3D Real-Time Inversion of Ultra-Deep Resistivity Logging-While-Drilling

HALLIBURTON

Glenn Wilson & Nigel Clegg

MTnet EMinar – 9 February 2022

Overview

- Introduction to Logging-While-Drilling
- Ultra-Deep Resistivity
- Inversion
 - 1D \rightarrow 2.5D \rightarrow 3D
- Case Studies

Acknowledgements

- Halliburton
 - Alban Duriez, Geosteering Manager
 - Neila Kadri, Strategic Business Manager LWD
 - Sperry Drilling Technology
- Computational Geoscience
 - Eldad Haber
 - Dave Marchant
 - Nigel Phillips
- Halliburton & various operators for permission to publish

Logging-While-Drilling

Subsurface Resolution

Sinha, S., Clegg, N., Beset, K., Kristoffersen, I., Kolsto, S., and Marchant, D., "Optimized well planning using 3D EM inversion results." Paper presented at Abu Dhabi International Petroleum Exhibition and Conference, Virtual, November 2020. doi: https://doi.org/10.2118/202606-MS

Timing Constraints on Well Construction

- Geosteering decisions need to be made quickly. To avoid this exit smoothly a decision needs to be made early, ideally in the first 50 to 100 ft.
- At best a decision needs to be made in the first 30 mins.
- These decisions are made following trends in data, not on 1 data point.

Ultra-Deep Resistivity Logging-While-Drilling

Inversion Dimensionality

- 1D inversion assumes changes only happen above and below the wellbore
- 2.5D inversion assumes a plane of infinite strike, so changes happen above/below the wellbore and along the wellbore

3D inversion permits changes in all directions

2D

3D

1D Inversion for Ultra-Deep Resistivity

Multi-layer pre-well model

1D inversion of pre-well model

Wu et al., 2018, SPWLA

1D Inversion for Ultra-Deep Resistivity

2.5D Inversion for Ultra-Deep Resistivity

Thiel & Omeragic, 2019, Geophysics

3D Inversion for Multi-Source Surveys

3D Inversion for Multi-Source Surveys: Decouple Grids

Commer & Newman, 2008, GJI Yang et al., 2014, GJI

3D Inversion for Multi-Source Surveys: Decouple Grids & OcTree

© 2020 Halliburton. All rights reserved.

18

Haber & Schwarzbach, 2014, Inv. Prob.

3D Inversion for Multi-Source Surveys: Use All or Local Data?

Standard Inversion

Inversion with Local Data

min
$$\sum ||d_j^{obs} - d_j^{pred}(\sigma)||^2 + \alpha R(\sigma, \nabla \sigma)$$

$$\min \sum_{j=1}^{N} ||d_j^{obs} - d_j^{pred}(\sigma)||^2 + \alpha R_N(\sigma - \sigma_{N-1}, \nabla(\sigma - \sigma_{N-1}))$$

3D Inversion for Dynamic Multi-Source Surveys: Decouple Grids & OcTree

						·											

Wilson et al., 2019, SPE ATCE

But... "Real-time 3D inversion is impossible!"

	1D	2.5D	3D OcTree	Standard 3D
Degrees of Freedom	nLayers x nFT x nHankle ~ 30K	nX x nZ x nKy ~ 100k+	30-50K	500K+
Run Time	Seconds	Hours	Seconds	Hours to Days
Parallelization	\checkmark	\checkmark	\checkmark	✓
Geological Complexity	X	\checkmark	\checkmark	\checkmark
Anisotropy	✓	✓	\checkmark	✓

3D Inversion for Ultra-Deep Resistivity: Model Study

3D Inversion for Ultra-Deep Resistivity: Model Study

3D Inversion for Ultra-Deep Resistivity: Model Study

28 Commen

Tracking Injection Water

© 2019 Halliburton. All rights reserved.

Why is 3D Inversion so Important?

View while drilling

© 2020 Halliburton. All rights reserved.

