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Water matters.  

3https://www.amnh.org/explore/ology/water/what-is-water

https://www.amnh.org/explore/ology/water/what-is-water
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Wet year: 2017

Lake Oroville, CA, U.S.A
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Drought year: 2014Wet year: 2017

Lake Oroville, CA, U.S.A.



Groundwater

97% of all liquid freshwater
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Groundwater

97% of all liquid freshwaterpopulation growth

climate change
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Science 

NO WATER FOR IRRIGATION Almond Farmers Ripping Out Trees 

Morris  (from Bloomberg; 2021)



100s of meters
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Need to “monitor” groundwater systems 

For improved understanding of groundwater systems

Groundwater flow & volume



CANNOT pursue groundwater science & management without 

seeing “under” the ground
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Traditional approach: Well-based

Drilling a well Pros:
• Accurate point information 

• Direct information

hydrogeology (e.g., lithology)

groundwater head

Cons:
• Variable quality

• Low spatial density in lateral dimensions

• Decreasing coverage with increasing depth 

(due to increasing drilling cost)

Large data gap between wells 

and at deeper depths



Alternate approach: Earth imaging techniques
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Satellite Interferometric Synthetic Aperture Radar (InSAR)

Airborne Electromagnetic (AEM) Method



InSAR for monitoring groundwater head
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Spatial and temporal changes in 

groundwater head are encoded 

in the ground deformation



InSAR for monitoring groundwater head
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Pros

• Great spatial coverage: Earth surface

• High spatial density: 20-100 m

• Good temporal sampling rate: 6-12 days 

• Sensitive to the head in the deeper 
aquifers (confined or semi-confined)

Cons

• Indirect information about the head

• Other factors affecting deformation

Hydrologic loading

(water, ice, snow)

…

Spatial and temporal changes in 

groundwater head are encoded 

in the ground deformation
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AEM method for imaging the subsurface

CDWR (2021)

Pros:
• Can rapidly map out large area

(e.g., 100 km/hr)

• Sensitive to the large-scale feature

Cons:
• Provide indirect information 

(electrical resistivity)

• Limited resolution 

(degrading with depth)



Varies over many orders of magnitude

Depends on many factors:
• Sediment/Rock type – clay content is key factor

• Water content

• Connectivity of pores

• Salinity of the water

Electrical resistivity: 𝜌 (Ωm)
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Resistivity (Ωm)

Sand, gravel Weathered bedrock, 

bedrock 

Clays
Seawater

1 10 100 1000
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Limited resolution of the AEM data
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Resistivity (Ωm)

Clay layer embedded in a homogenous aquifer 

Smoothed layer boundaries due to 

• Degrading resolution with depth

• Assumed “smooth” transition in resistivity

(in the imaging process)

Clay

Aquifer

Aquifer
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Limited resolution of the AEM data
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Resistivity (Ωm)

Clay layer embedded in a homogenous aquifer (variable depth) 



An overarching scientific question

How do we integrate modern remote sensing data and traditional well 
data to image the subsurface and monitor groundwater systems?
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Very productive farmland
Significant amount of surface & ground water

Severe droughts in California: 2012-2016

Sustainable Groundwater Management Act 

(SGMA, 2014)

Central Valley of California
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CA outline

Central Valley



North – Sacramento Valley

South – San Joaquin Valley  

More pumping of groundwater 

in the warmer, drier south. 

Causes more subsidence
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Central Valley of California



Aquifer system of the Central Valley
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Composed of sediments 

Numerous interbedded clays 

Regional confining unit – Corcoran Clay
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Pumping groundwater

Reduces the head 

Drains water from clays to coarse 

(diffusive process; takes time)

Compacts the interbedded clays

(head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: Head change 

(in the deep confined aquifer)  

Modulation: Interbedded clays

Conceptual model of the surface deformation
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But …

?

Subsurface hydrogeology is unknown 

Measured head measurements are 

sparse in space and time

Well
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Kaweah Subbasin

AEM for imaging the large-scale 

structure

InSAR for monitoring groundwater head



Case study in Kaweah Subbasin in California, U.S.A.

“Improved Imaging of the Large-Scale Structure of a 
Groundwater System with AEM data”

Kang et al. (2022)

Water Resources and Research



Groundwater model

A foundation for sustainable groundwater management. 
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Modified from CDWR (2019)



Groundwater model

Large-scale structure of groundwater systems is required input. 

