shz & -

N ‘
"' g% _,«;A ¥ Politecnico
\ m \{nlhliu‘ﬂ:m::Lii‘.i”ﬁéiiil:: di Torino .
\ 1859 ;,

T > s \‘*“

Swarm intelligence applied to solve the <
magnetotelluric inverse problem §

Presenter: Alessandro Santilano
(CNR-IGG, Institute of Geosciences and Earth Resources)

Research group

. . Alberto Godio (Professor at Politecnico di Torino)
Eminar series Francesca Pace (Research fellow at Politecnico di Torino)
16/06/2021 Adele Manzella (Senior researcher at CNR-1GG)



¢ Politecnico
i Torino

@iw Acknowledgment

A special thank goes to the organization for this EMinar opportunity and to Alan
Jones for the networking effort

Today | am the presenter on behalf of a great research group
Alberto Godio Francesca Pace

(Professor at € e (Research fellow at
Politecnico di Torino) | Can Politecnico di Torino)

Adele Manzella Me
(Senior researcher at . (Researcher at
CNR-IGG) ” CNR-IGG)

EMinar: Alessandro Santilano 16/06/2021



PN )
@1'% Outline

¢ Politecnico
i Torino

This EMinar is structured into two main parts

A first educational part is focused on the optimization and the swarm intelligence. The
goal is to frame the pillar (and simple) concepts behind computational intelligence
Follows a second research part focused on the application of swarm intelligence to solve
geophysical inverse problems. The goal is to share with the community the results of the
research activities highlighting advantages, drawbacks and future perspective

Roadmap

PSO applied to joint and geologically
constrained inverse problem

Particle Swarm
y Optimization (PSO)

PSO applied to the MT
inverse problem

Introduction on the
optimization concepts
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Part 1: Optimization - an introduction

What optimization means?
Is the optimization a common
process in real life?

Optimization is the act of achieving the best possible result under given
circumstances (Astolfi, 2018. The art of optimization)

People optimize
Investors seek to create portfolios avoiding risks while achieving high returns.
Travellers minimize (at least attempt to) the travel time (or costs?)

Nature optimizes

Fermat’s Principle: rays of light follow paths that minimize their travel time
Evolution: highly specialized, complex structures often emerge when their most
inefficient elements are selectively driven to extinction

EMinar: Alessandro Santilano 16/06/2021
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Optimization is the minimization or maximization of a function subject to constraints on
its variables

Find
X = (X, X, ...., X,), n=number of variables
which minimizes an objective function

f(x)

subject to the constraints
gi(x) <0

forj=1,...,m, and
l(x)=0

fori=1,...,p

Example of feasible region in a 2D design
space. Only inequality constraints
are present (Astolfi, 2018)

Several problems cannot be analytically solved and a numerical approach is a way
One of the simplest case of optimization is: the knapsack problem...

EMinar: Alessandro Santilano 16/06/2021
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The knapsack problem: informal description
The burglar, who breaks into a house, faces the (knapsack) problem:

Determine the items to put in the knapsack, with a given constraint (knapsack strength),
ensuring a total value as large as possible

Given 100 available items the possible

solutions are 2190 (1.26765060022823e+30)
The problem is exponential

and the complexity must be reduced

The burglar can exploit some algorithm to select the best items to put in the knapsack
and satisfying the constraint

What does “the best” mean? (This is a key question in optimization modelling)
Most valuable item? Lightest item? Ratio value/weight?
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The solution of an optimization problem is a set of allowed values of the variables for
which the objective function assumes an “optimal” value.

The approach implies to iteratively search for the solution refining the initial guess(es).
We can take advantage of the following information: the objective function value

The conventional approach is deterministic

and derivative-based. The methods are the

state of the art, efficient and stable. The
e solution is searched locally

An alternative approach exploits stochastic

processes. Global search metaheuristics are

aimed to reach the global minimum

From http://fa.bianp.net/ A

The global minimum is reached when
x* € Fand f(x*) < f(x) for all x EF

ERROR

F is the feasible set of variables

£10Z ‘vffo1s
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Part 1: Search algorithms - Taxonomy

- | Steepest
—.| Direct descent
search
—= Newton
| General Univariate
approaches search
. —| Local - }(Iguasi-
Classical L Newton |
|| Conjugate
methods gradient
| Gauss-
|| Gradient Nonlinear | | Newton
based least-squares | _[Tevenberg-
Marquardt
| | Constrained =
methods
onlinear Deterministic
imizati S Spac: Branch and Algebrai
timization sl el B ngtmr;
Techniques
Probabilistic N E_ll
. Intelligence (AI)
Stochastic and T ) 8
. Algcrithxm Oft l\l]lgﬂ..l..‘,
Computat|0na| b i ](‘n:yx:[n!li.‘muz(.;'\ll
nteilgence )
Intelligence-based fladeetis e
Computation (EC)
Memeti
Focus of the lecture R | e
L—| Global Simulated Evolutionary Harmonic
Annealing (SA) [ | Algorithms (EA) T Search (HS)
Tabu Search | | L Genetic Swarm
(TS) Algorithms (GA) Intelligence (SI)
Parallel | | (LCS) Learning Ant Colony
Tempering | Classifier System Optimization (ACO)
Stochastic Evolutionary Particle Swarm
Tunneling | | Programming Optimization (PSO)
ifi Direct M Evoluti
modified from Wang et al., Dotk | gEie
2008; Weise, 2009 (GP) Genetic
Programming
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The conventional algorithms are iterative and exploit deterministic transition rules. A
deterministic method produces always the same output if it is run on the same input.