Case Study – Water Slumping UAE

Maniesh Singh, Parmanand Dhermeshwar Thakur, Mariam N. M. Al Baloushi, Haitham Ali Al Saadi, Maisoon M. Al Mansoori, Ahmed S. Al Mesafri, Saif Al Arfi, Vikram K. Pandey, Alaa Al Shalabi, Flavien Maire, Ernesto L. Barragan Chang, Maher M. Kenawy, Mouza Ali Al Nuaimi, Douglas Boyd, Nader Gerges, Wael Fares, Eduard Bikchandaev, Nigel Clegg, Arthur Walmsley, Ahmet Aki. Real-Time 3D Ultra Deep Directional Electromagnetic LWD Inversions: An Innovative Approach for Geosteering and Geomapping Water Slumping Movement Around Sub-Seismic Fault, Onshore Abu Dhabi. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 15–18, 2021. DOI: https://doi.org/10.2118/207478-MS. © 2020 Halliburton. All rights reserved.

Case Study – Water Slumping UAE

Maniesh Singh, Parmanand Dhermeshwar Thakur, Mariam N. M. Al Baloushi, Haitham Ali Al Saadi, Maisoon M. Al Mansoori, Ahmed S. Al Mesafri, Saif Al Arfi, Vikram K. Pandey, Alaa Al Shalabi, Flavien Maire, Ernesto L. Barragan Chang, Maher M. Kenawy, Mouza Ali Al Nuaimi, Douglas Boyd, Nader Gerges, Wael Fares, Eduard Bikchandaev, Nigel Clegg, Arthur Walmsley, Ahmet Aki. Real-Time 3D Ultra Deep Directional Electromagnetic LWD Inversions: An Innovative Approach for Geosteering and Geomapping Water Slumping Movement Around Sub-Seismic Fault, Onshore Abu Dhabi. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 15–18, 2021. DOI: https://doi.org/10.2118/207478-MS. © 2020 Halliburton. All rights reserved

Turbidite Sands

© 2019 Halliburton. All rights reserved.

Channel Sand

Exiting a Channel Sand

© 2019 Halliburton. All rights reserved.

Case Study: Complex Turbidite Reservoir, Norwegian Continental Shelf

Wilson, G., Marchant, D., Haber, E., Clegg, N., Zurcher, D., Rawsthorne, L., & Kunnas, J. (2019, September 23). Real-Time 3D Inversion of Ultra-Deep Resistivity Logging-While-Drilling Data. Society of Petroleum Engineers. doi:10.2118/196141-MS

34

3D Inversion

Wilson, G., Marchant, D., Haber, E., Clegg, N., Zurcher, D., Rawsthorne, L., & Kunnas, J. (2019, September 23). Real-Time 3D Inversion of Ultra-Deep Resistivity Logging-While-Drilling Data. Society of Petroleum Engineers. doi:10.2118/196141-MS

Verification

Wilson, G., Marchant, D., Haber, E., Clegg, N., Zurcher, D., Rawsthorne, L., & Kunnas, J. (2019, September 23). Real-Time 3D Inversion of Ultra-Deep Resistivity Logging-While-Drilling Data. Society of Petroleum Engineers. doi:10.2118/196141-MS

3D Inversion of Ultra-Deep Resistivity Data from Multi-Lateral Wells Integrated with Seismic Data

Mapping erosive turbidite channel that defines the top reservoir, confirmed with pilot hole

Wilson, G., Marchant, D., Haber, E., Clegg, N., Zurcher, D., Rawsthorne, L., & Kunnas, J. (2019, September 23). Real-Time 3D Inversion of Ultra-Deep Resistivity Logging-While-Drilling Data. Society of Petroleum Engineers. doi:10.2118/196141-MS

HALLIBURTON

37

EarthStar® 3D Real Time Inversion

-	Inversion					Start Depti	ı	m End De	epth	m		? 💄
3D VIE		ñ	(I)	96	<u>o</u>	53		Saved Views			COLOR GRADIENT	
											COLOR PROPERTIES	
											Color Gradient	×
											Value Range O.5	30 D
											Transparency	1O
												Apply
											DATA FILTER	— ×
											SWITCH CAMERA	
											Rotational Camera	✓ Αρρίγ
	-		k.								3D OBJECTS	
									-	~	💽 Wellpath 🛛 💽 🛛	Bit Position
											RESISTIVITY FILTER	
											• Filter 0.13 6	
											• Filter ²	
											• Filter 0.13	^{220.91}
												Apply
											BLOCK SIZE	

© 2020 Halliburton. All rights reserved.

Landing Operations

© 2019 Halliburton. All rights reserved.

