EDINBURGH GEOSCIENCE ADVISORS LTD

MULTI-PHYSICS ANALYSIS: EXTRACTING THE MOST FROM DIVERSE DATASETS

MTNET EMINAR

SOCIETY OF EXPLORATION _____ GEOPHYSICISTS _____

Dr. LUCY MACGREGOR July 2021

SEG and SEG Foundation

\bigcirc	EDINBURGH GEOSCIENCE
	Advisors

Many colleagues, former colleagues and collaborators:

- Richard Cooper
- Pedro Alvarez
- Francisco Bolivar
- David Andreis
- Slim Bouchrara
- Paola Vera de Newton
- Rob Keirstead
- Kim Nichols
- Marco Zanzi
- Olivier Kirstetter

- Maggie Smith
- Ocean Tseng
- Thomas Martin
- Jochen Rappke
- Fanny Marcy
- Mark Vrijlandt
- Oyvind Skinnemoen
-and many more

- INTRODUCTION
 - Why consider multi-physics data ?
 - What are the challenges of multi-physics analysis ?
 - What do we mean by multi-physics analysis ?
- EXAMPLES
 - Integrated interpretation
 - Petrophysical joint inversion
- THOUGHTS ON FUTURE APPLICATIONS
- CONCLUSIONS

• INTRODUCTION

- Why consider multi-physics data ?
- What are the challenges of multi-physics analysis ?
- What do we mean by multi-physics analysis ?

EXAMPLES

- Integrated interpretation
- Petrophysical joint inversion

• THOUGHTS ON FUTURE APPLICATIONS

• CONCLUSIONS

Properties of the earth

What do we want to know ? Reservoir properties and condition

What can we measure ?

Geophysical Attributes

At any point in the Earth there is only a small number of properties that can be measured.

 \bigcirc

Benefits of a multiphysics approach

© Edinburgh Geoscience Advisors Ltd 2021

Challenges and pitfalls in integration

Physics

• Electric and elastic properties must be coupled through a single earth model that accurately and consistently describes each.

Sensitivity

• There must be overlap in sensitivity of the methods applied to the properties within the intervals of interest.

Scale

• Seismic, CSEM and well log data sample the earth at very different scales, which must be reconciled in an integrated interpretation.

© Edinburgh Geoscience Advisors Ltd 2021

INTRODUCTION

- Why consider multi-physics data ?
- What are the challenges of multi-physics analysis ?
- What do we mean by multi-physics analysis ?

• EXAMPLES

- Integrated interpretation
- Petrophysical joint inversion

THOUGHTS ON FUTURE APPLICATIONS

• CONCLUSIONS

Integrated analysis

Introduction to the study area

Data available:

- 936 km² 3D seismic
- 1912 km² nodal CSEM data

• Well: 7324/2-1 (Apollo)

Drill or drop decision: how prospective is the block ?

Alvarez et al., 2018

Mixed drilling results: Seismic doesn't have all the answers...

Type Log (Apollo)

Multi-well cross plots: Stø formation

www.edinburghgeo.co.uk

© Edinburgh Geoscience Advisors Ltd 2021

Integrated analysis

www.edinburghgeo.co.uk

Seismic setting

Variance extraction at top Realgrunnen Highlighting potential leaking faults

Alvarez et al., 2018

Potential leaking faults

Starting point: Elastic attributes

P-wave Impedance Minimum Amplitude Top Realgrunnen – Top Fruholmen minus 5 msec

Poisson's ratio Minimum Amplitude Top Realgrunnen – Top Fruholmen minus 5 msec

Alvarez et al., 2018

Porosity Estimation

Porosity Map

Alvarez et al., 2018

Statistical rock physics: facies definition

Insitu Wet Oil Gas Fizz

Litho-fluid facies definition

Facies	Vclay	Sw	So	Sg
Shale	>60%			
Wet Sand	<10%	=100%		
Oil Sand	<10%	<20%	≥80%	
Fizz Gas Sand	<10%	>80%	≤1%	≤20%
Gas Sand	<10%	<20%	≤1%	≥80%

