Advancing Earth Imaging Techniques for Improved Understanding of Groundwater Systems

(Example: The Central Valley of California)

Seogi Kang

Stanford University

hello (a bit about me)

Computational EM geophysics

Open-source software

Open research & Groundwater science & education management Compile all existing da Integrate data to create a model of the groundwater system ANSWER THE QUESTIONS Stanford GeoSci University

Water matters.

https://www.amnh.org/explore/ology/water/what-is-water

97% of all liquid freshwater

Groundwater

population growth climate change

97% of all liquid freshwater

Groundwater

GROUNDWATER Global groundwater wells at risk of running dry

Science

NO WATER FOR IRRIGATION

Almond Farmers Ripping Out Trees

Morris (from Bloomberg; 2021)

For improved understanding of groundwater systems

Need to "monitor" groundwater systems

CANNOT pursue groundwater science & management without seeing "under" the ground

Traditional approach: Well-based

Drilling a well

Pros:

- Accurate point information
- Direct information hydrogeology (e.g., lithology) groundwater head

Cons:

- Variable quality
- Low spatial density in lateral dimensions
- Decreasing coverage with increasing depth (due to increasing drilling cost)

Large data gap between wells and at deeper depths

Alternate approach: Earth imaging techniques

Satellite Interferometric Synthetic Aperture Radar (InSAR) Airborne Electromagnetic (AEM) Method

InSAR for monitoring groundwater head

Spatial and temporal changes in groundwater head are encoded in the ground deformation

InSAR for monitoring groundwater head

Spatial and temporal changes in groundwater head are encoded in the ground deformation

Pros

- Great spatial coverage: Earth surface
- High spatial density: 20-100 m
- Good temporal sampling rate: 6-12 days
- Sensitive to the head in the deeper aquifers (confined or semi-confined)

Cons

- Indirect information about the head
- Other factors affecting deformation

Hydrologic loading (water, ice, snow)

AEM method for imaging the subsurface

Pros:

- Can rapidly map out large area (e.g., 100 km/hr)
- Sensitive to the large-scale feature

Cons:

- Provide indirect information (electrical resistivity)
- Limited resolution (degrading with depth)

Electrical resistivity: ρ (Ω m)

Varies over many orders of magnitude

Depends on many factors:

- Sediment/Rock type clay content is key factor
- Water content
- Connectivity of pores
- Salinity of the water

Limited resolution of the AEM data

Clay layer embedded in a homogenous aquifer

Smoothed layer boundaries due to

- Degrading resolution with depth
- Assumed "smooth" transition in resistivity (in the imaging process)

Limited resolution of the AEM data

An overarching scientific question

How do we integrate modern remote sensing data and traditional well data to *image the subsurface* and *monitor groundwater systems*?

Central Valley of California

Very productive farmland Significant amount of surface & ground water

Severe droughts in California: 2012-2016

Sustainable Groundwater Management Act (SGMA, 2014)

Central Valley of California

North – Sacramento Valley

South – San Joaquin Valley

More pumping of groundwater in the warmer, drier south.

Causes more <u>subsidence</u>

Aquifer system of the Central Valley

Composed of sediments

Numerous interbedded clays

Regional confining unit – Corcoran Clay

Conceptual model of the surface deformation

Pumping groundwater

Reduces the head

Drains water from clays to coarse (diffusive process; takes time)

Compacts the interbedded clays (head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: <u>Head change</u> (in the deep confined aquifer) Modulation: Interbedded clays But ...

Subsurface hydrogeology is unknown

Measured head measurements are sparse in space and time

AEM for imaging the large-scale structure

InSAR for monitoring groundwater head

Case study in Kaweah Subbasin in California, U.S.A.

"Improved Imaging of the Large-Scale Structure of a Groundwater System with AEM data"

Groundwater model

A foundation for sustainable groundwater management.

Groundwater model

Large-scale structure of groundwater systems is required input. Examples of key features: confining layer, top of bedrock

Development of a new approach to map out the large-scale structure:

Data source: AEM data + a few high-quality wells Key improvement: incorporating "prior knowledge" into inversion step

AEM method

Large-scale AEM project (led by DWR)

Location map

Will cover California's high- and mediumpriority groundwater basins

A great opportunity to transfer the developed technology into other regions so that they can support the process of constructing high-quality hydrogeologic model.

CDWR (2021)

Study area: Kaweah Subbasin

Located in San Joaquin Valley

High groundwater demand Less surface water & precipitation Warmer drier weather

Significant subsidence due to pumping (~20 cm/year)

One of the critically over-drafted basins

Targets that we aim to resolve & prior knowledge

Top of the bedrock:

- large resistivity contrast between the bedrock and overlying sediments.

