Study case on Miyakejima volcano (Japan), by combining MT, seismicity, thermal image (remote sensing), and self-potential

Presented by Marceau GRESSE

Gresse et al., (2021), JGR SE 10.1029/2021JB022034

*marceau.gresse@gmail.com

Motivation: better understand magmatic-hydrothermal interactions

Hydrothermal systems = water and heat transfer through porous/fractured rocks

Magmatic-hydrothermal interactions

- > 1. Hazards: phreatic, phreato-magmatic eruptions, landslide \rightarrow high-risk in populated areas
- > 2. Problem: difficult to forecast hydrothermal-related hazards
 - \rightarrow lack of large-scale understanding
 - \rightarrow need for multidisciplinary approaches

Phreatomagmatic event Miyakejima, 15 July 2000 (Nakada et al., 2005)

Study area: Miyakejima volcano

Study area: Miyakejima volcano: 2000 A.D. eruption

Phreatic-phreatomagmatic eruption, Miyakejima, July-August 2000 (Nakada et al., 2005)

Temporal evolution of collapsed caldera at Miyakejima volcano (Furuya et al., 2003)

Objective of this study

- First large-scale imagery of Miyakejima plumbing system
- > Delineate water-rich zones, fluid circulation, and magmatic-hydrothermal interactions

Kuwanokitaira Caldera (~10 ka B.P.)

1983 fissure eruption

2000 AD Caldera

Fumarolic area

Marceau Gresse

Objective of this study

First large-scale imagery of Miyakejima plumbing system

> Delineate water-rich zones, fluid circulation, and magmatic-hydrothermal interactions

Multidisciplinary approach: 4 geophysical methods

Subsoil imagery (1): Magnetotellurics

MT sites: 13 broadband stations, 2012 (June-August)

Processing: Z and T transfer functions with BIRRP (Chave & Thomson, 2004)

17 periods between $[10^{-2} - 10^3]$ s

Model space: 398,239 elements (200 km³, 71 × 71 × 79 cells in x, y, and z direction)

Inversion: Occam's type, WSINV3DMT code (Siripunvaraporn and Egbert, 2009)

Subsoil imagery (2): Seismicity

5 seismometers: 3-components, 100 Hz sampling rate, NIED network

Processing: nonlinear maximum-likelihood algorithm (Hirata and Matsu'ura, 1987) (performed by NIED, Tsukuba)

Hypocenters classification:

Long-period (LP) (1-5 Hz)
Hybrid (3-9 Hz)
Volcano-tectonic (VT) (5-15 Hz)

Periods selected:

2001.9→2012.9 VT: degassing activity after 2000 eruption 2011.9→2012.9 LP+Hybrid: covers the entire surveys of this study

Surface imaging (1): Self-potential

Equipment: non-polarizable Cu-CuSO₄ electrodes 3 self-potential profiles: South line **78** pts (2011.9) North line **71** pts (2011.11) Middle line 71 pts (2012.6) > North and South line merged **Reference point**: Southernmost site at 0 mV

Surface imaging (2): Remote sensing

Infrared spectral radiance images:

ASTER (TIR band 14) $[-30 - +50^{\circ}C]$ 90-m resolution 2011/11/23 (day) Landsat 7 (SWIR band 7) $[+90 - +260^{\circ}C]$ 30-m resolution 2012/01/31 (night)

Processing

Atmospheric corrections (transmittance, up-welling radiance) MODTRAN

Vegetation cover

Soil emissivity (Sobrino et al., 1990)

Inverse Planck function

$$t(\lambda) = \frac{c_2}{\lambda \cdot ln\left(\frac{c_1\lambda^{-5}}{R(\lambda)} + 1\right)}$$

Validation

Temperature validated with *in situ* measurements

Results: surface temperature

(~370 °C in 2000-2006)

Results: resistivity model, RMS, apparent resistivity, and phase

Results: resistivity model, induction vectors Treal(f)

 \vec{T} real $(f) = \left(-\text{Real } T_x(f), -\text{Real } T_y(f)\right)$ Vectors point toward conductors