Apollo Well at different fluid conditions

Alvarez et al., 2018

www.edinburghgeo.co.uk

© Edinburgh Geoscience Advisors Ltd 2021

Statistical rock physics: facies definition

Apollo Well at different fluid conditions

Litho-fluid facies definition

	Facies	Vclay	Sw	So	Sg		
	Shale	>60%					
	Wet Sand	<10%	=100%				
	Oil Sand	<10%	<20%	≥80%			
	Fizz Gas Sand	<10%	>80%	≤1%	≤20%		
	Gas Sand	<10%	<20%	≤1%	≥80%		
(A In situ Porosity							
Borosity Scongrios) In situ Po	rosity minus	2 %			
1 01 031) In situ Po	rosity minus	4 %			
		D In situ Po	rosity minus	6 %			

Poisson's ratio

www.edinburghgeo.co.uk

Alvarez et al., 2018

© Edinburgh Geoscience Advisors Ltd 2021

Statistical rock physics:2D PDFs

Gas Sand

<10%

<20%

≤1%

≥80%

Ip vs $\lambda \rho$: PDFs estimated using upscaled logs through Backus Average Seismic Resolution

2

 $\lambda \rho$ (m/sec*gr/cc)²

 \bigcirc

(D)

5

x 10⁷

- In situ Porosity
- In situ Porosity minus 2 %
- In situ Porosity minus 4 % In situ Porosity minus 6 %

Alvarez et al., 2018

Statistical rock physics: Bayesian classification

Well log analysis and litho-fluid facies definition 2D PDF estimation **Bayesian** classification of seismic data.

- $P(C_i)$ \rightarrow Prior probability of a particular class (C_i)
- ➔ Describe the distribution of the seismic P(x)data point

Probability of belonging to each facies

Alvarez et al., 2018

Most likely facies

Alvarez et al., 2018

Integrated analysis

CSEM derived transverse resistance

Transverse Resistance from CSEM TR=Average resistivity * thickness In depth from seismic

Porosity Map Arithmetic Average Top Realgrunnen – Top Fruholmen

Alvarez et al., 2018

Scaled TR from CSEM and Seismic

- Transverse resistance is scaled to account for anisotropy and resolution differences.
- Lithology driven variations in resistivity are clear
- CSEM results are more consistent with the water wet case than the 60% hydrocarbon saturated case.

Litho-fluid facies from Seismic & CSEM

Alvarez et al., 2018

Litho-fluid facies from Seismic & CSEM

Residual saturation

Approaches to multi-physics integration: properties Quantitative integrated Joint inversion: **Co-rendering** interpretation EM and seismic data. Quantitative Qualitati

Structurally constrained

inversion

Petrophysical

joint inversion

Andreis et al, 2018 Alvarez et al., 2017 Miotti et al., 2018

Petrophysical joint inversion (PJI)

Study area

Data available:

- 2D seismic (PGS GeoStreamer®)
- Towed streamer EM
- Two well logs: 7324/8-1 (Wisting Central) and 7324/7-1S (Wisting Alternative)

Petrophysical joint inversion (PJI)

Rock property estimation from seismic & well-log data

Is this the answer ? No....we still don't know the saturation: could be fizz or commercial

Alavrez et al, 2017.

Petrophysical joint inversion (PJI)

Structurally constrained CSEM inversion

Alavrez et al, 2017. Inversion performed using MARE2DEM (Key, 2016)

Note: color scale differences !

Petrophysical joint inversion (PJI)

Reconcile scales: Invert for saturation at seismic scale

How to do this ?

Jointly invert CSEM derived resistivity and seismic properties:

BUT Does not account for difference in scale – measurements are not pointwise consistent. SO Just plain wrong !

Map through transverse resistance and then combine or jointly invert:

BETTER Everything mapped to the same scale BUT Takes no account of non reservoir facies.

Jointly invert transverse resistances using seismic facies as a framework:

Rock Property Inversion for Sw

- The seismic data alone cannot distinguish between commercial and non-commercial hydrocarbon saturation
- The inclusion of the CSEM resistivity information within the inversion approach allows for the separation of these two possible scenarios
 Alavrez et al, 2017.

www.edinburghgeo.co.uk

© Edinburgh Geoscience Advisors Ltd 2021

INTRODUCTION

- Why consider multi-physics data ?
- What are the challenges of multi-physics analysis ?
- What do we mean by multi-physics analysis ?
- EXAMPLES
 - Integrated interpretation
 - Petrophysical joint inversion
- THOUGHTS ON FUTURE APPLICATIONS

• CONCLUSIONS

Future applications

Seafloor hydrothermal systems and massive sulphides

Weitemeyer, 2020, Eminar, MacGregor et al., 2021

....EM and multiphysics are useful anywhere you need to know something about the earth.