An initial guess of the solution is iteratively refined. For non-linear problem, some methods
implies a linearization (by differentiation)

As example, a common method is the Gauss-Newton
An early description appeared in Gauss' 1809 work to
solve an astronomic problem: Theoria motus corporum
coelestium in sectionibus conicis solem ambientum

8 ... 1
A\

The algorithm finds x that minimizes the vector of ==
residuals (between measured and modelled data). 15t Hero of the day
Starts with an initial guess for x, the function is Carl Friedrich Gauss
linearized exploiting the Jacobian matrix and 1777-1855
iteratively the least square solution is obtained A genius who has contributed in

several fields of science
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Metaheuristics are strategies that guide the search process

Computational intelligence-based global search paradigms differ from traditional search:

e Use a population of points (agents) in their search. Each point represents a solution to
the problem, interact each other intelligently and explore larger model space domain

* Learning strategies are used and stochastic transition rules are adopted

e Use directly “fitness” information, instead of function derivatives

-

L4

Can computers be intelligent?

This question redirect us to the concept of
Artificial Intelligence.

In the mid-1900s, Alan Turing paved the way
on this topic. Turing strongly believed that a
well-designed computer could do anything
that the brain does. His statements are still
breakthrough.

2° Hero of the day
Alan M. Turing (1912-1954)
A genius father of informatics and Al

contributed to many fields of science
and to the end of the WWII
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Intelligence: Ability to perceive information, and retain it as knowledge to
be applied towards adaptive behaviours (Wikipedia)

Computational intelligence

(
Nature-inspired metaheuristics - -
: : £ r AN
Population-based algorithms {-
—
Evolutionary ~ . | sl 4
algorithms k«r"‘
(e.g. GAs)

Focus of the EMinar

Computational Intelligence (Cl) comprises algorithms that enable
an intelligent behaviour in complex and changing environments.
Ability to learn and/or to deal with new situations

Swarm Intelligence (SI) emerges from the collective behavior of a
large number of agents. SI-Algorithms are inspired by the behavior
of groups of animals in nature

EMinar: Alessandro Santilano 16/06/2021
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Are computational intelligence methods recent? Cl is known since decades even if most
scientists were (sometimes still are) skeptical.
It is hard to frame its history (we risk to get stuck in a philosophical debate)

1950s: Alex Fraser used computers to simulate natural genetic systems

1970s: John Holland developed the famous “genetic algorithm”

1980s: swarm intelligence was simulated and metaheuristics arrived since the 1990s.
1984: the “Santa Fe” was founded as the first institute to study complex adaptive systems
(Waldrop’s book Complexity: The Emerging Science at the Edge of Order and Chaos)

Popularity
. . . . . Explosive
A main limit was the computational requirements Growth /"
. . N
Recently, industry, science and governments - S
L . ew opes ~
focused the attention as computational power <z
increased drastically in the last years ] o
e
. Al winter Il §
; G
Birth Al uflnterl .: g
| ] £
1950 1956 1974 1980 1987 1993 Time
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One of the first example of swarm intelligence was provided by Craig Reynolds (1987) with
“Boids”, an artificial life program, which simulates the flocking behavior of birds.
The boids’ flight (bird-oid objects) obeys to the three rules: Alignment-Cohesion-Separation

(A) Alignment (B) Cohesion (C) Separation

The program is able to artificially simulate
real life animal social behavior. In this case
without any scope to solve optimization

problems Video 1

The video is generated by a Matlab code available at:
https.//qithub.com/b3rnoulli/boids-model

The picture on rules is from Di Caro’s lecture (CMU),
available at https.//web2.qatar.cmu.edu/~qdicaro/15382/

EMinar: Alessandro Santilano 16/06/2021
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How Swarm intelligence can be applied to solve problems?

