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Outline

This EMinar is structured into two main parts
A first educational part is focused on the optimization and the swarm intelligence. The 
goal is to frame the pillar (and simple) concepts behind computational intelligence 
Follows a second research part focused on the application of swarm intelligence to solve 
geophysical inverse problems. The goal is to share with the community the results of the 
research activities highlighting advantages, drawbacks and future perspective

Roadmap

Introduction on the 
optimization concepts

Particle Swarm 
Optimization (PSO)

PSO applied to the MT 
inverse problem

PSO applied to joint and geologically 
constrained inverse problem



EMinar: Alessandro Santilano 16/06/2021

Part 1: Optimization -an introduction

Optimization is the act of achieving the best possible result under given 
circumstances (Astolfi, 2018. The art of optimization)

People optimize
Investors seek to create portfolios avoiding risks while achieving high returns. 
Travellers minimize (at least attempt to) the travel time (or costs?)

Nature optimizes
Fermat’s Principle: rays of light follow paths that minimize their travel time
Evolution: highly specialized, complex structures often emerge when their most 
inefficient elements are selectively driven to extinction

What optimization means?
Is the optimization a common 
process in real life?
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Part 1: Optimization – mathdescription

Optimization is the minimization or maximization of a function subject to constraints on 
its variables

Find
x = (x1, x2, ...., xn), n=number of variables
which minimizes an objective function
f(x)
subject to the constraints
gj(x) ≤ 0 
for j = 1, . . . ,m, and
li(x) = 0
for i = 1, . . . , p

Example of feasible region in a 2D design 
space. Only inequality constraints

are present (Astolfi, 2018)

Several problems cannot be analytically solved and a numerical approach is a way 
One of the simplest case of optimization is: the knapsack problem…
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Part 1: Optimization – an example

The knapsack problem: informal description
The burglar, who breaks into a house, faces the (knapsack) problem:
Determine the items to put in the knapsack, with a given constraint (knapsack strength), 
ensuring a total value as large as possible

Given 100 available items the possible 
solutions are  2100 (1.26765060022823e+30)
The problem is exponential 
and the complexity must be reduced

The burglar can exploit some algorithm to select the best items to put in the knapsack 
and satisfying the constraint
What does “the best” mean? (This is a key question in optimization modelling)
Most valuable item? Lightest item? Ratio value/weight?
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Part 1: Optimization -search algorithms

The solution of an optimization problem is a set of allowed values of the variables for 
which the objective function assumes an “optimal” value. 
The approach implies to iteratively search for the solution refining the initial guess(es). 
We can take advantage of the following information: the objective function value 

From http://fa.bianp.net/

The global minimum is reached when
x* ∈ F and f(x*) ≤ f(x) for all x ∈ F

F is the feasible set of variables 

The conventional approach is deterministic 
and derivative-based. The methods are the 
state of the art, efficient and stable. The 
solution is searched locally
An alternative approach exploits stochastic 
processes. Global search metaheuristics are 
aimed to reach the global minimum

From
 Sen and 

Stoffa, 2013
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Part 1: Search algorithms -Taxonomy

modified from Wang et al., 
2008; Weise, 2009

Classical 
methods

Stochastic and 
Computational 

Intelligence-based
Focus of the lecture
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Part 1: Search algorithms -classical

The conventional algorithms are iterative and exploit deterministic transition rules. A 
deterministic method produces always the same output if it is run on the same input.
An initial guess of the solution is iteratively refined. For non-linear problem, some methods 
implies a linearization (by differentiation)

As example, a common method is the Gauss-Newton
An early description appeared in Gauss' 1809 work to 
solve an astronomic problem: Theoria motus corporum
coelestium in sectionibus conicis solem ambientum

The algorithm finds x that minimizes the vector of 
residuals (between measured and modelled data). 
Starts with an initial guess for x, the function is 
linearized exploiting the Jacobian matrix and 
iteratively the least square solution is obtained 

