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MT sounding tends to be sensitive to conductors
Can extend the depth of study to 100’s km

 
CSEM sounding tends to be sensitive to resistors
Can be used to study crustal geology
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Cagniard proposed adaption to the marine environment in the 1953 paper that first presented the MT 
method, but the first deepwater measurements were made by Chip Cox, Jean Filloux, and Jimmy 
Larsen only in 1965.
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The earliest marine EM work was carried out by the British and US navies.  This 1968 paper out of the 
US Navy Underwater Sound Lab appears to be the first proposal for marine CSEM as we now know it.  
Chip Cox made the first deep water measurements in 1979.
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Young and Cox, 1981



Chip was an oceanographer who was famous for his work on 
ocean microstructure.  So why was he interested in marine EM 
methods?

Charles (Chip) Cox



He was impressed by Gunther Wertheim’s 1953 work on measuring the Florida Current using a 
submarine telegraph cable, an idea first proposed by Faraday.  Water flowing through Earth’s magnetic 
field creates an electric field: 

Wertheim, 1954

E = v ⇥B



Jan Roletto via NOAA and WikipediaCox, Taramoto, & Filloux, 1964

Honshu

He made some measurements with Toshihiko Teramoto on 
cables running from the Izu Peninsula (1957), but a hurricane 
destroyed them.  He ran some cables from the Farallon 
Islands in 1960 but the first winter storm destroyed them too.  
He realized he needed measurements on the seafloor.



Jean Filloux

Ulrich SchmuckerChip’s student, Jean Filloux, was developing seafloor magnetometers.  In 
1960 Ulrich Schmucker visited Scripps to deploy land magnetometers near 
the coast.  Chip’s plan was to deploy a marine extension to Schmucker’s 
array, adding electric field measurements to study ocean currents.  

Schmucker, 1964



Teddy BullardThe timing was right - in 1949 Teddy Bullard had introduced ‘o’ rings to 
oceanography during a visit to Scripps, and this allowed pressure cases to be 
constructed. 

o-ring



The problem was recording data…



Jimmy Larsen
The solution:  Rustrak recorders triggered by a Bulova tuning-fork watch.

Sample rates of 15 per hour were achieved …

This resulted in the first deepwater MT response being made.

Cox, Filloux, and 
Larsen, 1971



cold crust/
upper mantle

hot mantle

ocean S = σoho

T = ρlhl

d

d =
√

ST = 4 km × 3 S m × 105 Ωm × 30 km = 6 000 km/ ,

Cox, 1980

Chip was by now very interested in the 
electrical conductivity of the seafloor, since 
all his oceanographic measurements 
depended on how much current leaked into 
the conductive mantle.

T = 105 ⌦m⇥ 30 km = 3⇥ 109 ⌦m2

S = 4 km⇥ 3 S m = 12, 000 S/

d =
p

ST = 6 000 km,

To measure a resistive seafloor, he needed something other than MT methods.



“It had become clear that an electromagnetic source on the seabed was required 
to find the conductivity of seabed rocks under deep water.” 

Cox, 2011 MARELEC meeting.

Bostick, Cox, and Field, 1978.

In 1975 he tried to detect Schumann resonances on the seafloor off a steep part of the continental shelf 
in Baja California.  No luck.  He tried again in 1976 using a large transmitter set up by Francis Bostick 
in Washington state.  Again no luck.

Soderberg, 1969



The RISE experiment, a 1979 
multi-leg, multi-ship operation, 
provided an opportunity for Chip 
to try marine CSEM.  Fred Spiess 
acquired a suitable tow cable for 
his deep-tow camera operations, 
which Chip used for his EM 
transmitter.



Chip carried out a CSEM experiment in nearly 3,000m water with transmissions of 80 amps on an 
800 m antenna. Frequencies of 0.25 - 2.25 Hz were detected 19 km away. 

Young and Cox, 1981

Cox et al, 1981

Transmitter

Tow cable

Receiver

Electrodes

Antenna



Remarkably, within 2 years, in March 1981, Chip proposed CSEM for direct hydrocarbon detection to Exxon.  His 
model was essentially identical to what I later called the “canonical model” for oil exploration.

