Advancing Earth Imaging Techniques for Improved
Understanding of Groundwater Systems
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Water matters.
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Drought year: 2014

Lake Oroville, CA, U.S.A.




97% of all liquid freshwater

Groundwater




population growth

_ 97% of all liquid freshwater
climate change

Groundwater




RESEARCH

Global groundwater wells at risk of running dry

Scott Jasechko* and Debra Perrone?
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For improved understanding of groundwater systems

Need to "monitor” groundwater systems

Groundwater flow & volume

100s of meters




4 )
CANNOT pursue groundwater science & management without

\seeing “under” the ground )

100s of meters
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Traditional approach: Well-based

Pros:

« Accurate point information

« Direct information
hydrogeology (e.g., lithology)
groundwater head

cons:

Variable quality

Low spatial density in lateral dimensions
Decreasing coverage with increasing depth
(due to increasing drilling cost)

Large data gap between wells
and at deeper depths
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Alternate approach: Earth imaging technigues

Satellite Interferometric Synthetic Aperture Radar (InSAR)
Airborne Electromagnetic (AEM) Method

100s of meters
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INSAR for monitoring groundwater head
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Spatial and temporal changes in

groundwater head are encoded

In the ground deformation
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INSAR for monitoring groundwater head
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Spatial and temporal changes in

groundwater head are encoded

\in the ground deformation
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Pros

« Great spatial coverage: Earth surface

« High spatial density: 20-100 m

« (Good temporal sampling rate: 6-12 days

« Sensitive to the head in the deeper
aquifers (confined or semi-confined)

cons
« Indirect information about the head
« Other factors affecting deformation

Hydrologic loading
(water, ice, snow)



AEM method for imaging the subsurface

Pros:

« Can rapidly map out large area
(e.g., 100 km/hr)

« Sensitive to the large-scale feature

cons:

* Provide indirect information
(electrical resistivity)

* Limited resolution
(degrading with depth)
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Electrical resistivity: p ((0m)

Seawater
. Clays Sand, gravel Weathered bedrock,
bedrock
_ — e
1 10 100 1000

Resistivity (Qm)
Varies over many orders of magnitude

Depends on many factors:
« Sediment/Rock type — clay content is key factor
* Water content
« Connectivity of pores
« Salinity of the water
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Limited resolution of the AEM data

Clay layer embedded in a homogenous aquifer

Depth (m)

0

Z=80m

100 4

150 4

200 1

250 1

300

E
—_— True

= = Recovered

L

=
%
L
l
I
I
I

Aquifer

Aquifer

-

Smoothed layer boundaries due to

« Degrading resolution with depth
» Assumed “smooth” transition in resistivity

107

101

Resistivity (Qm)

10¢

o

(in the imaging process)

~

/

17



Limited resolution of the AEM data

Clay layer embedded in a homogenous aquifer (variable depth)
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An overarching scientific guestion

How do we integrate modern remote sensing data and traditional well
data to image the subsurface and monitor groundwater systems?
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Central Valley of California

Very productive farmland
Significant amount of surface & ground water

Severe droughts in California: 2012-2016

Sustainable Groundwater Management Act
(SGMA, 2014)




Central Valley of California

North — Sacramento Valley
South — San Joaquin Valley
More pumping of groundwater

In the warmer, drier south.

Causes more subsidence
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Aquifer system of the Central Valley

Shallow aquifer |

(unconfined)

Deep aquifer
(confined)

Pumping

Confining layer

Impermeable base

@l» |nterbedded clay
[ Coarse-grained materials

Composed of sediments
Numerous interbedded clays

Regional confining unit — Corcoran Clay
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Conceptual model of the surface deformation

Shallow aquifer |

(unconfined)

Deep aquifer
(confined)

Pumping

Confining layer

Impermeable base

@l» |nterbedded clay
[ Coarse-grained materials

Pumping groundwater

Reduces the head

Drains water from clays to coarse

(diffusive process; takes time)

Compacts the interbedded clays

(head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: Head change

N

(in the deep confined aquifer)
Modulation: Interbedded clays

J
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But ...

Shallow aquifer |

(unconfined)

Deep aquifer
(confined)

Well

@l» |nterbedded clay
[ Coarse-grained materials

Subsurface hydrogeology is unknown

Measured head measurements are
sparse in space and time
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structure

<

AEM for imaging the large-scale J

{InSAR for monitoring groundwater head }
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Case study in Kaweah Subbasin in Calitornia, U.S.A.

“Improved Imaging of the Large-Scale Structure of a
Groundwater System with AEM data”

CONFINING UNIT

BEDROCK

Kang et al. (2022)
Water Resources and Research



Groundwater model

A foundation for sustainable groundwater management.