1st Hero of the day
Carl Friedrich Gauss

1777-1855
A genius who has contributed in 

several fields of science
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Part 1: Computational intelligence

Metaheuristics are strategies that guide the search process
Computational intelligence-based global search paradigms differ from traditional search:
• Use a population of points (agents) in their search. Each point represents a solution to 

the problem, interact each other intelligently and explore larger model space domain 
• Learning strategies are used and stochastic transition rules are adopted
• Use directly “fitness” information, instead of function derivatives 

This question redirect us to the concept of 
Artificial Intelligence.
In the mid-1900s, Alan Turing paved the way 
on this topic. Turing strongly believed that a 
well-designed computer could do anything 
that the brain does. His statements are still 
breakthrough.

2° Hero of the day
Alan M. Turing (1912-1954)

A genius father of informatics and AI 
contributed to many fields of science 

and to the end of the WWII

Can computers be intelligent?
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Intelligence: Ability to perceive information, and retain it as knowledge to 
be applied towards adaptive behaviours (Wikipedia)

Computational Intelligence (CI) comprises algorithms that enable 
an intelligent behaviour in complex and changing environments. 
Ability to learn and/or to deal with new situations 
Swarm Intelligence (SI) emerges from the collective behavior of a 
large number of agents. SI-Algorithms are inspired by the behavior 
of groups of animals in nature

Part 1: Computational intelligence

Computational intelligence

Nature-inspired metaheuristics

Population-based algorithms

Evolutionary 
algorithms 
(e.g. GAs)

Swarm 
intelligence 
(e.g. PSO)

Focus of the EMinar
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Part 1: Computational intelligence

Are computational intelligence methods recent? CI is known since decades even if most 
scientists were (sometimes still are) skeptical. 
It is hard to frame its history (we risk to get stuck in a philosophical debate)

1950s: Alex Fraser used computers to simulate natural genetic systems
1970s: John Holland developed the famous “genetic algorithm”
1980s: swarm intelligence was simulated and metaheuristics arrived since the 1990s.
1984: the “Santa Fe” was founded as the first institute to study complex adaptive systems  
(Waldrop’s book Complexity: The Emerging Science at the Edge of Order and Chaos)

A main limit was the computational requirements 
Recently, industry, science and governments 
focused the attention as computational power 
increased drastically in the last years
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Part 1: Swarmintelligence

One of the first example of swarm intelligence was provided by Craig Reynolds (1987) with 
“Boids”, an artificial life program, which simulates the flocking behavior of birds. 
The boids’ flight (bird-oid objects) obeys to the three rules: Alignment-Cohesion-Separation

The program is able to artificially simulate 
real life animal social behavior. In this case 
without any scope to solve optimization 
problems
The video is generated by a Matlab code available at: 
https://github.com/b3rnoulli/boids-model
The picture on rules is from Di Caro’s lecture (CMU), 
available at https://web2.qatar.cmu.edu/~gdicaro/15382/

Video 1

https://github.com/b3rnoulli/boids-model
https://web2.qatar.cmu.edu/%7Egdicaro/15382/
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Part 1: Swarmintelligence

How Swarm intelligence can be applied to solve problems?
Let’s think about a boids-like simulation with an additional attraction point (food or roost)
Each agent:
• is attracted to the location of the food
• remembers its closest position to the food
• shares information about its closest location to the food

What about if?
• Flight space=optimization landscape (search space, values of x)
• Food (or roost)= extremum of a function (the best solution)
• Distance to the roost = quality of the current solution of each agent
• How to assess the quality? By using the objective function

this slide is adapted from Di Caro’s lecture (CMU)
available at https://web2.qatar.cmu.edu/~gdicaro/15382/

https://web2.qatar.cmu.edu/%7Egdicaro/15382/
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Part 1: SwarmIntelligence – the PSO algorithm