Let’s think about a boids-like simulation with an additional attraction point (food or roost)
Each agent:

e s attracted to the location of the food

* remembers its closest position to the food

e shares information about its closest location to the food

- > e
™

™ W
~ v

,{)

™
>

What about if?
* Flight space=optimization landscape (search space, values of x)
* Food (or roost)= extremum of a function (the best solution)
e Distance to the roost = quality of the current solution of each agent
 How to assess the quality? By using the objective function

this slide is adapted from Di Caro’s lecture (CMU)
available at https://web2.qatar.cmu.edu/~qdicaro/15382/

EMinar: Alessandro Santilano 16/06/2021
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The Particle Swarm Optimization PSO is a nature-inspired heuristic optimization

method proposed by Kennedy and Eberhart (1995) and is based on two main concepts:

1) simulation of the swarm intelligence and the social behavior observed in animals
that group together

2) evolutionary computation

Features:

Multi-agent: population based

Interaction: information is shared between agents
Emergence: interaction lead to the emergence of a
“super-organism”. The whole is more than the sum
of its parts

PSO looks for the global minimum solution of a problem by mimicking the social
behavior of flock of birds or school of fishes

EMinar: Alessandro Santilano 16/06/2021
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How it works to solve numerical optimization problems

e The swarm consists of N particles

e Each particle represents a feasible solution x €X" € R" for the problem, sampling in a
multidimensional search space (e.g. in MT is the set of electrical resistivity values)

* At the k" iteration, the position of each particle in the search space is evaluated by the
objective function f(x) and represents the fitness

e Particles iteratively move and fly over the search space updating their position by
using a displacement vector called velocity

* The velocity vector of each particle is influenced by randomness, by its own
experience and that of its neighbors (intelligent behavior)

e Theoretically (and hopefully) the swarm will converge to optimal positions

EMinar: Alessandro Santilano 16/06/2021



@iw Part 1: Swarm Intelligence — the PSO algorithm

For each particle x; the position xé‘ is updated

at x5t by computing a velocity vector v¥*1

e+l _ ko ko, (P
L4 —@"i tanlP)

Xf:H-l )k +v£€+1

xi‘) + aé‘yz(G — x{"’)

The adaptive behavior is a balance among:
Cognitive acceleration af: towards personal best Pi
Social acceleration a%: towards global best G

v’ Inertia weight w®: momentum of the particle

= ~

Exploration | Exploitation
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Ideal convergence of the swarm

€
c K=0
o
o
~
E max
E Value of the
~ objective function
min
fithess
1/ 1° layer 700 Om

search space

! | i
min

fitness

/ .

search space
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search space
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min
fitness

/ X
search space

this slide is adapted from Di Caro’s lecture (CMU)
available at https://web2.qatar.cmu.edu/~gdicaro/15382/
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The solution of the geophysical inverse problem provides a physical earth model m, from
the observations measured on surface d

Gm) =d

The physic behind the method is understood and specified in the “forward operator”, G
Conversely, the forward problem is to find d given m

The magnetotelluric (MT) inverse problem is non-linear and ill-posed.

The computational complexity of the problem drastically increases with its
dimensionality. For this reason, the application of stochastic population-based algorithms
is not conventional and represents a challenge.

Deterministic algorithms are by far conventional for the inversion of MT data. The

community relies on the state-of-the-art algorithms for 1D, 2D and 3D inversion. We stress
that the dimensionality of the MT data drove the dimension of the problem to solved

EMinar: Alessandro Santilano 16/06/2021
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~ Why Cl-based approach to solve the geophysical inverse problem?

The Cl-based approaches attempt to:

* face the dependence of the final solution from the starting guess
e |look for the global minimum of the function

e exploit randomness to assess the uncertainty

The aim of our research was to adopt and validate PSO to solve the MT inverse problem
Various research groups are working with PSO in geophysics but few studies were
completely addressed to MT

We started with the 1D problem and continued with the solution of more complex 2D
and joint problems, now implemented in the “GlobalEM” matlab package

Comprehensive works are required to lay the foundations for more complex problems
such as the 3D (our next target)

EMinar: Alessandro Santilano 16/06/2021
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Part 2: PSO - Geophysical application

The adoption of PSO is increasing in scientific works, recently, also in Earth Sciences
In Pace et al., 2021 a review of PSO application for geophysical modelling is available

engi
controller

particle,
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A Review of Geophysical Modeling Based on Particle Swarm
Optimization

Francesca Pace'® . Alessandro Santilano?(® . Alberto Godio '

Received: 14 Dacember 2020 / Accepted: 27 February 2021
©The Author(s) 2021

Abstract

This paper reviews the application of the algorithm particle swarm optimization (PSO) to
perform stochastic inverse modeling of geophysical data. The main features of PSO are
summarized, and the most important contributions in several geophysical fields are ana-
lyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies
that have been adopted to model the Earth’s subsurface and then to undertake a critical
evaluation of their benefits and limitations. Original works have been selected from the
existing geophysical literature to illustrate successful PSO applied to the interpretation of
electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data,
self-potential, direct current and seismic data. These case studies are critically described
and compared. In addition, joint optimization of multiple geophysical data sets by means
of multi-objective PSO is presented to highlight the advantage of using a single solver
that deploys Pareto optimality to handle different data sets without conflicting solutions.
Finally, we propose best practices for the implementation of a customized algorithm from
scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the
benefit of PSO practitioners or inexperienced researchers.

