

Using high power CSEM during the Energy Transition

EMinar series 2 MTNet

eick Reb 2nd 20

Setting the scene >> Technology >> Examples Our target objectives

- Most reservoirs in energy industry are:
 - Between 1000 5000 m depth
 - Results must be reconciled with logs
- MT measurements are biased towards conductors (horizontal current flow)
- CSEM electric field biased toward resistors
- CSEM magnetic field biased toward conductors
- \rightarrow You want it ALL!

For > 1 km with CSEM depth you need > 100 KVA (resistivity dependent)

Setting the scene >> Technology >> Examples How can Electromagnetics support the energy transition?

- Monitoring CO₂ injection
- Renewables
 - GREEN energy geothermal (exploration, monitoring)
- Towards ZERO footprint
 - EOR → higher recovery factor → lower carbon footprint/barrel

Setting the scene >> Technology >> Examples How can Electromagnetics support the energy transition?

Carbon Capture Utilization, Storage (CCUS)

This Photo by Unknown Author is licensed under CC BY

Geothermal Energy Production

This Photo by Unknown Author is licensed under <u>CC BY</u> >20 years of excellence in electromagnetic R&D

Geothermal Exploration

© 2022 KMS Technologies

Setting the scene >> Technology >> Examples How can Electromagnetics support the energy transition?

- Monitoring CO₂ injection
- Renewables
 - GREEN energy geothermal (exploration, monitoring)
- Towards ZERO footprint
 - EOR → higher recovery factor → lower carbon footprint/barrel

Setting the scene >> Technology >> Examples Basic building blocks

Setting the scene >> Technology >> Examples Controlled source EM improves accuracy

Current

Setting the scene >> Technology >> Examples Controlled source EM gives sharper pictures

© 2022 KMS Technologies

>20 years of excellence in electromagnetic

Setting the scene >> Technology >> Examples CSEM instrumentation

Setting the scene >> Technology >> Examples MT and CSEM system- Saudi Arabia

Setting the scene >> Technology >> Examples CSEM instrumentation in Saudi

GENRATOR WATCH

Current video

Setting the scene >> Technology >> Examples Carbon capture applications

Setting the scene >> Technology >> Examples CCUS: CO2 influence on resistivity

@ normal brine salinity \rightarrow fluids are

• @ low salinity (\leq 5,000 ppm) \rightarrow more

more resistive (6 -50 times)

•

conductive

14

© 2022 KMS Technologies

>20 years of excellence in electromagnetic R&D

- Focus on multiple reservoirs with multi-physics
- Future: continue → site qualification →
 commercialization → drilling → monitoring

Setting the scene >> Technology >> Examples CSEM feasibility workflow

Setting the scene >> Technology >> Examples CSEM CO2 feasibility: Defining station spacing Ey-Ey

After Barajas-Olalde et al., 2021

© 2022 KMS Technologies

Setting the scene >> Technology >> Examples CSEM CO2 feasibility: Defining station spacing dBz/dt

After Barajas-Olalde et al., 2021

© 2022 KMS Technologies

19

Setting the scene >> Technology >> Examples CSEM: acquisition layout

≻ MT <</p>

- To measure the model's baseline background resistivity
- 42 Stations, 600 m spacing
- Remote station near Grand Forks, North Dakota

> CSEM - • •

- 124 Stations, 200 m spacing
- Two transmitter sites (A & B), 400 A
- Time domain
- − Varies waveform \rightarrow > 700 sites
- 24 hours operation 6 weeks
- No equipment breakdowns
- Real-time data upload for QA
- Production: Pickups: 24, deployment:16, fully recorded sites:17 / day

After Barajas-Olalde et al., 2021

© 2022 KMS Technologies

Setting the scene >> Technology >> Examples North Dakota CO2 project: Acquisition options

- 24 hours operation for CSEM (versus Standard: Night MT &. Day CSEM)
 - More routine less operational problems
 - Generator stays warm
 - Electrode pit remain stable
 - High production rate
 - Q/A via Cloud enabled receivers
- CON 24/7: Processing more complex as data must be demerged by transmission cycle and then remerged with transmitter current

Setting the scene >> Technology >> Examples CO2 survey: acquisition workflow

Setting the scene >> Technology >> Examples CSEM: How do we quality control the data?