The Particle Swarm Optimization PSO is a nature-inspired heuristic optimization 
method proposed by Kennedy and Eberhart (1995) and is based on two main concepts: 
1) simulation of the swarm intelligence and the social behavior observed in animals 

that group together
2) evolutionary computation

Features:
Multi-agent: population based
Interaction: information is shared between agents
Emergence: interaction lead to the emergence of a 
“super-organism”. The whole is more than the sum 
of its parts

PSO looks for the global minimum solution of a problem by mimicking the social 
behavior of flock of birds or school of fishes
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Part 1: SwarmIntelligence – the PSO algorithm

How it works to solve numerical optimization problems

• The swarm consists of N particles

• Each particle represents a feasible solution x ∈ Xn ⊆ Rn for the problem, sampling in a 
multidimensional search space (e.g. in MT is the set of electrical resistivity values)

• At the kth iteration, the position of each particle in the search space is evaluated by the 
objective function f(x) and represents the fitness

• Particles iteratively move and fly over the search space updating their position by 
using a displacement vector called velocity

• The velocity vector of each particle is influenced by randomness, by its own 
experience and that of its neighbors (intelligent behavior) 

• Theoretically (and hopefully) the swarm will converge to optimal positions 
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Part 1: SwarmIntelligence – the PSO algorithm

For each particle xi the position 𝒙𝒙𝒊𝒊𝒌𝒌 is updated 
at 𝒙𝒙𝒊𝒊𝐤𝐤+𝟏𝟏 by computing a velocity vector 𝒗𝒗𝒊𝒊𝐤𝐤+𝟏𝟏

Exploration Exploitation Convergence

The adaptive behavior is a balance among:
 Cognitive acceleration 𝛼𝛼1𝑘𝑘: towards personal best Pi
 Social acceleration 𝛼𝛼2𝑘𝑘: towards global best G
 Inertia weight 𝜔𝜔𝑘𝑘: momentum of the particle

Video 2
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Part 1: SwarmIntelligence – the PSO algorithm
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this slide is adapted from Di Caro’s lecture (CMU)
available at https://web2.qatar.cmu.edu/~gdicaro/15382/

Ideal convergence of the swarm

https://web2.qatar.cmu.edu/%7Egdicaro/15382/
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Part 2: The geophysical inverse problem

The solution of the geophysical inverse problem provides a physical earth model m, from 
the observations measured on surface d

𝐺𝐺 𝒎𝒎 = 𝒅𝒅

The physic behind the method is understood and specified in the “forward operator”, G
Conversely, the forward problem is to find d given m

The magnetotelluric (MT) inverse problem is non-linear and ill-posed. 
The computational complexity of the problem drastically increases with its 
dimensionality. For this reason, the application of stochastic population-based algorithms 
is not conventional and represents a challenge.

Deterministic algorithms are by far conventional for the inversion of MT data. The 
community relies on the state-of-the-art algorithms for 1D, 2D and 3D inversion. We stress 
that the dimensionality of the MT data drove the dimension of the problem to solved 
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Part 2: PSO -Geophysical application

The CI-based approaches attempt to:
• face the dependence of the final solution from the starting guess
• look for the global minimum of the function 
• exploit randomness to assess the uncertainty 

The aim of our research was to adopt and validate PSO to solve the MT inverse problem
Various research groups are working with PSO in geophysics but few studies were 
completely addressed to MT 
We started with the 1D problem and continued with the solution of more complex 2D 
and joint problems, now implemented in the “GlobalEM” matlab package

Comprehensive works are required to lay the foundations for more complex problems 
such as the 3D (our next target)

Why CI-based approach to solve the geophysical inverse problem?
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Part 2: PSO -Geophysical application

The adoption of PSO is increasing in scientific works, recently, also in Earth Sciences 
In Pace et al., 2021 a review of PSO application for geophysical modelling is available
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PSO for solving the magnetotelluric inverse problem: 1D

