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Motivation

• Check talks by P. Bedrosian, S. Thiel, H. Dong
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Modelling perspective

• The «flat Earth» model.
• Drawbacks and limitations.

• Multi-scale nature of the
problem
• Ocean and sediments, small-scale

distortions

• Can we resort to a spherical
Earth model?
• Advantages of a spherical frame.

• How to resolve multiple scales
within one model?
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Magnetotelluric response of a 1D Earth
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Magnetotelluric response of a 1D Earth

• Srivastava 1966: systematic study on and 
comparison of plane and spherical 
impedances.

• Weidelt 1972: functional relation 
between plane and spherical models 
(“Weidelt transform”). 

• Dmitriev and Berdichevsky 1979: proof of 
validity of impedance for non-
homogeneous “source” fields.

• Many more works… (check references 
therein)
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3-D modelling of MT transfer functions
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• Plane wave MT transfer functions can be 
simulated with two orthogonal polarizations:
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3-D modelling of MT transfer functions
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• Plane wave MT transfer functions can be 
simulated with two orthogonal polarizations:

• Is there an equivalent source representation on a 
sphere?
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Pros and Cons of a spherical model

• No geographic projection is needed.
• Free of potential distortions or other 

“flattening” effects.

• Easier to archive and exchange.
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Grayver et al. 2019, GJI
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Pros and Cons of a spherical model

• No geographic projection is needed.
• Free of potential distortions or other 

“flattening” effects.

• Easier to archive and exchange.

• Minimize or avoid boundary (“edge”) effects.

• Integration with other (intrinsically) global 
sources. 
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“Plane wave”Band: “Daily” “Magnetospheric”

< 300 100-500 > 400 Sounding
depth (km):



Pros and Cons of a spherical model

• No geographic projection is needed.
• Free of potential distortions or other 

“flattening” effects.

• Easier to archive and exchange.

• Minimize or avoid boundary (“edge”) effects.

• Integration with other (intrinsically) global 
sources. 
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3-D modelling of MT transfer functions in a sphere

• Uniform planetary fields (Fainberg et al. 1983).

• Described by degree 1 Spherical Harmonic functions.

• Reproduces plane wave impedance in a relevant period range.

• No tippers due to non-zero 𝐵𝑟.
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3-D modelling of MT transfer functions in a sphere

• Uniform planetary fields (Fainberg et al. 1983).

• Described by degree 1 Spherical Harmonic functions.

• Reproduces plane wave impedance in a relevant period range.

• No tippers due to non-zero 𝐵𝑟.
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Effect of geographic projections
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3 S/m

0.01 S/m

Apparent resistivity at R2:

+ 1D profile below

• The magnitude of the effect depends on the adopted projection and conductivity.
• Fields can be rotated (“corrected”) to account for the geographic projection effect. 



3-D modelling of MT transfer functions in a sphere

• Alternative source model based on a sheet current Ԧ𝐽𝑒𝑥𝑡 flowing in -direction placed 
above the Earth’s surface + plus two rotated orthogonal polarizations (Kruglyakov and 
Kuvshinov, in review).

• Radial (vertical) field is zero for any 1-D model, thus it can be used to calculate tippers. 
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Ocean and (marine) sediments

• Average conductance of the ocean and marine sediments 

is equivalent to that of the entire upper mantle. 