Examples of key features: confining layer, top of bedrock
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Development of  a new approach to map out the large-scale structure: 

Data source: AEM data + a few high-quality wells

Key improvement: incorporating “prior knowledge” into inversion step

Large-scale structure

AEM method
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Large-scale AEM project (led by DWR)

Will cover California’s high- and medium-

priority groundwater basins

CDWR (2021)

Location map 

A great opportunity to transfer the 

developed technology into other 

regions so that they can support the 

process of constructing high-quality 

hydrogeologic model. 
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AEM sounding locations 

Located in San Joaquin Valley 

High groundwater demand 

Less surface water & precipitation

Warmer drier weather

Significant subsidence due to pumping 

(~20 cm/year)

One of the critically over-drafted basins 

Pacific ocean

Sierra 

Mountains

Kaweah 

Subbasin

Central 

Valley

Study area: Kaweah Subbasin

~100 km
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Existing groundwater model



Targets that we aim to resolve & prior knowledge

33

Top of the bedrock: 

- large resistivity contrast between the bedrock 

and overlying sediments.

Confining layer – the Corcoran Clay: 

- a large resistivity contrast between the Clay and

surrounding aquifers.

- thickness of the clay << thickness of the aquifers

Large-scale structure



Available data
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• AEM data (2018)

SkyTEM system

• High-quality well data:

Three driller’s logs (bedrock)

Wells A, B, C (Corcoran Clay)

(resistivity and driller’s logs)

West East

North

South

~80 km

~65 km

Location map

AEM soundings

Well A

Well B

Well C

Three 

driller’s logs

Groundwater model 

boundary 



AEM inversion methodology

Developed under an open-source geophysics software, SimPEG
35https://www.simpeg.xyz

Data Inversion Resistivity

https://www.simpeg.xyz/


Start with conventional inversion approach 
(assume smooth transition of resistivity in vertical and lateral directions)
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Inversion methodology

37
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3D resistivity model

Groundwater model 

300 m



Corcoran Clay

Smoothed layer boundaries, and thick Corcoran Clay (~100 m thickness)
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~45 kmSouth North

Interpreted Corcoran Clay layer



Use targeted inversion approach 
(utilize the prior knowledge of the targets)

40

Corcoran Clay layer



Modify norms

𝑝𝑠 𝑝𝑟 𝑝𝑧

𝑝𝑠, 𝑝𝑟 , 𝑝𝑧 p-norm for each term in 𝜙𝑚 Fournier and Oldenburg (2019)
41



Character of Lp-norms

z z z

Confining layer – the Corcoran Clay: 

- a large resistivity contrast between the Corcoran Clay and surrounding aquifers.

- thickness of the clay << thickness of the aquifers
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Character of Lp-norms

z z z
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Confining layer – the Corcoran Clay: 

- a large resistivity contrast between the Corcoran Clay and surrounding aquifers.

- thickness of the clay << thickness of the aquifers



Corcoran Clay
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Targeted

Conventional

Abrupt transition of resistivity at the Clay boundaries

Significant reduction of the Clay thickness

Increased depth to the Clay

~45 kmSouth North



Comparison with the well data (Wells A & B)
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Conventional Targeted

Corcoran

Clay

Location map



A 3D view of the final resistivity model
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300 m

C’



Summary
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The developed approach is transferrable to other regions, and can be 
used to develop a high-quality groundwater model from AEM data

Targeted inversion approach Large-scale AEM project in California



Case study in the Central Valley of California, U.S.A.