Part 2: PSO –1D MT

• The parameters to be optimized are the 
resistivities of layers

• Select the main settings of PSO (population, 
iterations, accelerations)

• Population size and iteration number are 
problem dependent 

• The search domain (lower and upper 
boundaries) is defined for each parameter

• Each particle is a vector design m of model 
parameters and represents an earth model 
that is tested according to a minimization 
function



EMinar: Alessandro Santilano 16/06/2021

• The algorithm, each generation, updates the model parameters

• The emerged model toward the swarm converged is the final 
resistivity model (or a set of model within a tolerance)

• The convergence is affected by velocity’s terms, the population 
size and iterations

• Several models are tested, i.e. several forward computations

• More trials can be run, i.e. optimizations with same settings

Part 2: PSO –1D MT
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• Module: PSO 1D MT
• Dataset: Coprod (Jones and 

Hutton, 1979)
• Unknowns= 20 (layers)
• Swarm size= 300
• Max iterations= 200
• Boundaries = 1 – 5000 Ωm
• Model initialization: Random
• Trials: 25
• Computation-time = 6 min
• Parallelization= no

𝛹𝛹 (𝒎𝒎) = �𝑎𝑎�𝝆𝝆𝒂𝒂,𝒐𝒐 − 𝝆𝝆𝒂𝒂,𝒑𝒑�2
+ 𝑏𝑏�𝝓𝝓𝒂𝒂,𝒐𝒐 − 𝝓𝝓𝒂𝒂,𝒑𝒑�2

� + 𝜆𝜆2 ‖𝜕𝜕𝜕𝜕‖2 

Part 2: PSO –1D MT

Godio and Santilano (2018) proposed an early work on the adoption of PSO in MT. 
An Occam-like CI-based optimization was implemented

Godio and Santilano (2018): On the optimization of electromagnetic geophysical data: Application of the 
PSO algorithm. Journal of Applied Geophysics 148 (2018) 163–174

Structure minimization
sensu Constable et al., 1987 
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Part 2: PSO –1D MT

The stochastic nature of the optimization can be exploited to retrieve information on 
the uncertainties of the results, by analyzing the a posteriori distribution of solutions
A best practice, if possible, is to run the optimization several times with the same 
settings and assess statistically the quality of the resulting models

A-posteriori distribution 
from the Coprod dataset For each parameter a unimodal 

distribution of the estimated 
resistivity can point out the validity 
of the solution. 
Multimodal distributions indicate 
poorly resolved model. Simply 
statistic can evaluate uncertainty

The a-posteriori distribution 
analysis includes several effects
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Part 2: PSO –Simultaneous 1D MT-TEM

A further scheme was developed for the simultaneous analysis of MT and transient 
EM (TEM) data based on swarm intelligence (Santilano et al., 2018)
The work addressed the galvanic distortion of MT data. The effect is a frequency-
independent shift of the MT apparent resistivity curve for a constant multiplier

• This scheme is not purely joint and a single objective PSO is adopted
• TEM data are converted in MT data (Sternberg et al., 1988) based on the correlation 

between the time-domain diffusion depth and the frequency-domain skin depth: 
t=194/f



EMinar: Alessandro Santilano 16/06/2021

• Module: PSO MT-TEM
• Dataset: synthetic
• Unknowns= 19 +1(S)
• Swarm size= 300
• Max iterations= 200
• Boundaries = 1 – 2000 Ωm; 

0.001-10 (S)
• Model initialization=Random
• Trials: 25

Part 2: PSO –Simultaneous 1D MT-TEM

Santilano et al., 2018: Particle swarm optimization for simultaneous analysis of magnetotelluric and time-
domain electromagnetic data. Geophysics, 83 (3), E151–E159

In this work, the static shift parameter is included in the objective function as well as in 
the design vector (to be optimized) in addition to the resistivities. 
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Part 2: PSO –Simultaneous 1D MT-TEM

In the frame of the GEMex project, we analysed the MT and TEM data acquired by our 
Mexican and Icelandic colleagues for the study of the Acoculco Caldera. 
Results from an MT sounding with 1D dimension of Z are shown:

Article in prep.