Keywords Particle swarm optimization - Stochastic inverse modeling - Inversion - Swarm
intelligence - Optimization - Joint optimization
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PSO for solving the magnetotelluric inverse problem: 1D
Resistivity * The parameters to be optimized are the

Search domain resistivities of layers

1-10000 Q*m m; e Select the main settings of PSO (population,
1-10000 Q*m iterations, accelerations)
1-10000 Q*m
Fixed * Population size and iteration number are
1-10000 O*m Discretized earth thickness problem dependent
model of layers
e The search domain (lower and upper
boundaries) is defined for each parameter
mn

1-16000 Q*m e Each particle is a vector design m of model

parameters and represents an earth model
that is tested according to a minimization
function

EMinar: Alessandro Santilano 16/06/2021



Part 2: PSO-1D MT

The algorithm, each generation, updates the model parameters

The emerged model toward the swarm converged is the final

resistivity model (or a set of model within a tolerance)

size and iterations

The convergence is affected by velocity’s terms, the population

Several models are tested, i.e. several forward computations

. 1Best: 0.406698 Mean: 0.597641

1
0.9

0.8

Score

0.7

0.6

0.5

0.4

1 1.5 2
Generation
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Define: swarm size, # iterations,
boundaries, Lagrange multiplier.

I Generate first swarm ‘

/

1
"2,
3.

4.

Q

foreach particlei :

~

Update velocity and position ~

Evaluate fitness function
Currentfitness < P fitness?

v" P fitness=current fitness N

Current fitness < G fitness?
v" G fitness=current fitness
Next particle

>

[o]

J

NO
- Stop criterion?

More trials can be run, i.e. optimizations with same settings

i Politecnico
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From Pace et al., 2019a

Best: 0.332693 Mean: 14.8318
30

25

10
Generation

ggast: 0.276356 Mea

Y

ot
Il

n: 0.373708

* Mean Score
+  BestScore

Generation
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Godio and Santilano (2018) proposed an early work on the adoption of PSO in MT.

An Occam-like Cl-based optimization was implemented

—+— PSO, Minimum RMS model

3

¥ (m) = (a”pa,o - pa,p”Z + b”¢a,o - ¢a,p”2) + /12 ||5m||2

-}- Observed data (COPROD)

—— 25 models from PSO
——=Model from statistics
(median values)

* PSO, Model from statistics
(median values)

Apparent Resistivity (Ohm m)
—
<L

10°
L]

%ﬁ _ -

—10%
10’ s
10" 10° 10° 10" ¥
80 e
53
60 i 10
T : -
Bap
+ 105_
20
0 1 1 L "
10" 10° 10? 10" 10" 10° 10° 10

Frequency (Hz) Resistivity [ ohm m ]

== Jones and Hutton, 1979
= Constable et al., 1987

= Model from PSO (Median)

10

1

100 10° 10°

Resistivity [ chm m ]

Structure minimization
sensu Constable et al., 1987

Module: PSO 1D MT
Dataset: Coprod (Jones and
Hutton, 1979)

Unknowns= 20 (layers)
Swarm size= 300

Max iterations= 200
Boundaries =1 - 5000 Om
Model initialization: Random
Trials: 25
Computation-time = 6 min
Parallelization= no

Godio and Santilano (2018): On the optimization of electromagnetic geophysical data: Application of the
PSO algorithm. Journal of Applied Geophysics 148 (2018) 163—174
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Part 2: PSO-1D MT

The stochastic nature of the optimization can be exploited to retrieve information on
the uncertainties of the results, by analyzing the a posteriori distribution of solutions
A best practice, if possible, is to run the optimization several times with the same
settings and assess statistically the quality of the resulting models

For each parameter a unimodal
distribution of the estimated
resistivity can point out the validity
of the solution.

Multimodal distributions indicate
poorly resolved model. Simply
statistic can evaluate uncertainty

The a-posteriori distribution
analysis includes several effects

EMinar: Alessandro Santilano 16/06/2021

—— 25 models from PSO ... . .
——Model from statistics A-posteriori distribution

(median values)

102| I from the Coprod dataset
10 . 5 R i ;
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8f
10° i T @
a 6f i
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A further scheme was developed for the simultaneous analysis of MT and transient
EM (TEM) data based on swarm intelligence (Santilano et al., 2018)

The work addressed the galvanic distortion of MT data. The effect is a frequency-
independent shift of the MT apparent resistivity curve for a constant multiplier

e This scheme is not purely joint and a single objective PSO is adopted
e TEM data are converted in MT data (Sternberg et al., 1988) based on the correlation
between the time-domain diffusion depth and the frequency-domain skin depth:

t=194/f
Synthetic model 2
MT and TDEM synthetic response
S it i s o
; : 4 m | — D‘Qd\
2 _ 1 40 m
2 5| 1D undistorted’
B Wy St E 600 m|—100 (@m)
3 .E t TDEM 3
T E L (converted) curve 5%
c O [
€210, Static shifted
Q i curve
Q [
< [ ]
0
10 PP TP TP PP PP S PP I RP NP 1.:.., P L._..... " L.:“_. P 10 (Qm)
10 10° 10° 10" 10° 10" 10° 107 2000 @
Frequency (Hz)
Half-space
1000 (©@m)
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In this work, the static shift parameter is included in the objective function as well as in
the design vector (to be optimized) in addition to the resistivities.

