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Motivation: better understand magmatic-hydrothermal interactions
Hydrothermal systems = water and heat transfer through porous/fractured rocks

Magmatic-hydrothermal interactions  1. Hazards: phreatic, phreato-magmatic eruptions, landslide

→ high-risk in populated areas

 2. Problem: difficult to forecast hydrothermal-related hazards

→ lack of large-scale understanding

→ need for multidisciplinary approaches

Magmatic source

Hydrothermal

system
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Interactions

Phreatomagmatic event

Miyakejima, 15 July 2000 

(Nakada et al., 2005)



Study area: Miyakejima volcano

200 km to the South of Tokyo

 Extensive hydrothermal system

 Small stratovolcano, 10-km wide, 775 m asl

 Regular eruptions ~20 years: 1940, 1962, 1983, 2000…?

Miyakejima
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Study area: Miyakejima volcano: 2000 A.D. eruption
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Phreatic-phreatomagmatic eruption, Miyakejima, July-August 2000 (Nakada et al., 2005)
Temporal evolution of collapsed caldera at

Miyakejima volcano (Furuya et al., 2003)
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First large-scale imagery of Miyakejima plumbing system

 Delineate water-rich zones, fluid circulation, and magmatic-hydrothermal interactions

Multidisciplinary approach: 4 geophysical methods
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Subsoil imagery (1): Magnetotellurics

MT sites: 13 broadband stations, 2012 (June-August)

Processing: Z and T transfer functions with BIRRP (Chave & Thomson, 2004)

17 periods between [10-2 - 103] s

Model space: 398,239 elements (200 km3, 71×71×79 cells in x, y, and z direction)

Inversion: Occam’s type, WSINV3DMT code (Siripunvaraporn and Egbert, 2009)
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Minimum mesh size
X Y = 200 m
Z = 30 m 



Subsoil imagery (2): Seismicity

Seismometers

5 seismometers: 3-components, 100 Hz sampling rate, 

NIED network

Processing: nonlinear maximum-likelihood

algorithm (Hirata and Matsu'ura, 1987)

(performed by NIED, Tsukuba)

Hypocenters classification:

Long-period (LP) (1-5 Hz)

Hybrid (3-9 Hz)

Volcano-tectonic (VT) (5-15 Hz)

Periods selected: 

2001.9→2012.9 VT: degassing activity after 2000 eruption

2011.9→2012.9 LP+Hybrid: covers the entire surveys of this study
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Surface imaging (1): Self-potential
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Surface imaging (2): Remote sensing
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Results: surface temperature
SW-NE Cross-section along MT stations

Topography draped with surface temperature 

Fumarolic area at 181 °C (2012)

(~370 °C in 2000-2006)
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SW NE



Results: resistivity model, RMS, apparent resistivity, and phase
Occam’s style inversion: 7 iterations, final RMS = 1.76

Final error floor Z= 15 %, T= 20 %
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Good agreement between observed and calculated 

ap. resistivity and phase

Conductor



Results: resistivity model, induction vectors 𝑇real 𝑓
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Obs. Calc.

High frequencies

Conductor beneath the central part 

of the caldera

Low frequencies

Local bathymetry effect

Parkinson’s convention 𝜙2= geometric mean of the phase tensor axes 

𝑇real 𝑓 = −𝑅𝑒𝑎𝑙 𝑇𝑥 𝑓 ,−𝑅𝑒𝑎𝑙 𝑇𝑦 𝑓

Vectors point toward conductors

= 𝑡𝑎𝑛−1 𝜙𝑚𝑎𝑥𝜙𝑚𝑖𝑛



Results: global overview of the resistivity model

Resistivity range: 2.5 – 2200 Ω·m

no 

sensitivity
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SW NE

→  consistent with 1-D model from Zlotnicki et al. 2003 

Max depth of investigation:  4.5 km below sea level (bsl)

4 units identified confirmed by 3-D forward modeling

→ detailed explanation of each unit based



Plumbing system (1): vadose zone
1) 130 – 2200 Ω·m → unsaturated, low temperature deposits (< 15°C) 

→ Water table estimated with Archie’s law → 

no 

sensitivity

Surface – 0.7 km depth
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SW NE

Location ϕ SW
T

(°C)

ρ'

(Ω·m)

surface 0.550 0.2 15 2145

~0.3 km bgs

(water table)
0.444 1.0 15 130

→ Surface porosity from Nomura et al. (2003)