Fields measured 2500 m from a 104 Am 
CSEM transmitter



His model response was hand-drawn, but correct.  The proposal was declined - Chip was too far ahead of the times.

Fields measured 2500 m from a 104 Am 
CSEM transmitter
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Chip hired me on as a postdoc in 1983 and thus started my training in the art of marine EM.



In the late 1980’s Martin Sinha of Cambridge (later Southampton) developed a UK CSEM capability based on Scripps’, 
but with an “flown” transmitter capable of working over mid-ocean ridges.  We worked together on many projects.  
Nigel Edwards was also developing a marine version of magnetometric resistivity.

Sinha et al, 1990
Edwards et al, 1987
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Early funding (~1984) of Scripps by industry was tied to oil prices.

In 1995 Scripps, UC Berkeley, and AOA Geophysics obtained 
industry funding to develop marine MT for exploration.

This time funding was driven by the high cost of deepwater wells 
and the difficulty in using the seismic method in salt, carbonate, and 
volcanic environments.
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Over a known discovery

Prior to drilling

Constable and Srnka, 2007

The first CSEM sounding over an oil 
reservoir was done at Girassol off 
Angola in Nov 2000 by Statoil, using 
Scripps and Southampton equipment. 
Similar studies were carried out by 
ExxonMobil in Jan 2002.

The ExxonMobil studies used 30 new 
instruments designed and built by 
Scripps for XoM.
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(modified from Constable, 2010)
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Why did ExxonMobil think the second target had hydrocarbons?  The seismic method has the problem that 
small gas saturations produce big velocity changes.  However, electrical resistivity does not change until the gas 
saturation gets large.   This means that marine CSEM can be used to assess targets prior to drilling.



By the end of 2002, three companies 
were offering marine MT and CSEM as a 
commercial product…



commercial marine EM ships were 
custom-built…

EMGS website



Working with the oil and gas industry has supported a state-of-the-art instrument fleet of about 50 EM receivers 
and 2 CSEM transmitters at Scripps.  These instruments have been used for numerous academic studies.

In early 2015 Schlumberger donated its own 
instrument fleet of 100+ receivers to Scripps.



  
What’s different about marine EM?
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Marine CSEM:



Connell and Key, 2013
Cheesman et al., 1987

Time domain is less useful than on land.  In deep water, seafloor conductivity is manifest in early time and the 
late time asymptotes to the DC seawater response.  In shallow water, the need to have off times of 10’s seconds 
means that stacking times have to be much longer than for frequency domain measurements.  Time domain 
spreads energy across the spectrum, but more than 2-3 frequencies gives little advantage during inversions.

PRBS

PRBS

PRBS
frequency domain



Marine MT:

Loss of high frequency signal:

Sensor noise is reached at about 1 s on the continental 
shelves.

In the deep ocean this noise limit is at 30 s.
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wave noise
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FIG. 1.-Orientations of preferred planes at observatories listed in Table I .  The significance of the arrows is explained in Fig. 3 and the text. 

Coast effect: Land-side coast effect is manifest as a strengthening of the vertical magnetic field near the 
coastlines, observed by Dudley Parkinson.  For a 2D coastline this is essentially a TE mode phenomenon. 

Parkinson, 1962
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On the marine side the horizontal magnetic field can actually go to zero, causing cusps in the TE apparent 
resistivity and negative phases near shore.  
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But further offshore the TM mode currents can leak vertically into the conductive upper mantle, generating 
secondary magnetic fields and negative MT phases at high frequencies.  