Y(m)= (C"H E’a.o) _pa.p||2 +b||¢a.o‘¢a.p“2 +C|

PSO Optimization: synthetic model 2
10 10

Legend

—— Synthetic MT data
Modelled data from
+ optimized model
1 (minimum NRMS)
== Synthetic TDEM data
Synthetic MT data
=== shifted for optimized S
S5=8.3 (minimum NRMS model)

Apparent Resistivity

£ 10°F
=10t E

oy

o

10°

©
o
Depth (m)

— Optimized models

Optimized model
{minimum NRMS)

45} ] 10t
""" Synthetic 1D model

100 10> 10° 10" 10" 10" 10° 10° 10" 1075 2
Frequency (Hz) 10 10 10
Resistivity (Ohm*m)

Pa(TDEM).0 — Pa(TDEM).p Hz) + Allom|[,.

Module: PSO MT-TEM
Dataset: synthetic
Unknowns= 19 +1(S)

Swarm size= 300

Max iterations= 200
Boundaries =1 — 2000 Om;
0.001-10 (S)

Model initialization=Random
Trials: 25

Santilano et al., 2018: Particle swarm optimization for simultaneous analysis of magnetotelluric and time-

domain electromagnetic data. Geophysics, 83 (3), E151-E159
EMinar: Alessandro Santilano 16/06/2021
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In the frame of the GEMex project, we analysed the MT and TEM data acquired by our
Mexican and Icelandic colleagues for the study of the Acoculco Caldera.
Results from an MT sounding with 1D dimension of Z are shown:

The stochastic optimization of the static shift
provides insight on the uncertainty

Joint TEM-MT: AC063

-
o
W

> Field Data

E ]
9, = Minimum NRMS model| |
> = Median model
= » TDEM field data
= 10° ‘
= X
n XX
v X
L . #"QX
+ 10! =X
5 N LR '
— x;;(lll wpn OX
g XXX XX
o 9 1.4 1.45 15 155
< Static shift
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Frequency (Hz) Resistivity (Qm)

Article in prep.
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The solution of the 2D MT problem by swarm intelligence faced main barriers:
computational complexity and resource demanding

Let’s think about the number of forward solution to be computed by PSO:
a*b
a population size (problem dependent)
b number of iterations (problem dependent)

Time to solve 1D MT forward problem t,,=0.02 (s), about a=170 and b=100
The total forward simulations last about 5-6 mins

Time to solve 2D MT forward problem t,,=0.12 (s), about a=5000 and b=3000
The total forward simulations last at least 1800000 mins @
'S 2

)
We spent much effort to optimize the code, to eliminate non essential
computations and for parallelization
The code is usually run on HPCs and an optimization lasts few hours.
Let’s think accomplishing sensitivity analysis on settings parameters...again! @
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Objective function f(m) to be minimized for the 2D problem:

1 ao ~ Fa . i | o 2\
F(m) = (E Bue - Porll "4 g 5 f” ) + Ay 10ymll; + 2, 119, mll
a,o 2 ] 2
In Pace et al., 2019 (Geophysics), we - .
adopted a Time-Variant PSO (PSO) % 205 o B
The cognitive, social and inertia a," 05..2 &
. . . . . Y
coefficients change with iterations Pk 0.9..04 N
- yz(Pf‘.r’f
i )
P;

Input arguments:

 N° of iterations. Problem dependent; ensure convergence

e Stopping criteria. Max iteration, same f(m) for n iteration, RMS

e Acceleration coefficients a; and a,. Sensitivity analysis

e Swarm size N. (problem dependent) Sensitivity analysis

e Initialization. Sensitivity analysis

 Boundaries of the search space. Avoid unnecessary search (extremely important)
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Early attempts on synthetic data: early tests and sensitivity analyses

e 2D model: 15 MT sites, ~ 900 grid cells, 33 layers, 10% Gaussian noise
e Swarm size = 8600; Iteration = 1674; Lagrange multiplier: Ax=Az =0.1
e Runtime =28 h; RMS= "~ 1; Trials=3

Depth (m)

True model Resulting model

S1 182 83 S4 S5l S6 87 S8 SO S10 S11 812 S13 S14_Si5 ot 82 83 84 S5, 56 S7 S8 39  S10 Si1 S12 S13 Si4 S15
| ——

Depth (km)