• Complex non-linear effect due to ocean and marine 

sediments in a wide range of periods. 
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ҧ𝑆𝑜𝑐𝑒𝑎𝑛 ≤ 30,000 Siemens

ҧ𝑆𝑠𝑒𝑑 ≤ 10,000 Siemens

ҧ𝑆𝑚𝑎𝑛𝑡𝑙𝑒 ≅ 17,000 Siemens*

410 km

* Based on the model from Grayver et al. 2017



Ocean conductivity
• Equation of state of seawater (TEOS-10, Milero 2010) as a function of ocean temperature, salinity and in-situ 

pressure:

𝜎𝑠𝑤(Ԧ𝑟) ≡ 𝜎𝑇𝐸𝑂𝑆 𝑇 Ԧ𝑟 , 𝑆 Ԧ𝑟 , 𝑃(Ԧ𝑟)

• Annual mean temperature and salinity at the sea surface from World Ocean Atlas (Boyer et al. 2018):
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Ocean conductivity
• Equation of state of seawater (TEOS-10, Milero 2010) as a function of ocean temperature, salinity and in-situ 

pressure:

𝜎𝑠𝑤(Ԧ𝑟) ≡ 𝜎𝑇𝐸𝑂𝑆 𝑇 Ԧ𝑟 , 𝑆 Ԧ𝑟 , 𝑃(Ԧ𝑟)

• Derived conductivity at the sea surface and at 200 m depth:
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Ocean conductivity
• Equation of state of seawater (TEOS-10, Milero 2010) as a function of ocean temperature, salinity and in-situ 

pressure:

𝜎𝑠𝑤(Ԧ𝑟) ≡ 𝜎𝑇𝐸𝑂𝑆 𝑇 Ԧ𝑟 , 𝑆 Ԧ𝑟 , 𝑃(Ԧ𝑟)

• Cross-sections of 𝜎, 𝑇 and 𝑆 averaged along longitude:
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Marine sediments

• Marine sediments are generally conductive due to penetration of seawater. 

• Their thickness can exceed 10 km (Straume et al. 2019). 

• May become significant part of the «ocean» effect.
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Ocean and sediment conductivity
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Ocean and sediment conductivity
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Ocean and sediment conductance
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Grayver 2021, G^3

Porosity model:

Temperature model:

Bulk conductivity of sediments: 



Ocean and sediment conductance
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Effect of marine sediments on MT transfer functions
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FL022

Grayver 2021, G^3

Period 11000 s



Incorporating multiple scales
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Samrock et al. 2018

Käufl et al. 2020

Cicchetti et al., in prep



Inversion of USArray MT: data
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(joint work with Federico Munch)

• Full Impedance tensor at ~1080 stations
• Period range: 15 - 29,000 s
• Error floor: 5% of impedance rows
• Half-space 100 Ω.m + 3-D ocean and marine sediments



Inversion of USArray MT: multi-scale mesh
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(joint work with Federico Munch)Smallest cells at the coast are ~2 km in diameter



Inversion of USArray MT: data fit
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(joint work with Federico Munch)



Inversion of USArray MT: preliminary model
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Depth 100 km
Munch and Grayver, in prep



Inversion of Australian tippers
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✓ We used minute-data magnetic field time series from 
different datasets covering the Australian continent:

▪ AWAGS (Australian Wide Array of Geomagnetic 
Stations)

▪ MAGDAS (MAGnetic Data Acquisition System)

▪ BGS (British Geological Survey)

(joint work with F. Cicchetti) A. Grayver
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(joint work with F. Cicchetti)
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Example of tipper at Albany 
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ABY
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Example of tipper at Albany 
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ABY
Chamalaun and Barton, 1993
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Inversion of AWAGS tippers
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36 km
• Sutures in Eastern Australia 

proposed to have formed a 
contiguous boundary during 
Paleoproterozoic accretion of 
continental material (Betts et 
al., 2016).

Kay, Heinson, Brand, 2021

Conductivity from the model L.Wang, et al. 2014, 3-D Conductivity 
model of the Australian continent using observatory and magnetometer 
array data. 
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Cicchetti et al., in prep



Inversion of AWAGS tippers
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90 km

Kennett et al, 2018

A. Grayver

Cicchetti et al., in prep



Concluding remarks

• Elaborated the 3-D MT modelling in a spherical shell.

• Discussed ways to tackle multi-scale nature of the problem.

• Showed applications to continental scale arrays.
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