The stochastic optimization of the static shift 
provides insight on the uncertainty
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Part 2: PSO –2D MT

The solution of the 2D MT problem by swarm intelligence faced main barriers: 
computational complexity and resource demanding

Let’s think about the number of forward solution to be computed by PSO:
a*b 

a population size (problem dependent)
b number of iterations (problem dependent)

Time to solve 1D MT forward problem t1D=0.02 (s), about a=170 and b=100
The total forward simulations last about 5-6 mins

Time to solve 2D MT forward problem t2D=0.12 (s), about a=5000 and b=3000
The total forward simulations last at least 1800000 mins

We spent much effort to optimize the code, to eliminate non essential 
computations and for parallelization 
The code is usually run on HPCs and an optimization lasts few hours.
Let’s think accomplishing sensitivity analysis on settings parameters…again! 



EMinar: Alessandro Santilano 16/06/2021

Part 2: PSO –2D MT

Objective function f(m) to be minimized for the 2D problem:

In Pace et al., 2019 (Geophysics), we 
adopted a Time-Variant PSO (PSO) 
The cognitive, social and inertia 
coefficients change with iterations

α1
k 2 … 0.5

α2
k 0.5 … 2

𝜱𝜱𝒌𝒌 0.9 … 0.4

Input arguments:
• N° of iterations. Problem dependent; ensure convergence
• Stopping criteria. Max iteration, same f(m) for n iteration, RMS  
• Acceleration coefficients 𝛂𝛂𝟏𝟏 and 𝛂𝛂𝟐𝟐. Sensitivity analysis
• Swarm size N. (problem dependent) Sensitivity analysis
• Initialization. Sensitivity analysis
• Boundaries of the search space. Avoid unnecessary search (extremely important)
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Part 2: PSO –2D MT

Early attempts on synthetic data: early tests and sensitivity analyses

• 2D model: 15 MT sites, ~ 900 grid cells, 33 layers, 10% Gaussian noise
• Swarm size =  8600; Iteration = 1674; Lagrange multiplier: λx = λz = 0.1
• Runtime = 28 h; RMS= ~ 1; Trials=3

Pace et al., 2019a: Particle swarm optimization of 2D magnetotelluric data. Geophysics, 84 (3) E125–E141

True model Resulting model
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Worst case
• Incomplete minimization
• Bad convergence
• Scattered distribution of 

particles

Best case
• Effective minimization
• Particles converge toward a 

unique position
• Unique peak in the histogram

Optimization performance: Long runtime, few trials. Assess the rate of convergence 

Part 2: PSO –2D MT
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Runtime speedup 
Test on HPC cluster for a reference PSO simulation:

5 hours instead of 26
runtime saving up to 80%

parallel environment “shared” 
faster than “orte”

150 iterations
10000-particles

24 cores

Part 2: PSO –2D MT
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The PSO2DMT module was firstly tested on the COPROD2 dataset (Pace et al., 2019a)

Part 2: PSO –2D MT

Module: PSO 2D MT
Dataset: COPROD2 
(Jones, 1993)
Unknowns= 340 (cells)
Swarm size= 2500

Max iterations= 6000
RMSE= 2.42
Computation-time= 8h
Parallelization= yes
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PSO was also adopted for the study of the Larderello geothermal system. Larderello is the 
perfect natural gym, the oldest field in exploitation in the world and still a research frontier
The PSO was tested in addition to conventional 2D and 3D inversions

Part 2: PSO –2D MT
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Boraciferous Lake sector. 
2D NLCG (Rodi and Mackie, 2001) and 2D MT PSO

Part 2: PSO –2D MT

Travale

1

2

Boraciferous Lake

RMSE = 3.55

Article in prep.