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Distance (km) Logp (2m) Distance (km) Logp (©2m)
| ] L L I [ B 1 1 I ——
0 0.5 1 1.5 2 0 05 1 1.5 2

Pace et al., 2019a: Particle swarm optimization of 2D magnetotelluric data. Geophysics, 84 (3) E125—-E141
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Part 2: PSO-2D MT e

Optimization performance: Long runtime, few trials. Assess the rate of convergence

7 o) m m
- Mean F(m) Initial positions
6 - Minirmumn F{m) 5. + Last positions

Worst case 250 za

. . . . ‘I4 '_,'._N T . “Iﬁ ) .
* Incomplete minimization AN =
T R 150

® Bad Convergence 50 100It ; 150 200 250 ® 50 o ()
* Scattered distribution of ? 2y ” s
. 150i 3 Lo La?t:pgfiti.ons : %’4000
particles . R
SDi Emoo
20 40 60 80 ) (‘Isgrﬂh) 120 140 160 180 200 28 3 35 é(m) 45 5
a) . b)
- Mean F(m)
5 + Minimum F(m), 6-]‘
Best case - £ 4
e Effective minimization N ol ©
0 T »150 200
¢ Pa rt|C|eS Converge towa rd d "o 100 20 ation® 400 500 v o o 50 n1((:§)m)
. oy o d)
unl.que p05|t|9n |
 Unique peak in the histogram = s bostine
Eﬁ‘wo}r @ %6000
i 50%_ ? éaooo
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Runtime speedup
Test on HPC cluster for a reference PSO simulation:

30 \ \ 100
Parallel Environment
------ Shared-+Orte 90
\
25 .
N ek
00 \'\4 ,___ ______ 70
N, LT
= N e -60 =
E—— "\ _’f - e—r
) A i o
E15 N 50 3
5 AT 3
' I R 140 &
4 R
10 - .:j; '*.1-‘-——_.____ - 30
’_J'} -"-_‘- _______ 20
5 _ ijj ................................ .
s 10
.",
0 | 4 | | | | | | | O
0 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of cores

5 hours instead of 26
runtime saving up to 80%
parallel environment “shared”
faster than “orte”

150 iterations
10000-particles
24 cores

\ 4
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The PSO2DMT module was firstly tested on the COPROD2 dataset (Pace et al., 2019a)

20 ' ! !
B Period = 56.89 5
g ]
07 06 05 4504 3503 02 O1 E1 E2 E3 E4 14 13 12 1 10 09 08 £ - !
10

| '
2 4 B 8 10 12 14 186 13 20

! Station n.
20 cu- Jno —n.
g gzo ;";“;--;-—o—-;—v-z--e—-;Le_-e—-e--?'“"?“@--ﬂ——f—e
ZSO 00 2 4 ] i; 10 12 14 1IS 18 2n
‘é Station n.
[a]
“ e
50 :5;,0_
60
0 20 40 60 80 100 120 140 160 180 80
Distance (km) Logp (2m) %40
I | 2
1 0‘5 cl) 05 1 1!5 ; 25 3 a2
Module: PSO 2D MT Max iterations= 6000 pwesnoiss ||
Dataset: COPROD?2 RMSE= 2.42 R il e
(Jones, 1993) Computation-time= 8h T
Unknowns= 340 (cells)  Parallelization=yes @ s,
. %40 !_'.‘TW
Swarm size= 2500 S R D R I SR B
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Part2: PSO-2D MT

PSO was also adopted for the study of the Larderello geothermal system. Larderello is the
perfect natural gym, the oldest field in exploitation in the world and still a research frontier
The PSO was tested in addition to conventional 2D and 3D inversions

from Bertani 2017
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Test nd Article in prep.
Starting model: Homogeneous (100 Qm)
Profile 1 Profile 2
km| RMS: 3.88 km | RMS: 6.26
o.h._.' 0 - . - . '

-

-5

-10

0 5 10 15km 0 4 8 12 km
Test n.2
Starting model: Geology
Profile 1 Profile 2
km|RMS: 3.97 kmiRMS: 6.69

0

-5

-10

10 15Skm 0 4 8 12 km

o
w

Test n.3 (final resistivity profiles)
Starting model: PSO Optimized models

Profile 1
km [RMS: 3.85 km B¥S: 6.61
A .

15 km 0 4 8 12 km

0 5 10
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Part 2: PSO—2D MT e

Boraciferous Lake sector.
2D NLCG (Rodi and Mackie, 2001) and 2D MT PSO

6000
2500

1000
400

100
40

10

BT (W) d

Tirrhenian Sea

Magmatic
intrusions

LS15LE1B

i il ;
a 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Distance (km)




Depth {km)

154 E;’ 3,
EH iE

@i% {Stoctl} Fpitesrico
Part 2: PSO-2D MT vy

Boraciferous Lake. 2D deterministic (Rodi and Mackie, 2001) and 2D MT PSO

Best trial: 3975 iterations W I TR e A R

final RMSE = 4.18 " Boraciferous Lake = Travale

Computation-time on 24 cores (HPC) =60 h | , '

Vapour-
dominated,
crystalline
reservoir

0 2 4 6 8§ 10 12 14 16
Distance (km)

0 0.5 1 1.5 2 25 3 3.5 4
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The detailed study of the Larderello geothermal field deserves much more time to be
presented and it is not showed today being out of scope....