Pre-Drill Scenarios

Clegg, N., Domingues, A. B., Ameneiro Paredes, R., Gardner, N., Mendoza Barrón, V., Rowden, E., and Marchant, D. "Mapping Complex Geological Surface Morphology During Landing Operations Using 3-D Inversion of Ultra-Deep Electromagnetic LWD Data." Paper presented at the Offshore Technology Conference, Virtual and Houston, Texas, August 2021. doi: https://doi.org/10.4043/31216-MS

1D Inversion and Azimuthal Resistivity Image

Clegg, N., Domingues, A. B., Ameneiro Paredes, R., Gardner, N., Mendoza Barrón, V., Rowden, E., and Marchant, D. "Mapping Complex Geological Surface Morphology During Landing Operations Using 3-D Inversion of Ultra-Deep Electromagnetic LWD Data." Paper presented at the Offshore Technology Conference, Virtual and Houston, Texas, August 2021. doi: https://doi.org/10.4043/31216-MS

3D Inversion Results

Clegg, N., Domingues, A. B., Ameneiro Paredes, R., Gardner, N., Mendoza Barrón, V., Rowden, E., and Marchant, D. "Mapping Complex Geological Surface Morphology During Landing Operations Using 3-D Inversion of Ultra-Deep Electromagnetic LWD Data." Paper presented at the Offshore Technology Conference, Virtual and Houston, Texas, August 2021. doi: https://doi.org/10.4043/31216-MS

Conclusions

- Logging-while-drilling operations require real-time analysis to impact drilling and completion decisions
- Ultra-deep resistivity is important for landing, geosteering, and geostopping operations
- 3D inversion captures full geological complexity
 - No approximations in modeling per se
 - OcTree enables real-time 3D inversion
- Many case studies to validate results and value to well construction

Selected References

- Clegg, N., Domingues, A. B., Ameneiro Paredes, R., Gardner, N., Mendoza Barrón, V., Rowden, E., and Marchant, D. Mapping Complex Geological Surface Morphology During Landing Operations Using 3-D Inversion of Ultra-Deep Electromagnetic LWD Data. Presented at the Offshore Technology Conference, Virtual and Houston, Texas, August 2021. doi: <u>https://doi.org/10.4043/31216-MS</u>
- Maniesh Singh, Parmanand Dhermeshwar Thakur, Mariam N. M. Al Baloushi, Haitham Ali Al Saadi, Maisoon M. Al Mansoori, Ahmed S. Al Mesafri, Saif Al Arfi, Vikram K. Pandey, Alaa Al Shalabi, Flavien Maire, Ernesto L. Barragan Chang, Maher M. Kenawy, Mouza Ali Al Nuaimi, Douglas Boyd, Nader Gerges, Wael Fares, Eduard Bikchandaev, Nigel Clegg, Arthur Walmsley, Ahmet Aki. Real-Time 3D Ultra Deep Directional Electromagnetic LWD Inversions: An Innovative Approach for Geosteering and Geomapping Water Slumping Movement Around Sub-Seismic Fault, Onshore Abu Dhabi. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, November 15–18, 2021. DOI: https://doi.org/10.2118/207478-MS.
- Sinha, S., Clegg, N., Beset, K., Kristoffersen, I., Kolsto, S., and Marchant, D., Optimized well planning using 3D EM inversion results.
 Presented at Abu Dhabi International Petroleum Exhibition and Conference, Virtual, November 2020. doi: <u>https://doi.org/10.2118/202606-MS</u>
- Wilson, G., Marchant, D., Haber, E., Clegg, N., Zurcher, D., Rawsthorne, L., & Kunnas, J. Real-Time 3D Inversion of Ultra-Deep Resistivity Logging-While-Drilling Data. Presented at SPE Annual Technical Conference and Exhibition, Calgary, Alberta, September 2019. doi: <u>https://doi.org/10.2118/196141-MS</u>
- Clegg, N., Parker, T., Djefel, B., Monteilhet, L., & Marchant, D. The Final Piece of the Puzzle: 3-D Inversion of Ultra-Deep Azimuthal Resistivity LWD Data: Presented at SPWLA 60th Annual Logging Symposium, Houston, Texas, June 2019. doi: <u>https://doi.org/10.30632/T60ALS-2019_HHH</u>
- Wu, H.-H., Golla, C., Parker, T., Clegg, N., and Monteilhet, L. A New Ultra-Deep Azimuthal Electromagnetic LWD Sensor for Reservoir Insight. Presented at SPWLA 59th Annual Logging Symposium, London, UK, June 2018,