INTRODUCTION

- Why consider multi-physics data ?
- What are the challenges of multi-physics analysis ?
- What do we mean by multi-physics analysis ?

EXAMPLES

- Integrated interpretation
- Petrophysical joint inversion

THOUGHTS ON FUTURE APPLICATIONS

• CONCLUSIONS

- Multiphysics analysis has applications in a range of resource characterisation, environmental and engineering problems.
- Approaches are developing fast and becoming ever more quantitative
- Multiple data types doesn't necessarily mean multiple surveys with careful planning, data can be acquired from a single platform, keeping costs down.
- Always use multiple data types you'll get a better answer !

- Alvarez, P., Bolivar, F., Di Luca, M. & Salinas, T., 2015, Multi-attribute rotation scheme: A tool for reservoir property prediction from seismic inversion attributes, Interpretation, 3, SAE9-SAE18
- Alvarez, P., Alvarez, A., MacGregor, L., Bolivar, F., Keirstead, R. & Martin, R., 2017. Reservoir properties prediction integrating controlled source electromagnetic, pre-stack seismic and well log data using a rock physics framework: Case study in the Hoop Area, Barents Sea, Norway, *Interpretation, 5 (2), SE43-SE60*
- Alvarez, A., Marcy, F., Vrijlandt, M., Skinnamoen, O., MacGregor, L., Nichols, K., Keirstead, R., Bolivar, F., Bouchrara, S., Smith, M. & Tseng, H-W, 2018. Multi-physics characterisation of
 reservoir prospects in the Hoop area of the Barents Sea, Interpretation, 6(3), SG1-SG17
- Andreis, D., MacGregor, L., Grana, D., Alvarez, P. & Ellis, M., 2018. Overcoming scale incompatibility in petrophysical joint inversion of surface seismic and CSEM data. SEG annual meeting 2018, Expanded abstract
- Ayani, M., Grana, D. & Liu, M., 2020. Stochastic inversion method for time lapse CSEM data for CO2 plume monitoring, *IJGCC*, 100, 103098
- Chen, J. and Hoversten, G.M., 2012. Joint inversion of marine seismic AVA and CSEM data using statistical rock physics and Markov random fields, *Geophysics*, 77, R65-R80.
- Constable, S., R. Parker, and C. Constable, 1987, Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289-300
- Constable, S., Kowalczyk, P. & Bloomer, S., 2018. Measuring marine self potential using an autonomous underwater vehicle, *Geophys. J. Int., 215, 49-60*
- Du, Z. & MacGregor, L., 2009. Reservoir parameter estimation from joint inversion of marine CSEM and seismic AVO data using genetic algorithms, *EAGE annual meeting 2009, expanded abstract.*
- Gao, G., Abubakar, A., and Habashy, T.M., 2012, Joint petrophysical inversion of electromagnetic and full waveform seismic data, *Geophysics*, 77, D53-D68.
- Gustafson, C., Key, K. & Evans, R., 2019, Nature Scientific Reports, 9 https://doi.org/10.1038/s41598-019-44611-7
- Hoversten, G.M., Cassassuce, F., Gasperikova, E., Newman, G., Chen, J., Rubin, Y., Hou, Z., and Vasco, D., 2006, Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data: *Geophysics*, 71, C1-C13
- Key, K., 2016 MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophysical Journal International 207, 571-588.
- MacGregor, L.M., Integrating seismic, CSEM and well log data for reservoir characterisation, *The Leading Edge, March 2012, 268-277*
- MacGregor L. & Tomlinson, J., 2014. Marine Controlled Source Electromagnetic methods in the hydrocarbon industry: a tutorial on method and practice, *Interpretation, 2, AH13-SH32*.
- MacGregor, L., Kowalczyk, P., Galley, C., Weitemeyer, K., Bloomer, S., Phillips, A. & Proctor, A., 2021, Characterisation of seafloor mineral deposits using multiphysics datasets acquired from an AUV, *First Break, 100 (August 2021), In press*
- Miotti, F., Zerilli, A., Menezes, P., Crepaldi, J. & Vianna, A., 2018. New petrophysical joint inversion workflow: Advancing on reservoir characterisation challenges, *Interpretation*, *6*, *SG33-SG39*
- Sherman, D., Kannberg, P. & Constable, S., 2017. Surface towed EM system for mapping of subsea Arctic permafrost, EPSL, 460, 97-104