Just for curiosity

e The most important conductive and resistive structures retrieved by 2D inversion have
been confirmed by large 3D inversion (NLCG, MODEM Kelbert et al., 2014)

e Data integration with hundreds of deep geothermal wells, seismic, seismology, gravity,
MT was the basis to solve specific scientific issues (articles under revision and in prep.)

* |In the Lago Boracifero sector magmatic intrusions have been imaged whereas in the
Travale sector shallow melted intrusions were not recognized (totally crystallized). The
hydrothermal circulation was imaged

* We highlighted the role of large tectonic structures in the evolution of the system

* Recently a scientific deep well was drilled in the Lago B. reaching >500°C at 3 km
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Quantitative data integration: Joint inversion

The joint inversion of different data sets can
significantly improve the geophysical modelling:
e overcoming the limitations of each method

e reducing the number of equivalent solutions

Joint inversion common criticalities:

* The weighting factor between different scalar
objective functions

e Data compatibility and possible conflicts
between the objective functions

e Specifically for Cl-based approach, increase of
computational complexity

EMinar: Alessandro Santilano 16/06/2021

Part 2: PSO —Joint inverse problem

Meshing

,
o f; Politecnico
(T n%‘fm; di Torino

Method 1 || Method 2 ||Coupling &
Forward Forward smoothing
Model i+1
!
Evaluate

Obj function

(o)

No




Sy

Part 2: PSO —Joint inverse problem

Multi-Objective Evolutionary Algorithms have been adopted in literature:
e deploy a multi-objective optimizer (MOO) to solve a multi-objective problem:

no simplification into a single-objective
* deploy a vector objective function: no need of the weighting factor
e simultaneously minimize two (or more) scalar objective functions

We adopted a Time-Variant Multi-
Objective PSO (MOPSO) and a
mutation operator (similar to
genetic algorithm) is applied to
enhance global search

/% Politecnico

i Torino

o, 2..05
a,* 0.5..2
bk 09..0.4
Mutati
utation 05
operator

In this EMinar, we show the results of our early attempt solving the joint inverse problem
of Vertical Electrical Soundings (VES) and TEM.
The problem is simpler due to one-dimension and one physical parameter
Nowadays, we have solved and are validating the joint inverse problem of MT and gravity
The following concepts are valid disregarding dimensionality and number of parameters
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Part 2: PSO —Joint inverse problem

Bi-objective optimization of TEM and VES (from Pace et al., 2019b, GJI)
The objective function to be minimized is a vector function:

fm) = [fi(m), f,(m)]

2

f](m) _ H(‘po) - ()‘pc)
2

j=1 for TEM objective,
j=2 for VES objective
m=[m, .., mp] vector of electrical resistivity

e The physical parameter to be optimized is the same.

 The components of the vector function refer to the objective function of TEM and
VES computed on the same resistivity model m

* |n case of different physical parameters (e.g. resistivity and density) the function refers
to different models and a coupling factor can be used (e.g. structural or petrophysical)

Pace et al., 2019b: Joint optimization of geophysical data using multi-objective swarm intelligence.
Geophys. J. Int. 218, 1502—-1521
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To avoid weighting the components of the objective function, a common approach is to
exploit the Pareto Optimality, an economic concept developed by Vilfredo Pareto (1896)

Generally, given two solutions m, and m,, a vector f(m,) dominates f(m,)
(flm,) < flmy)) & Vj €11, 2}, fi(m,) <f(m,) A Fj € {1, 2}: f{m,) < f(m,)

A solution is considered Pareto optimal if there is not another 4 Dominated

feasible solution that improves one objective without ® Nondominated s
deteriorating the other objective | ® 2
All the non-dominated solutions form the Pareto optimalset o | * T o
(P*) and are stored in the repository. The best model (m) is ¢ ., §§
selected from the repository ° > =&

Objective 1

The Pareto Front (PF) is composed of the corresponding objective functions (TEM and VES)
for the solutions forming P*:

PF ={f(m) = (f,(m), f,(m)) | me P*}.
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Part 2: PSO —Joint inverse problem

The adoption of the Pareto Optimality provides useful performance metrics (Coello Coello
et al., 2004):

Nrep

Repository Index: RI (%) =

tot

Spacing: SP =\/ Nrep(d d)
Nrep—

d; = mln](lfll(m) - flj(m)l + |le(m) - fz (m)l) , Lj=1,.., Npep
to measure the spread (distribution) of solutions throughout the Pareto Front

The deviation angle (a) tan(a) = |1+m

between two lines: the bisector of the objective space and the linear fit of the PF. The
metric assess the data compatibility
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A first real case study was on a dataset in Piemonte region (Italy) at Stupinigi close to
a well (Pace et al., 2019b, GJI).