“Recovering groundwater head from InSAR surface deformation data”
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Kang et al. (2022)

In preparation
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Pumping groundwater

Reduces the head 

Drains water from clays to coarse 

(diffusive process; takes time)

Compacts the interbedded clays

(head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: Head change 

(in the confined aquifer)  

Modulation: Interbedded clays

Conceptual model of the surface deformation



Recovery of groundwater head
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InSAR surface deformation data Groundwater head

InSAR time-series
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Example of co-located InSAR data and head data

Head 

measurements

InSAR data
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DroughtsWet Dry



Recovery of groundwater head
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Requires: 

a) Forward simulation

b) Sensitivity calculation

Forward: 𝐹 ℎcoarse; 𝑝clays = InSAR data

Inverse (assume unknown is ℎcoarse ):

minimize: 𝜙(𝑚) = 𝜙𝑑 + 𝛽𝜙𝑚

𝜙𝑑: data misfit

𝜙𝑚: regularization 



Recovery of groundwater head
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Forward: 𝐹 ℎcoarse; 𝑝clays = InSAR data

Inverse (assume unknown is ℎcoarse ):

minimize: 𝜙(𝑚) = 𝜙𝑑 + 𝛽𝜙𝑚

𝜙𝑑: data misfit

𝜙𝑚: regularization 

Requires: 

a) Forward simulation

b) Sensitivity calculation

Need to know properties of the clays, 𝑝clays
(e.g., hydraulic conductivity, thickness, volume fraction) 
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Used clay properties of the region from 

Smith and Knight (2019) for the inversion 

Inversion example for proof-of-concept

Mean

InSAR time series 

within 3 km radius from the location



Observed InSAR data & Initial guess
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DroughtsWet Dry



Recovered head 
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DroughtsWet Dry



Co-located data

Inversion example

Head 

measurements

InSAR data

DroughtsWet Dry



Summary

Showed the potential to utilize the InSAR data as a tool to monitor 
head changes in the semi-confined/confined aquifers in the Central 
Valley of California
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Data gap for extending this idea to a water basin?
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a) The Corcoran Clay: depth, thickness

b) Thickness of the confined aquifer

c) Clay-fraction within the aquifer

…

Integrate AEM data & Well data to obtain these



Outlook: Monitoring groundwater head
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Well DataRemote Sensing Data

InSAR data: head information modulated by clays

AEM data: distribution of the clays 

Head data with sparse samplings

Lithologic data with sparse samplings

Large 

distance



“Seek for the hydraulic head, ℎ 𝑥, 𝑦; 𝑡 and parameters related to 
the clays, pclays(𝑥, 𝑦) that can fit the InSAR,  AEM, well data 

favoring available prior information”
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Need to couple the hydrologic process with 

the physics of the remote sensing data

minimize 𝜙 𝑚 = 𝜙𝑑(𝑚) + 𝛽𝜙𝑚(𝑚)

𝑚 = (ℎ, pclays) 𝜙InSAR + 𝜙AEM + 𝜙well

𝜙𝑑: data misfit

𝜙𝑚: regularization 

𝛽: trade-off parameter

Available prior information

(e.g., existing groundwater model)



open-source toolbox and framework 
for geophysical inversion

Modular, multi-physics
• Gravity

• Magnetics

• Direct current resistivity

• Induced polarization

• Electromagnetics

• Fluid flow (Richard’s equation)

Research codes developed for my research are publicly 

available through the SimPEG: https://www.simpeg.xyz

Cockett et al. (2015)
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https://www.simpeg.xyz/
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CDWR (2021)

Large-scale AEM project in CA Processed InSAR data (funded by CDWR)

Larger volume of higher quality remote sensing data 



Concluding remarks
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My goal is to maximize the value of the Earth Imaging techniques for 

improved understanding of groundwater systems

Airborne EM

Sentinel (InSAR)

GRACE

…

Ground-based EM ….

Data 

Integration

Traditional well data

Changes in groundwater head

Changes in groundwater volume

…

Monitoring Spatial & Temporal



Thank you!

65



Acknowledgements

AEM data: acquired with the SkyTEM system; 
acquisition oversight, planning, and processing by 
Aqua Geo Frameworks, LLC. 

InSAR data: processed by TREALTIMERA and 
provided by the California Department of Water 
Resources (CDWR).

Funding was provided by a grant to R. Knight from the 
Gordon and Betty Moore Foundation (GBMF6189). 
Additional funding from a Proposition 68 Sustainable 
Groundwater Management grant from the CDWR to 
water agencies in the Kaweah subbasin.

Thanks to the local GSAs

Aaron Fukuda

Eric Osterling

Michael Hagman

66

Contact:  

sgkang09@stanford.edu
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https://sgkang09.github.io

mailto:sgkang09@stanford.edu
https://twitter.com/sgkang09
https://sgkang09.github.io/