Evapot anapi ation f\) Q‘ k
AR T N
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100s of meters

50 "4\ Modified from CDWR (2019)
o~
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Groundwater model

Large-scale structure of groundwater systems is required input.
Examples of key features: confining layer, top of bedrock

| l 100s of meters

Base of Model BEDROCK
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Development of a new approach to map out the large-scale structure:

Data source: AEM data + a few high-quality wells
Key improvement: incorporating “prior knowledge™ into inversion step

AEM method

Large-scale structure

Base of Model BEDROCK
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Large-scale AEM project (led by DWR)

Location map
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/A great opportunity to transfer the
developed technology into other

regions so that they can support the
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Study area: Kaweah Subbasin

Sierra - ‘ f : _
Mountains’ 4 Ak §4 Located in San Joaquin Valley

& N R .

Central b :; High groundwater demand

Valley [aiPsi Less surface water & precipitation
Warmer drier weather

| ‘ . Significant subsidence due to pumping

e 3L

kaweah [  (~20 cm/year)
Subbasin 2

u‘% 1 One of the critically over-drafted basins

Pacific ocean
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Existing groundwater model A.
A TSN
[ — A
Air
/T\_’ ----------
Corcoran Clay Bedrock

(low p) (high p) ~550 m

Low-permeability

sediments
(low p)
W
West ~60 km East



Targets that we aim to resolve & prior knowledge

Large-scale structure

) Confining layer — the Corcoran Clay:

- a large resistivity contrast between the Clay and
surrounding aquifers. CONFINING UNT

Base of Model BEDROCK

- thickness of the clay << thickness of the aquifers
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Avalilable data

Location map

7z

North

~80 km

South

Three
driller’s logs

AN

AEM soundings

West

~65 km

East

3
~

~

AEM data (2018)
SkyTEM system

High-quality well data:
Three driller’s logs (bedrock)

Wells A, B, C (Corcoran Clay)
(resistivity and driller’s logs)

Groundwater model

boundary
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AEM inversion methodology

Data Inversion Resistivity
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https://www.simpeq.xyz

35


https://www.simpeg.xyz/

Start with conventional inversion approach
(assume smooth transition of resistivity in vertical and lateral directions)



Inversion methodology

¢q: data misfit

minimize ¢ = ¢4 + BPm ¢m: regularization
subject to  mz < m < my (3: trade-off parameter
myp, my: lower and upper bounds
4 smoothness A
dm\ 2 dm\ 2
Do, - mmf)zdv + «, / (—) dr + o, (—) dz
, \dr » \dz
\_ horizontal direction vertical direction )
Flexibility ™Mo Initial guess
Myef Prior knowledge

Qg, Oy, Oy Relative importance of the norms
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3D resistivity model
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Groundwater model ey oy e [

Low-permeability
sediments

(low p)
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Corcoran Clay

Elevation (m)

= r -
H. | n et I: =
0 ] ) ) i
~100 ) - ' |
—200
South ~45 km North
Interpreted Corcoran Clay layer _:_
101 104

Resistivity (Qm)

Smoothed layer boundaries, and thick Corcoran Clay (~100 m thickness)
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Use targeted inversion approach
(utilize the prior knowledge of the targets)

Corcoran Clay layer ~mmmp W

BEDROCK
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Modify norms

¢q: data misfit

minimize ¢ = ¢4 + BPm ¢m: regularization
subject to  mz < m < my (3: trade-off parameter
myp, my: lower and upper bounds
4 smallness pr smoothness A
dm
Pm = Qs [ (M — Mypes )=dv + o, dr + dz

\_ horizontal direction vertical direction )
Flexibility ™Mo Initial guess

Myef Prior knowledge

Qg, Oy, Oy Relative importance of the norms

Ps, Pr) Pz p-norm for each term in ¢,, Fournier and Oldenburg (2019)
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Character of Lp-norms

Confining layer — the Corcoran Clay:

- a large resistivity contrast between the Corcoran Clay and surrounding aquifers.

p=2 p=1 p=0

J—‘J\\l :

only @

I e O

Y4 Y4
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Character of Lp-norms

Confining layer — the Corcoran Clay:

- thickness of the clay << thickness of the aquifers

p=2 p=1 p=0

only ¢ _Jﬁ\_/\ J—]\_/\ J 1/\
oy @5 |\ S\ m A\ |




Abrupt transition of resistivity at the Clay boundaries
COrCOran Clay Significant reduction of the Clay thickness
Increased depth to the Clay
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Comparison with the well data (Wells A & B)

Conventional Targeted
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Location map
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Summary

The developed approach is transferrable to other regions, and can be
used to develop a high-quality groundwater model from AEM data

Large-scale AEM project in California
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Case study in the Central Valley of California, U.S.A.