  
All the things you can do with marine EM: 



Hotspots + Ridges:
1989: CSEM at East Pacific Rise 13 N

1993: MT + CSEM Reykjanes Ridge (RAMESSES)

1995: Lau Basin CSEM

1997: MT off Hawaii (SWELL)

2000/2004: MT + CSEM East Pacific Rise at 9 N

2006: CSEM Loihi Seamount

2016: MT Mid-Atlantic Ridge (CalLAB/PiLAB)
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Carbonate melts

Wet solidus (200 ppm H2O)

Melt channel
Depleted
mantle
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Wang et al., 2020
Key et al., 2013

Constable and Heinson, 2004
(re-inverted) 

MacGregor et al., 2001



Naif et al., 2016 Key and Constable, 2010

Convergent Margins:
2000: MT off northeastern Japan

2010: MT + CSEM offshore Nicaragua (SERPENT)

2015: MT + seismics Aleutian arc/Okmok volcano

2018: MT + CSEM Hikurangi  (HT-RESIST)

2019: MT + CSEM Alaska Peninsula (EMAGE)



Passive Margins:
2003/4: MT and CSEM in San Diego Trough

2008/9: MT + CSEM offshore Morro Bay

2010: MT Voring Plateau

2014: MT off Cascadia (MOCHA)

2021: MT in Spencer Gulf

Myer et al., 2013

Wheelock, 2012
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Resource Exploration:
1997-2003: Gemini MT

2000: CSEM Girassol, Angola

2009: Scarborough MT + CSEM

2014: Uruguay MT + CSEM

2015/16: MT + CSEM + Seismics Gulf of California (geothermal)

2019: CSEM Santa Barbara tar seeps

Key, 2003

Córdoba-Ramírez et al., 2019
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Gas Hydrates:
2004: CSEM at Hydrate Ridge

2008: CSEM Gulf of Mexico I

2014: CSEM Santa Cruz Basin

2017: CSEM Gulf of Mexico II

2016: CSEM + SP Del Mar Seep

2014-2016:  CSEM Japan

2020: CSEM Pegasus Basin

Kannberg & Constable, 2020
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Normal Lithosphere:
1988: CSEM East Pacific (PEGASUS)

2001: CSEM + MT East Pacific (APPLE)

2018: MT Mendocino Fracture Zone

Chesley et al., 2019 Reyes-Ortega et al., in prep

6.5 Ma33 Ma



Offshore Groundwater and Permafrost:
2014/5: CSEM Prudhoe Bay (permafrost)

2015: CSEM Atlantic continental shelf

2018: CSEM Offshore Hawaii

2018-2020: CSEM San Diego Aquifer

King et al., submitted
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Other Stuff:
2017: MT Mono Lake (volcanics)

2019/20: MT geothermal lakes, NZ

2016: AUV CSEM + SP, Okinawa Trough

Constable et al., 2018
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A bit of a party…
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    RMS: 0.9482 (CSEM: 0.95, MT: 0.96)
    Colors: EPR4_1.17.resistivity, Folder: V4final_MTCSEM
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1200 °C isotherm

-15 -10  -5   0   5  10  15  20  25
Distance from ridge (km)

 3

 4

 5

 6

 7

 8

 9

10

11

12

D
ep

th
 (k

m
)

Rho

Depth, (m)

3100

3000

2900

2800

2700

2600

resistivity (Ω-m)
100010010

Mantle transition zone

55 m/kyr
55 m/kyr

porous flow

layered gabbros

melt ponding 
           and sill formation

foliated gabbros

dike injection

AMC hydrothermal
coooling

approx. depth of layer 2

hydrofracture

CSEM Inversion



-15 -10 -5 0 5 10 15 20 25
Distance from ridge (km)

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

De
pt

h 
(k

m
)

-3 -2.8

-2.6

-2.4

-2.2

-2 -1.8

-1.6

-1.4

-1.2

-1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10%5%1%

melt fraction

10%1%0.1%

water fraction

Melt and porosity

65 km3 per km of ridge

140 km3 per km of ridge

250 ky of crustal formation
= 13.75 km of crust (lateral)



A lot of a party…



Cox, 1980
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A June 1989 cruise on the RRS Charles Darwin was the last marine EM project the Chip participated 
in.  

Maybe he trusted me to carry the method forward.   I suspect that really he had decided that he’d done 
the difficult, interesting work in marine CSEM, and was no longer interested.  He returned to an old 
love of his — wave microstructure at the ocean surface.



I would like to thank everyone I have had the pleasure to work with, but especially Chip, who taught me so much…