' ‘ I ° Mean (b] I I e Mtlaan
e Module: MOPSO Joint Tem-VES 16 L+ Minimym) 1.5&; * Minimum}
e Unknowns= 19 ' 145
e Swarm size= 200 . 8"}
. . = o 1t
* Max iterations= 1000 H 2 3
= 508 H
e Boundaries=1-500 Om £ | | 5o, ¥ |
* Model initialization: Random e _ 0_4% i |
’ : ‘ D-EM 02 &-—n—q
0 200 400 600 800 1000 0 200 400 600 800 1000
08 Iteration Iteration
0.7
208
%0.5
2., RI=21.5%
B
. SP=10-3

DEV=79° . : . -
Obtained information on data compatibility

and quality of the results

0 0.2 04 0.6 0.8 1
TDEM Objective
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. . . . = Predicted
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The limitation of different sensitivity of TEM and =
. ]
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. . . 10° 107 10
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» EE
= Joint
10100 10° 102
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a 60f 2 60 g 60
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80 80
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JOI nt : :ae;ett:;::::;n 100 V ES —g«::t stcv!u::ion 100 TE M 73&::1 stol_uTion ‘
120 ' 1 . ‘ er trials ‘ . er trials
0 100 200 300 50 100 150 200 250 3 50 100 150 200 250 300

Resistivity [(2m] Resistivity [m] Resistivity [$2m]
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Part 2: PSO — External constraints

The geophysical inverse problem can be constrained by external information
Common practices on deterministic codes usually implies a-priori information on the
starting model or more advanced constraining acting on the structure.

PSO can theoretically found an optimum without external information but for more
complex problems and real data, external information can be of help to reach the

optimum and to speed up the convergence

PSO supports various forms to exploit external information:

e Selectively limit the search space (hard constraint)

37 * Insert a penalty (or a gain) in the objective function related to
the model parameters (hard constraint)

 Partially guide the initialization of the swarm Lo o<Gandoml 4

- . -
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We adopted the partial initialization of the swarm with particles that include a-priori
information in order to influence the swarm’s flight

The idea is to adopt a technique able to consider the external constraints and to
exploit or disregard them if necessary, in case the information is actually a bias

Ideal example of initialized
. ) swarm with not relevant
. !‘ information

The introduction of few known
particles is a slight constraint and
the swarm is able to move across
the space if the a-priori earth
. . !’ models are not in agreement with

* data.
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The following example of PSO on Vertical Electrical Sounding (VES) is from the GEMex
Project aimed at studying the geothermal system of the Acoculco Caldera in Mexico.
The information from geothermal deep wells and the information from nearby VES
soundings were used to partially initialize the swarm (a sort of laterally constrained)

e Module: PSOVES

0 S =
 Dataset: Acoculco i pj——T
. 600 = gf
 Swarm size= 500 = | E —F
e Boundaries=1-1500 Om g -
1200 s 1200
 Model initialization: 1a00 - N
Rand . d 1600 1 : — ]2_{
andom+constraine - — == s
e External information=5% ¥

for each information (well

: I300
and other models)

200

100

Depth (m)

1
0 5000 10000 OQm

i . . . Distance (m)
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Practical and useful guidelines to solve the inverse problem by PSO:

1.

w

o

Evaluate the mathematical complexity and computational load of the geophysical
forward problem.
Choice of the PSO variant
Model discretization. Match the fundamental needs and avoid excessive unknowns
Set properly input arguments: they are problem-dependent

e  The accelerations coefficients

. Swarm size

. Set the search boundaries properly (avoid excessive search)

. Formulate properly the objective function
Parallelization of the code:
When PSO is running, check for effective minimization of the objective function
Assess uncertainty with a-posteriori evaluation of the PSO outcome

EMinar: Alessandro Santilano 16/06/2021



,
o f; Politecnico
T u'%‘fm; di Torino

Part 2: Conclusions
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Solving the geophysical inverse problem, specifically the magnetotelluric, is feasible by
using swarm intelligence

It is feasible but difficult not only in terms of computational demand

Deterministic algorithms are by far conventional for the inversion of MT data
This is not a reason to avoid increasing the knowledge on probabilistic approaches

Stochastics and global search can be of help to:

* face the dependence of the final solution from the starting guess
* |look for the global minimum of the function

e exploit randomness to assess the uncertainty

Comprehensive works are required to lay the foundations for more complex problems
Ongoing and future research:

e PSO to solve 2D and 3D gravity inverse problems. Codes in final validation

e PSO to solve joint problem MT and Gravity. Codes in initial validation

* PSO to solve 3D MT inverse problem. Early-stage research
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