Scale-reduction MT studies to link deep source regions to deposit scales for IOCG and Au deposits in Australia

Graham Heinson^{1,} Ben Kay¹, Kate Robertson^{1,2}, Stephan Thiel^{1,2}

¹University of Adelaide; ²Geological Survey of South Australia

Scale-reduction from deep source regions to deposit scales in Three Acts

by Philipp Trübiger

Act

To convert UK's 31.5 million hydrocarbon vehicles to EVs requires 207,900 t Co, 264,600 t Li, 7,200 t of Nd and 2,362,500 t Cu.

Equivalent to twice current global production of Co (battery electrodes), an entire year's production of Nd (motor magnets) and three-quarters global production of Li (battery electrolyte)

World's demand for metals doubles every 20-30 years Primary copper production for World: 1900-2050

more copper than what has been mined in <u>all</u> history.

Sources: Historical data from USGS and BREE March 2017

Exploration expenditures are going up ... Australia : March 1990 to March 2020

... but the number of discoveries is going down Number of significant discoveries in Australia : 1990-2019

The cost of finding a given-sized copper deposit Size-Frequency distribution of primary copper deposits discovered: 1997-2016

Cumulative Number of Deposits found per \$1 Billion (in June 2016 US\$) of Exploration

Discoveries by Tier: 2007-2016

N = 226

http://www.frogtech.com.au/australia-ozseebase/

Discoveries by Tier: 2007-2016

http://www.frogtech.com.au/australia-ozseebase/

Depth of cover versus discovery year:

Gold and Base Metal discoveries in the World : 1900-2016

Depth (Metres)

Size of the bubble refers to Moderate, Major and Giant discoveries Analysis excludes Nickel laterites

Continental-root control on the genesis of magmatic ore deposits

W. L. Griffin^{1*}, G. C. Begg^{1,2} and Suzanne Y. O'Reilly¹

"...we argue that the subcontinental lithospheric mantle may actually contain ore-forming elements that could be entrained by ascending magmas....We therefore suggest that models for ore genesis and exploration need to incorporate the entire lithosphere to be effective^{*n*}

Maybe we need to find the haystack first...

Three-Act Structure

Three-Act Structure

confronterion

ACT

Photo: Jarred Lloyd

AusLAMP – Australian Lithospheric Architecture Magnetotelluric Project

Progress as of 2020!

Program to map the Australian lithosphere 20 – 200 km depth ~55 km sites (0.5°) Long-period MT three-week deployments ~3000 sites! (12 years!)

(Foster and Goscombe, 2013)

Image: Geoscience Australia

Induction arrows

Point away from resistive regions and towards conductive regions.

Length of arrow ~ magnitude of resistivity gradient

(Image: Kate Robertson)

Phase tensors

Ellipticity is a measure of electric current density orientation

Circular – ~1D Ellipse – 2D or 3D

Colour infill shows change of resistivity with depth

Blue – more resistive with depth Red – more conductive with depth

(Image: Kate Robertson)

Sub plot: Long-Period MT arrays

Photo: Jarred Lloyd

\leq - Sites and topography

+ 15°S 120°E

Yilgarn

Crato

40°5+

1000 km

120°E

L000 В below sea leve

10 km below sea leve

Sub plot: Broadband Transects

Photo: Jarred Lloyd

B

Cambrian-Neoproterozoic Cover

Olympic Dam line (2021 Geotools model)

Curnamona line (2021 Geotools model)

Same vertical and horizontal scale

Thank you Emily Lewis for this figure

Scale reduction?

- Long-period arrays maps regions of low-resistivity in lower crust that have spatial correlation with deposits
- Broadband transects appear to map discrete 'pathways' of low resistivity between lower crust and upper crust
- AMT grids map structural hosting of deposits in upper crust
- BUT: what does this mean in terms of fluids, chemistry, temperature, melt: metal provenance and preservation?

Three-Act Structure

Lomagundi-Jatuli Event ~2300–2000 Ma

(Mand et al., 2020 Eguchi et al., 2020)

Lomagundi-Jatuli Event ~2300–2000 Ma

Lomagundi-Jatuli Event ~2300–2000 Ma: C isotope ratios of carbonates increased by ~10‰ and O increased rapidly

Significant increase in the fraction of C buried as organic C relative to carbon buried as carbonate CO²⁻

Increased amount of organic C in marine sediments increased δ 13C of carbonates (ratio of stable isotopes 13C : 12C in parts per thousand) because organic matter preferentially incorporates 12C, leaving the carbonateforming C reservoir enriched in 13C

Australian electrical structure

Linear crustal conductors > 100 km and resistivities < 1 Ω .m (red lines)

Black solid lines show Paleoproterozoic sutures

Background images shows electrical resistivity model of Australia at 36 km depth

Paleoproterozoic accretion

Betts et al. (2016) suggest sutures along margins of Mount Isa Province (Gidyea Suture), the Curnamona Province and the Kalinjala Shear Zone formed a contiguous boundary

Rapid accretion of several micro ribbon continents commenced 2200 Ma to 1850 Ma along eastern margin of proto-Australia while it was in the Nuna supercontinent

And so....

- Spatial mapping of lower crust conductors show significant correlation with surface economic mineral concentrations
- Transect slices suggest that a spatial connection marked as a low-resistivity pathway between deposits and lower crust
- Thermal and fluid processes that transport metals can be related to enhanced conduction methods
- We need many more examples for known mineral deposits

Geological Survey of Victoria, Bulletins, No. 15.

Finding mineral deposits may turn out to be an excellent way of discovering a low-resistivity lower crustal anomaly.....

Thank You

 Data were collected over three decades by many institutions.
So, too many people to thank in a slide, you know who you are.

FOSSICKERS IN THE CREEK, NERRENA