Profile 2: PSO 2D

Magmatic
intrusions



EMinar: Alessandro Santilano 16/06/2021

Boraciferous Lake. 2D deterministic (Rodi and Mackie, 2001) and 2D MT PSO

Part 2: PSO –2D MT

TravaleBoraciferous Lake
Best trial: 3975 iterations
final RMSE = 4.18
Computation-time on 24 cores (HPC) = 60 h

R2
C1

Vapour-
dominated, 
crystalline
reservoir
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The detailed study of the Larderello geothermal field deserves much more time to be 
presented and it is not showed today being out of scope….

Just for curiosity

• The most important conductive and resistive structures retrieved by 2D inversion have 
been confirmed by large 3D inversion (NLCG, MODEM Kelbert et al., 2014)

• Data integration with hundreds of deep geothermal wells, seismic, seismology, gravity, 
MT was the basis to solve specific scientific issues (articles under revision and in prep.)

• In the Lago Boracifero sector magmatic intrusions have been imaged whereas in the 
Travale sector shallow melted intrusions were not recognized (totally crystallized). The 
hydrothermal circulation was imaged

• We highlighted the role of large tectonic structures in the evolution of the system

• Recently a scientific deep well was drilled in the Lago B. reaching >500°C at 3 km 

Part 2: PSO –2D MT
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Part 2: PSO –Joint inverse problem

Quantitative data integration: Joint inversion

The joint inversion of different data sets can 
significantly improve the geophysical modelling:
• overcoming the limitations of each method
• reducing the number of equivalent solutions

Joint inversion common criticalities:
• The weighting factor between different scalar 

objective functions
• Data compatibility and possible conflicts 

between the objective functions
• Specifically for CI-based approach, increase of 

computational complexity
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Part 2: PSO –Joint inverse problem

Multi-Objective Evolutionary Algorithms have been adopted in literature:
• deploy a multi-objective optimizer (MOO) to solve a multi-objective problem: 

no simplification into a single-objective
• deploy a vector objective function: no need of the weighting factor
• simultaneously minimize two (or more) scalar objective functions

We adopted a Time-Variant Multi-
Objective PSO (MOPSO) and a 
mutation operator (similar to 
genetic algorithm) is applied to 
enhance global search

In this EMinar, we show the results of our early attempt solving the joint inverse problem 
of Vertical Electrical Soundings (VES) and TEM.
The problem is simpler due to one-dimension and one physical parameter 
Nowadays, we have solved and are validating the joint inverse problem of MT and gravity 
The following concepts are valid disregarding dimensionality and number of parameters

α1
k 2 … 0.5

α2
k 0.5 … 2

𝜱𝜱𝒌𝒌 0.9 … 0.4

Mutation
operator 0.5



EMinar: Alessandro Santilano 16/06/2021

Bi-objective optimization of TEM and VES (from Pace et al., 2019b, GJI)
The objective function to be minimized is a vector function:

𝑓𝑓 𝒎𝒎 = 𝑓𝑓1 𝑚𝑚 , 𝑓𝑓2 𝑚𝑚

𝑓𝑓𝑗𝑗(𝒎𝒎) =
𝜑𝜑𝑜𝑜 − 𝝋𝝋𝑐𝑐

�(σ𝜑𝜑 2

+ 𝜆𝜆 ∥ 𝜕𝜕𝒎𝒎 ∥2

j=1 for TEM objective,
j=2 for VES objective
m = [m1, …, mp] vector of electrical resistivity 

Pace et al., 2019b: Joint optimization of geophysical data using multi-objective swarm intelligence. 
Geophys. J. Int. 218, 1502–1521

• The physical parameter to be optimized is the same. 
• The components of the vector function refer to the objective function of TEM and 

VES computed on the same resistivity model m
• In case of different physical parameters (e.g. resistivity and density) the function refers 

to different models and a coupling factor can be used (e.g. structural or petrophysical)