How do we QC data?

- Large data sets (350)
- Measurement error < 0.5%</p>
- Processing error larger
- Inversion model smooth
- Avoid extra processing
 Calibrate against borehole
 3D model match data

Setting the scene >> Technology >> Examples CO2 acquisition: MT results. Quality Assurance RR & 3D model

© 2022 KMS Technologies

>20 years of excellence in electromagnetic R&D

Setting the scene >> Technology >> Examples CO2 acquisition: MT results. Quality Assurance RR & 3D model

Setting the scene >> Technology >> Examples CSEM monitoring: CSEM Quality Assurance – Hz matched against log

2021 SPWLA FALL TOPICAL CONFERENCE – UNCONVENTIONAL PETROPHYSICS

Setting the scene >> Technology >> Examples CSEM monitoring: CSEM QA - electric field matches log

Setting the scene >> Technology >> Examples CSEM monitoring: 3D anisotropic model to QC data

- Model response match data in all components
- (in)consistencies
 points to flaws
 in workflows

RESULT: reduced processing, more data driven processes

Setting the scene >> Technology >> Examples Geothermal reservoir monitoring: a priori

Setting the scene >> Technology >> Examples Geothermal reservoir monitoring: 3D Feasibility

Setting the scene >> Technology >> Examples EOR monitoring: water flood

Setting the scene >> Technology >> Examples EOR monitoring: water flood

Setting the scene >> Technology >> Examples EOR monitoring: 195 channel monitoring system

RESERVOIR MONITORING

ARRAY Electromagnetics

- 195 channels, wifi, wireless or LAN
- 3C magnetic field (DC to 40 kHz)
- 3C microseismic
- 2C electric fields
- Shallow borehole (microseismic/EM)

2015 CSEM transmitter test

- 100 KVA transmitter up-scalable
- Flexible input. (DC to 3 phase AC)
- Array system integrated

Setting the scene >> Technology >> Examples EOR monitoring: Raw data example: microseismic/EM monitoring

© 2022 KMS Technologies

Setting the scene >> Technology >> Examples EOR monitoring: Monitoring: Data workflow

>

Filtering

Harmonic Noise
Harmonic noise filters: Low pass filter
Power line harmonic : 50 Hz
threshold:3.00
Smoothing
Low pass filter : time domain
Cut off frequency: 15 Hz
Averaging filter: Recursive average = 0.01,T/2 smoothing

Stacking Trimmed mean T/2 additional stacking

Smoothing & time lapse Recursive average filter DC-level adjust

Courtesy A. Paembonan

>20 years of excellence in electromagnetic R&D

Setting the scene >> Technology >> Examples EOR monitoring: Magnetic field sees water flood influence

36

Setting the scene >> Technology >> Examples EOR monitoring: Field layout, time-lapse data results, 3D model explanation

Setting the scene >> Technology >> Examples What will the future look like?

- EM has contribution to make to the energy transition
- Fluid imaging requires EM
- Monitoring points to CSEM
- BUT we need results FAST (24 hours) & CALIBRATED

Setting the scene >> Technology >> Examples >> Future Use the Cloud & AI/ML: the biggest time consumers

Reservoir monitoring workflow, approximate times & technical tasks

Analyze target variations *

* denotes time consuming tasks

Setting the scene >> Technology >> Examples FUTURE:

Acquire denser data Seismic & EM Use EM for monitoring Integrate surface with borehole Integrate land & market

Courtesy E. Gasperikova, 2012

© 2022 KMS Technologies

>20 years of excellence in electromagnetic R&D