→ Surface T consistent with thermal map 

and meteorological temperature average 

𝜎𝑟𝑜𝑐𝑘𝑠 = 𝜙2𝑆𝑤
2 (𝜎𝑓𝑙𝑢𝑖𝑑𝑠 (𝑇)) 



Plumbing system (2): clay cap
2) 2.5 – 30 Ω·m → water-saturated

no 

sensitivity

0 – 2 km bsl
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SW NE

(Yasuda et al. 2002)

Smectite < 230 °C       (Flóvenz et al. 2005)

𝜎𝑟𝑜𝑐𝑘𝑠 = 𝜙2𝑆𝑤
2 (𝜎𝑓𝑙𝑢𝑖𝑑𝑠 (𝑇) + 𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑇) ) 

Surface conductivity = 40 – 80 % of 𝜎𝑟𝑜𝑐𝑘𝑠

Location ϕ SW
T

(°C)
Rock CEC 

(meq·100g−1)
ρ'

(Ω·m)

a) low alteration

~1 km bsl 0.27 1.0

50 4 26

b) medium alteration 200 20 2.6

c) high alteration 250 4 6

, and high temperature (50 – 250 °C) , altered rocks (up to 20 % of smectite)



Plumbing system (2): clay cap
2) 2.5 – 30 Ω·m → water-saturated, altered rocks (up to 20 % of smectite), and high temperature (50 – 250 °C) 

→ long-period events (blue dots) around the conduit

 Steam explosion of liquid-dominated region mechanism explained by Ohminato (2006) Matoza & Chouet (2010) 

→ explains the increase of water content in fumaroles

no 

sensitivity
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SW NE

Hybrid

0 – 2 km bsl

Seismicity

Hybrid          

Shinohara et al., 2017

Gresse et al., 2021

Water content +

Temperature -

Degassing -



Plumbing system (3): basement rocks
3) 70–1000 Ω·m → aseismic zone, no alteration, medium temperature (<100 °C)

no 

sensitivity

seabed – 2.5 km bsl
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SW NE

Hybrid

Seismicity

Hybrid          

Location ϕ SW
T

(°C)
ρ'

(Ω·m)

~0.3 km bsl 0.444
1.0

15 66

81 490
~2.5 km bsl 0.094



Plumbing system (4): magmatic fluids reservoir
4) 200 – 500 Ω·m: → volcano-tectonic events (red dots) → location of the ancient shallow magma chamber

→ interpreted as partially gas-saturated/supercritical fluids zone (> 370 °C 220–300 bars)

→ could have formed after the drainage of the shallow magmatic during the 2000 eruption

no 

sensitivity

Hybrid

2 – 4.5 km bsl
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SW NE

Seismicity

Hybrid          

Locatio

n
ϕ SW

T

(°C)

ρ'

(Ω·m)

a) water-

saturated ~2.5 

km 
0.094

1.0 370 63

b) two-phase 

region
0.4 370 395



Plumbing system (5): fluid-flow

no 

sensitivity

Hybrid
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« W-shaped » self-potential

Positive anomalies

→ conductive hydrothermal plume

→ water-table upwelling near coast

(hot springs)

→ 1983 fissure eruption

Negative anomalies

→ water infiltration

esp. Kuwanokitaira caldera

Seismicity

Hybrid          

(Similarities with Sasai et al., 1997)



Plumbing system (5): fluid-flow

no 

sensitivity

Meteoric water 

infiltration

Hydrothermal 

fluids

Magmatic fluids

Hybrid
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Seismicity

Hybrid          



Plumbing system (6):Interpretative scheme

Hybrid
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Conclusion
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Plumbing system of Miyakejima volcano highlighted using a multidisciplinary approach

→ four geophysical methods: magnetotellurics, seismicity, self-potential, and surface thermal image

→ Hydrothermal-magmatic structures characterized: rock properties, temperature, fluid content, and fluid flow

1. Position of aquifer defined (0–700 m depth)

→ implication for explosive/effusive eruptions

2. Elongated clay cap:

→ sealing the degassing activity

3. Magmatic-hydrothermal interactions revealed in the fractured conduit (0–2 km depth)

→ steam explosions with long period events 

→ explain the water-content increase of fumaroles after 2000



Implications - Perspective 

 Investigate spatio-temporal change until the next eruption, expected in few years

→ Resistivity, seismicity, temperature, and self-potential

 Numerical models to constrain these changes→ retrieve unrest mechanisms?
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