Cube within isotropic half space
- Isotropic Cube above anisotropic half space
- Dipping Anisotropy

Anisotropic Cube within isotropic half space

Transfer functions: phase tensor, app.res. tensor

plane view, period 10 sec

Phasetensor, 20d, 10 s 50 40 70 30 60 20 50 x [km] 40 -10 -20 - 30 -30 20 -40 -50 -40 20 30 40 50 -50 -30 -10 0 10 y [km]

Transfer functions: phase tensor, app.res. tensor

plane view, period 10 sec

 $\Im
ho$

Transfer functions: apparent resistivity, phase and tipper

tz, rhoayx, 20d, 10 s tz, phiyx, 20d, 10 s 2.2 65 50 50 40 40 60 2.1 1 30 30 55 20 20 2 0.2 0.2 50 10 10 x [km] x [km] 0 1.9 0 45 -10 -10 40 1.8 0 0 -20 -20 35 -30 -30 30 -40 J(HxPol), JzR, 20e, 10 s, 6 km 50 0.06 -50 25 40 0 50 -50 0 y [km] y [km] 30 0.04 20 0.02 10 $\rho_1 = \underset{\mathsf{X}}{100} \, \Omega m$ x [km] 0 0 $\rho_2 = 10 \,\Omega m$ -10 -0.02 0 -20 **Current density** $\gamma = 30^{\circ}$ -0.04 -30 within the cube -40 -0.06 -50 0 50 -50 y [km] z

plane view, period 10 sec

Transfer functions: apparent resistivity, phase and tipper

tz, rhoayx, 20d, 10 s tz, phiyx, 20d, 10 s 2.2 65 50 50 40 40 60 2.1 1 30 30 55 20 20 2 0.2 0.2 50 10 10 x [km] x [km] 0 0 1.9 45 -10 -10 40 1.8 Lο 0 -20 -20 35 -30 -30 30 -40 J(HxPol), JzR, 20e, 10 s, 4 km 50 0.06 -50 25 40 -50 0 0 50 y [km] y [km] 30 0.04 20 0.02 0.4 10 $\rho_1 = \underset{\mathsf{x}}{100} \,\Omega m$ [km] 0 0 × $\rho_2 = 10 \,\Omega m$ -10 -0.02 $\perp 0$ -20 **Current density** $\gamma = 30^{\circ}$ -0.04 -30 above the cube -40 -0.06 -50 -50 0 50 y [km] z

plane view, period 10 sec

Figure1-20e Figure2-20e Figure3-20e Figure4-20e Figure5-20e Figure6-20e Figure7-20e Figure8-20e Figure9-20e Figure10-20e Figure11-20e Figure11-20e Figure10-20e Figure

Phase Tensor, Tipper

 $\rho_1 = 100 \ \Omega m$

 $\gamma = 30^{\circ}$

Ζ

Current Density

Phase Tensor, Tipper

Figure1-20e Figure2-20e Figure3-20e Figure3-20e

Phase Tensor, Tipper

Phase Tensor, Tipper

How can we explain the rotation of the field vectors?

Downward – Upward Propagating Wave

Isotropic Cube above anisotropic half space

Transfer functions: phase tensor, app.res. tensor

plane view, period 10 sec

 ϕ

 $\Re \rho$

Transfer functions: phase tensor, app.res. tensor

plane view, period 10 sec

 $\Im \rho$

 $\Re \rho$

Dipping Anisotropy

1D isotropic - anisotropic: What happens inside the body?

Transfer functions: Apparent Resistivity, Phase, Tipper plane view, period 10 sec

 $\rho_{a,yx}$

 φ_{yx}

Transfer functions: phase tensor, app.res. tensor

plane view, period 10 sec

 $\rho_{a,yx}$

 φ_{yx}

Comparison: Isotropic Cube

Transfer functions: Apparent Resistivity, Phase, Tipper

plane view, period 10 sec

 $\rho_{a,yx}$

 φ_{yx}

Transfer functions: phase tensor, app.res. tensorplane view, period 10 sec ϕ $\Re \rho$

Transfer functions: phase tensor, app.res. tensor plane view, period 10 sec

 $\Re \rho$

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world
 - Case 1: African Rift (Häuser&Junge, GJI 2011)
 - Case 2: Tierra del Fuego (Gonzales et al., Nat.Sci.Rep. 2019)
 - Case 3: Ceboruco (Hering, Diss. 2019)

Case Study 1: East African Rift

Electrical mantle anisotropy and crustal conductor: a 3-D conductivity model of the Rwenzori Region in western Uganda

Häuserer, M. and Junge, A., GJI 2011

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world
 - Case 1: African Rift (Häuser&Junge, GJI 2011)
 - Case 2: Tierra del Fuego (Gonzales et al., Nat.Sci.Rep. 2019)
 - Case 3: Ceboruco (Hering, Diss. 2019)

Case Study 2: Tierra Del Fuego

Mantle flow and deep electrical anisotropy in a main gateway: MT study in Tierra del Fuego Gonzales et al., Nat.Sci.Rep. 2019

Case Study 2: Tierra Del Fuego

Mantle flow and deep electrical anisotropy in a main gateway: MT study in Tierra del Fuego Gonzales et al., Nat.Sci.Rep. 2019

Content for today:

- Motivation why anisotropy rather than isotropy?
- Numerical simulations in 3D
- The real world
 - Case 1: African Rift (Häuser&Junge, GJI 2011)
 - Case 2: Tierra del Fuego (Gonzales et al., Nat.Sci.Rep. 2019)
 - Case 3: Ceboruco (Hering, Diss. 2019)

Isotropic inversion (ModEM)

Ying et al., JGR 2019

Observations

Case study

Compared to isotropic dyke models with unrealistic high resisitivity contrast

Bulk Anisotropy yields realistic moderate resistivities

Conclusions

- Indications for anisotropic conductivity in crust and mantle
- Magnetotelluric is the (only?) method to detect deep electrical anisotropy
- Array site distribution necessary
- Preferable observables: Complex Resistivity Tensor and Tipper (Brown, JGR 2017, Hering et al., JGR 2019)
- Comparison with seismic anisotropy (spatial pattern)
- Important parameter for understanding geodynamic processes

Thank you for your attention