Part 2: PSO –Joint inverse problem
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To avoid weighting the components of the objective function, a common approach is to 
exploit the Pareto Optimality, an economic concept developed by Vilfredo Pareto (1896)

Generally, given two solutions ma and mb, a vector f(ma) dominates f(mb) 
( f(ma) ≼ f(mb)) ↔∀ j ∈ {1, 2},  fj(ma) ≤ fj(mb) ∧ ∃ j ∈ {1, 2}: fj(ma) < fj(mb)

A solution is considered Pareto optimal if there is not another
feasible solution that improves one objective without 
deteriorating the other objective

All the non-dominated solutions form the Pareto optimal set 
(P*) and are stored in the repository. The best model (m) is 
selected from the repository

The Pareto Front (PF) is composed of the corresponding objective functions (TEM and VES) 
for the solutions forming P*: 

PF = { f(m) = (f1(m), f2(m)) | m∈ P*}.

Part 2: PSO –Joint inverse problem
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The adoption of the Pareto Optimality provides useful performance metrics (Coello Coello
et al., 2004):

Repository Index: 𝑹𝑹𝑹𝑹 (%) = 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

Spacing: 𝐒𝐒𝐒𝐒 = 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟−1

∑𝑖𝑖=1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 𝑑̅𝑑 − 𝑑𝑑𝑖𝑖

2

𝑑𝑑𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 𝑓𝑓1𝑖𝑖 𝒎𝒎 − 𝑓𝑓1
𝑗𝑗 𝒎𝒎 + 𝑓𝑓2𝑖𝑖 𝒎𝒎 − 𝑓𝑓2

𝑗𝑗 𝒎𝒎 ,       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
to measure the spread (distribution) of solutions throughout the Pareto Front

The deviation angle (α) tan 𝛼𝛼 = �𝑚𝑚−1
1+ �𝑚𝑚

between two lines: the bisector of the objective space and the linear fit of the PF. The 
metric assess the data compatibility

Part 2: PSO –Joint inverse problem
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A first real case study was on a dataset in Piemonte region (Italy) at Stupinigi close to 
a well (Pace et al., 2019b, GJI). 

RI=21.5%
SP=10-3

DEV=79°
Obtained information on data compatibility 
and quality of the results

• Module: MOPSO Joint Tem-VES
• Unknowns= 19
• Swarm size= 200
• Max iterations= 1000
• Boundaries = 1 – 500 Ωm
• Model initialization: Random

Part 2: PSO –Joint inverse problem
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The match with the stratigraphic log is relevant. 
The limitation of different sensitivity of TEM and 
VES is overcame
The set of Pareto optimal solution is useful for 
uncertainty assessment

Part 2: PSO –Joint inverse problem

VES TEMJoint

Joint
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The geophysical inverse problem can be constrained by external information
Common practices on deterministic codes usually implies a-priori information on the 
starting model or more advanced constraining acting on the structure. 

PSO can theoretically found an optimum without external information but for more 
complex problems and real data, external information can be of help to reach the 
optimum and to speed up the convergence

Part 2: PSO –External constraints

PSO supports various forms to exploit external information:

• Selectively limit the search space (hard constraint)

• Insert a penalty (or a gain) in the objective function related to 
the model parameters (hard constraint)

• Partially guide the initialization of the swarm
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We adopted the partial initialization of the swarm with particles that include a-priori 
information in order to influence the swarm’s flight

The idea is to adopt a technique able to consider the external constraints and to 
exploit or disregard them if necessary, in case the information is actually a bias

Part 2: PSO –External constraints

Ideal example of initialized
swarm with not relevant
information

The introduction of few known 
particles is a slight constraint and 
the swarm is able to move across 
the space if the a-priori earth 
models are not in agreement with 
data. 
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The following example of PSO on Vertical Electrical Sounding (VES) is from the GEMex
Project aimed at studying the geothermal system of the Acoculco Caldera in Mexico. 
The information from geothermal deep wells and the information from nearby VES 
soundings were used to partially initialize the swarm (a sort of laterally constrained)