“Recovering groundwater head from InSAR surface deformation data”

Kang et al. (2022)
In preparation
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Conceptual model of the surface deformation

Shallow aquifer |

(unconfined)

Deep aquifer
(confined)

Pumping

-
Confining layer I
e T e
PSS <
e QTS
| —
- < ——

Impermeable base

@ |nterbedded clay
[ 1 Coarse-grained materials

Pumping groundwater
Reduces the head

Drains water from clays to coarse
(diffusive process; takes time)

Compacts the interbedded clays
(head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: Head change
(in the confined aquifer)

\Modulation: Interbedded clays

J
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Recovery of groundwater head

INSAR surface deformation data

Deformation (cm)

INSAR time-series

Head (meter above sea level)

S—

= \

2015

2016

2017

2018

Groundwater head

Wet Dry

Droughts

Head
measurements

,LQ\Q 19‘\:\' / ,LQ'\:L 19‘\,3 19\‘0« 10\“) 10\6 19\:‘ /19\% 19\9

INSAR data

j | j o
()] S N

o o o
Deformation (cm)

|
[os]
o
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Example of co-located INSAR data and head data

Wet Dry Droughts
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Recovery of groundwater head

Air
Water table W/ 1§
------------------------- 1™ Piezometer
Shallow aquifer_ R — i

(unconfined)
I 300m- 1km

Deep aquifer
(confined)

hCOE':lI'SE

Impermeable base

- |nterbedded clay
[ 1 Coarse-grained materials

Forward: F|hcoarse; Pelays| = INSAR data

Inverse (assume unknown is h.parse ):

minimize: p(m) = ¢4 + LD,

¢ 4. data misfit
¢ regularization

Requires:

a) Forward simulation
b) Sensitivity calculation
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Recovery of groundwater head

Air
W ater table _y_ ___________ ': 0 Forward F[hcoarse; pclays] — InSAR data

------------- ™~ Piezometer
Shallow aquifer ] S — |

(unconfined)

b s00m- 1km Inverse (assume unknown is h.gapse ):

Deep aquifer
(confined)

minimize: p(m) = ¢4 + LD,

hCOE':lI'SE

¢ 4. data misfit
Impermeable base ¢.,: regularization

s N
Need to know properties of the clays, pjays

(e.g., hydraulic conductivity, thickness, volume fraction)
N J
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Inversion example for proof-of-concept

INSAR time series
within 3 km radius from the location
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2015 2016 2017 2018

Used clay properties of the region from
Smith and Knight (2019) for the inversion
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Observed INSAR data & Initial guess

Head (masl)

Wet Dry Droughts
0
0 —— QObserved INSAR data
20
—20 —40
—60
—40
—80
—60 1 Initial head L 100
2010 2011 2012 2013 2014 2015 2016 2017 2018

Time (year)

Deformation {cm)



Recovered head

Wet Dry Droughts
0
0l —— QObserved INSAR data
--=-- Predicted InSAR data | —-20
8 —20 —40
E
o —b60
>
T —40
-80
Initial head
_B0 - Recovered head y —100
2010 2011 2012 2013 2014 2015 2016 2017 2018

Deformation (cm)
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Inversion example

Co-located data

Wet Dry Droughts
01 —— Observed INSAR data
--=-- Predicted InSAR data
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Summary

Showed the potential to utilize the INSAR data as a tool to monitor
head changes in the semi-confined/confined aquifers in the Central
Valley of California

INSAR surface deformation data Groundwater head

Wet Dry Droughts
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2 20 z
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Data gap for extending this idea to a water basin?

Shallow aquifer |
(unconfined)

Deep aquifer
(confined)

Impermeable base

a» |nterbedded clay
[ Coarse-grained materials

ﬁ

a) The Corcoran Clay: depth, thickness

b) Thickness of the confined aquifer
c) Clay-fraction within the aquifer

Integrate AEM data & Well data to obtain these
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Outlook: Monitoring groundwater head

Remote Sensing Data Well Data

INSAR data: head information modulated by clays Head data with sparse samplings
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“Seek for the hydraulic head, h(x,y; t) and parameters related to
the clays, paays(x, ) that can fit the INSAR, AEM, well data

favoring available prior information”

Inimi = ¢ 4: data misfit
TS (]5(771) ¢d(m) T 'B¢m(m) ¢.,: regularization
/- \ (: trade-off parameter

m = (h, pclays) d)InSAR + c:bAEM + (:bwell Available prior information
(e.g., existing groundwater model)

Need to couple the hydrologic process with
the physics of the remote sensing data



E open-source toolbox and framework
ﬁ SI M peg for geophysical inversion

Inversion Implementation

Modular, multi-physics suvey | Simulaton IR
« Gravity v ¢_1 o Mesh
’ Mag netICS o Data —  Data Misfit Regularization d—l
« Direct current resistivity
* Induced polarization l
. Electromagnetics Problom |1 Optimization
* Fluid flow (Richard’s equation) !
Inversion lr-ﬁu‘

Cockett et al. (2015)

‘@ | Research codes developed for my research are publicly
available through the SImPEG: https://www.simpeqg.xyz
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https://www.simpeg.xyz/

Larger volume of higher quality remote sensing data

Large-scale AEM project in CA Processed INSAR data (funded by CDWR)

} ,‘ 3 o \ )| AEM Status e d ‘ 4
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CDWR (2021)
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Concluding remarks

Data
Integration

=)

, | 100s of meters

- =
Airborne EM

Ground-based EM .... Traditional well data

Monitoring Spatial & Temporal

Changes in groundwater head
Changes in groundwater volume

My goal is to maximize the value of the Earth Imaging techniques for
Improved understanding of groundwater systems
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Thank you!

FJ’; Sim Peg
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