High frequencies

Conductor beneath the central part of the caldera

Low frequencies Local bathymetry effect

Results: global overview of the resistivity model

Resistivity range: $2.5 - 2200 \ \Omega \cdot m$

 \rightarrow consistent with 1-D model from Zlotnicki et al. 2003

Max depth of investigation: 4.5 km below sea level (bsl)

4 units identified confirmed by 3-D forward modeling

 \rightarrow detailed explanation of each unit based

Plumbing system (1): vadose zone

1) 130 – 2200 $\Omega \cdot m \rightarrow$ unsaturated, low temperature deposits (< 15°C)

Surface – 0.7 km depth \rightarrow Water table estimated with Archie's law

Location	ф	S_W	T (°C)	ρ' (Ω·m)
surface	0.550	0.2	15	2145
~0.3 km bgs (water table)	0.444	1.0	15	130

 \rightarrow

 $\sigma_{rocks} = \phi^2 S_w^2 \left(\sigma_{fluids \, (T)} \right)$

 → Surface porosity from Nomura et al. (2003)
→ Surface T consistent with thermal map and meteorological temperature average

Plumbing system (2): clay cap

Plumbing system (2): clay cap

- 2) 2.5 30 Ω ·m \rightarrow water-saturated, altered rocks (up to 20 % of smectite), and high temperature (50 250 °C)
 - $0 2 \text{ km bsl} \rightarrow \text{long-period events (blue dots)}$ around the conduit
 - Steam explosion of liquid-dominated region *mechanism* explained by Ohminato (2006) Matoza & Chouet (2010) \rightarrow explains the increase of water content in fumaroles

Plumbing system (3): basement rocks

3) 70–1000 $\Omega \cdot m$ \rightarrow aseismic zone, no alteration, medium temperature (<100 °C)

seabed – 2.5 km bsl

Location	φ	S_W	T (°C)	ρ' (Ω·m)
~0.3 km bsl	0.444	1.0	15	66
~2.5 km bsl	0.094		81	490

Plumbing system (4): magmatic fluids reservoir

- 4) 200 500 $\Omega \cdot m$: \rightarrow volcano-tectonic events (red dots) \rightarrow location of the ancient shallow magma chamber
 - 2 4.5 km bsl
- \rightarrow interpreted as **partially gas-saturated/supercritical fluids zone** (> 370 °C 220–300 bars) \rightarrow could have formed after the drainage of the shallow magmatic during the 2000 eruption

	Locatio	φ	Sw	T (°C)	ρ' (0.m)
	п			(\mathbf{U})	(12-111)
a) water- saturated	~2.5 km	⁵ 0.094	1.0	370	63
b) two-phase region			0.4	370	395

Plumbing system (5): fluid-flow

« W-shaped » self-potential

(Similarities with Sasai et al., 1997)

Positive anomalies

- \rightarrow conductive hydrothermal plume
- → water-table upwelling near coast (hot springs)
- \rightarrow 1983 fissure eruption

Negative anomalies

→ water infiltration esp. Kuwanokitaira caldera

Plumbing system (5): fluid-flow

Plumbing system (6):Interpretative scheme

Conclusion

Plumbing system of Miyakejima volcano highlighted using a multidisciplinary approach

 \rightarrow four geophysical methods: magnetotellurics, seismicity, self-potential, and surface thermal image

-> Hydrothermal-magmatic structures characterized: rock properties, temperature, fluid content, and fluid flow

1. **Position of aquifer** defined (0–700 m depth)

 \rightarrow implication for explosive/effusive eruptions

2. Elongated clay cap:

 \rightarrow sealing the degassing activity

3. Magmatic-hydrothermal interactions revealed in the fractured conduit (0–2 km depth)

- \rightarrow steam explosions with long period events
- \rightarrow explain the water-content increase of fumaroles after 2000

Implications - Perspective

- > Investigate spatio-temporal change until the next eruption, expected in few years
 - \rightarrow Resistivity, seismicity, temperature, and self-potential
- > Numerical models to constrain these changes -> retrieve unrest mechanisms?