Part 2: PSO –External constraints

• Module: PSOVES
• Dataset: Acoculco
• Swarm size= 500
• Boundaries = 1 – 1500 Ωm
• Model initialization: 

Random+constrained
• External information= 5% 

for each information (well 
and other models)

Article in prep.
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Practical and useful guidelines to solve the inverse problem by PSO:
1. Evaluate the mathematical complexity and computational load of the geophysical 

forward problem. 
2. Choice of the PSO variant
3. Model discretization. Match the fundamental needs and avoid excessive unknowns
4. Set properly input arguments: they are problem-dependent 

• The accelerations coefficients 
• Swarm size 
• Set the search boundaries properly (avoid excessive search) 
• Formulate properly the objective function

5. Parallelization of the code:
6. When PSO is running, check for effective minimization of the objective function
7. Assess uncertainty with a-posteriori evaluation of the PSO outcome

Part 2: Best practices
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Solving the geophysical inverse problem, specifically the magnetotelluric, is feasible by 
using swarm intelligence
…
It is feasible but difficult not only in terms of computational demand

Deterministic algorithms are by far conventional for the inversion of MT data
This is not a reason to avoid increasing the knowledge on probabilistic approaches 

Stochastics and global search can be of help to:
• face the dependence of the final solution from the starting guess
• look for the global minimum of the function 
• exploit randomness to assess the uncertainty 

Comprehensive works are required to lay the foundations for more complex problems
Ongoing and future research:
• PSO to solve 2D and 3D gravity inverse problems. Codes in final validation
• PSO to solve joint problem MT and Gravity. Codes in initial validation
• PSO to solve 3D MT inverse problem. Early-stage research

Part 2: Conclusions



EMinar: Alessandro Santilano 16/06/2021

Part of the research on the development of algorithms received 
funds by the EU in the frame of the IMAGE Project (FP7 no. 608553) 
and GEMex Project (H2020 no. 727550)

Part of the geophysical models are from the analysis of data 
acquired in the frame of research projects (IMAGE, GEMex, INTAS 
and FP6 I-GET) or kindly available from ENEL and CFE (Comisión
Federal de Electricidad)

The computational resources are from the HPC of the Politecnico di 
Torino and from CNR-IGG  

Acknowledgement



EMinar: Alessandro Santilano 16/06/2021

GlobalEM is programmed in Matlab
It includes in-house programmed routines and routines available from literature and further modified:
• The module 1D PSO MT exploits a modified PSO code from Chen, S. 2009. Constrained particle swarm 

optimization. “File Exchange” Environment of MathWorks
• The module 2D PSO MT exploits a code for the forward problem by Candansayar, M. E., 2008, Geophysical 

Prospecting, 56, 141–157. The module exploits a modified PSO code from Ebbesen et al., 2012. A generic PSO 
Matlab function. IEEE, Extended Abstracts, 1519–1524,

• The module joint TEM-VES exploits a modified MOPSO code from Coello Coello et al., 2004: Handling Multiple 
Objectives with PSO. The forward code are from CR1Dmod by Ingeman-Nielsen and Baumgartner, 2006. 
Comput. Geosci., 32, 1411–1419 and Ekinci and Demirci, 2008, J. Appl. Sci., 8, 4070–4078
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• Pace, F., Santilano, A., Godio, A. 2019. Particle Swarm Optimization of 2D Magnetotelluric data. Geophysics, 
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• Santilano, A., Godio, A., Manzella, A. 2018. Particle swarm optimization for simultaneous analysis of 

magnetotelluric and time-domain electromagnetic data. Geophysics, 83 (3), E151-E159.
• Godio, A. and Santilano, A. 2018. On the optimization of electromagnetic geophysical data: application of the 

PSO algorithm. Journal of Applied Geophysics 148, 163-174. 
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