Confining layer - the Corcoran Clay:

- a large resistivity contrast between the Clay and surrounding aquifers.
- thickness of the clay << thickness of the aquifers

Available data

- AEM data (2018) SkyTEM system
 - High-quality well data: Three driller's logs (bedrock) Wells A, B, C (Corcoran Clay) (resistivity and driller's logs)

Groundwater model boundary

•

AEM inversion methodology

Developed under an open-source geophysics software, SimPEG

Start with conventional inversion approach

(assume smooth transition of resistivity in vertical and lateral directions)

Inversion methodology

3D resistivity model

38

Corcoran Clay

Use targeted inversion approach (utilize the prior knowledge of the targets)

Modify norms

Character of Lp-norms

Confining layer – the Corcoran Clay:

- a large resistivity contrast between the Corcoran Clay and surrounding aquifers.
- thickness of the clay << thickness of the aquifers

Character of Lp-norms

<u>Confining layer – the Corcoran Clay:</u>

- a large resistivity contrast between the Corcoran Clay and surrounding aquifers.
- thickness of the clay << thickness of the aquifers

Corcoran Clay

Abrupt transition of resistivity at the Clay boundaries Significant reduction of the Clay thickness Increased depth to the Clay

Resistivity (Ωm)

44

Comparison with the well data (Wells A & B)

Summary

The developed approach is transferrable to other regions, and can be used to develop a high-quality groundwater model from AEM data

Targeted inversion approach

Large-scale AEM project in California

Case study in the Central Valley of California, U.S.A.

"Recovering groundwater head from InSAR surface deformation data"

Kang et al. (2022) In preparation

Conceptual model of the surface deformation

Pumping groundwater

Reduces the head

Drains water from clays to coarse (diffusive process; takes time)

Compacts the interbedded clays (head changes of the clays)

clay compressibility >> coarse compressibility

Driving force: <u>Head change</u> (in the confined aquifer) Modulation: Interbedded clays

Recovery of groundwater head

InSAR surface deformation data

Groundwater head

Example of co-located InSAR data and head data

Recovery of groundwater head

Forward: $F[h_{coarse}; p_{clays}] = InSAR data$

Inverse (assume unknown is h_{coarse}):

minimize: $\phi(m) = \phi_d + \beta \phi_m$

 ϕ_d : data misfit ϕ_m : regularization

Requires:

a) Forward simulationb) Sensitivity calculation

Recovery of groundwater head

Need to know properties of the clays, p_{clays} (e.g., hydraulic conductivity, thickness, volume fraction)

Inversion example for proof-of-concept

Observed InSAR data & Initial guess

Recovered head

Inversion example

Co-located data

Summary

Showed the potential to utilize the InSAR data as a tool to monitor head changes in the semi-confined/confined aquifers in the Central Valley of California

InSAR surface deformation data

InSAR time-series

Data gap for extending this idea to a water basin?

Outlook: Monitoring groundwater head

Remote Sensing Data

InSAR data: head information modulated by clays

AEM data: distribution of the clays

"Seek for the hydraulic head, h(x, y; t) and parameters related to the clays, $p_{clays}(x, y)$ that can fit the InSAR, AEM, well data favoring available prior information"

minimize
$$\phi(m) = \phi_d(m) + \beta \phi_m(m)$$

 ϕ_d : data misfit
 ϕ_m : regularization
 β : trade-off parameter
 $m = (h, p_{clays})$
 $\phi_{InSAR} + \phi_{AEM} + \phi_{well}$
Available prior information
(e.g., existing groundwater model)

Need to couple the hydrologic process with the physics of the remote sensing data

open-source toolbox and framework for geophysical inversion

Modular, multi-physics

- Gravity
- Magnetics
- Direct current resistivity
- Induced polarization
- Electromagnetics
- Fluid flow (Richard's equation)

Cockett et al. (2015)

Research codes developed for my research are publicly available through the SimPEG: <u>https://www.simpeg.xyz</u>

Rowan

Inversion Implementation

Larger volume of higher quality remote sensing data

Large-scale AEM project in CA

CDWR (2021)

Processed InSAR data (funded by CDWR)

Concluding remarks

My goal is to maximize the value of the Earth Imaging techniques for improved understanding of groundwater systems

Thank you!

micmitch

bsmithyman

decowan

dougoldenburg

JKutt

capriot

dwfmarchant

lacmajedrez

Rosemary

Alex Meredith

Noah

lan

Matt

Gordon

Karrissa

Klara

Iheagy

Acknowledgements

AEM data: acquired with the SkyTEM system; acquisition oversight, planning, and processing by Aqua Geo Frameworks, LLC.

InSAR data: processed by TREALTIMERA and provided by the California Department of Water Resources (CDWR).

Funding was provided by a grant to R. Knight from the Gordon and Betty Moore Foundation (GBMF6189). Additional funding from a Proposition 68 Sustainable Groundwater Management grant from the CDWR to water agencies in the Kaweah subbasin.

Thanks to the local GSAs

Aaron Fukuda

Eric Osterling

Michael Hagman

Contact:

sgkang09@stanford.edu

https://twitter.com/sgkang09

https://sgkang09.github.io