MTH5: A DATA FORMAT FOR MAGNETOTELLURIC DATA

Jared Peacock, US Geological Survey Andy Frassetto, IRIS Karl Kappler, IMDEX Technology USA Anna Kelbert, US Geological Survey Tim Ronan, IRIS Lindsey Heagy, University of British Columbia

Peacock et al., (2022) MTH5: An archive and exchangeable data format for magnetotelluric time series data, Computers & Geoscience, 162, <u>https://doi.org/10.1016/j.cageo.2022.105102</u>

USEFUL LINKS

<u>Metadata Standards</u>

• Table of standards: Peacock et al. (2021) <u>http://dx.doi.org/10.5066/P9AXGKEV</u>

MT-Metadata Open-Source Python Package

- Base code: <u>mt_metadata</u>
- Documentation: <u>Welcome to MT Metadata documentation! MT Metadata</u> <u>0.1.8 documentation (mt-metadata.readthedocs.io)</u>
- Zero-install Jupyter Notebooks: <u>mt_metadata binder</u>

MTH5 Open-Source Python Package

- Base code: <u>mth5</u>
- Documentation: <u>Welcome to MTH5's documentation! MTH5 0.2.5</u> documentation
- Zero-install Jupyter Notebooks: <u>MTH5 Binder</u>

Peacock et al., (2022) MTH5: An archive and exchangeable data format for magnetotelluric time series data, Computers & Geoscience, 162, <u>https://doi.org/10.1016/j.cageo.2022.105102</u>

MOTIVATION FOR STANDARDS

- 1. Funding agencies, government entities, research institutions are requiring data be
 - **<u>Findable</u>** (searchable metadata)
 - Accessible (publicly available)
 - Interoperable (any OS, various software)
 - <u>R</u>eproducible

See Wilkinson et al. (2016) <u>https://doi.org/10.1038/sdata.2016.18</u>

- 2. Outside interest in MT data
 - Kelbert et al. (2018) <u>https://doi.org/10.1029/2018EO112859</u>
- 3. IRIS PASSCAL are adding MT instruments

BUILDING BLOCKS

Metadata

- A set of data that describes and gives information about other data
- For efficient reading standard descriptions of specific data are needed.

\rightarrow Common Keywords

Data

- Values recorded
- Formatted and structured in a standard way to comply with FAIR principles
- Archive vs Working formats

→ Standard format

MT DATA TYPES

Time Series

- Formats: Traditionally, whatever comes out of the data logger
- Phoenix
- Metronix
- Zonge
- NIMS
- LEMI
- EDL
- Homebrew

Transfer Functions

Formats:

- EDI
- EMTF XML
- Z-files

- J-files
- AVG files
- DAT files
- Others

PREVIOUS WORK ON STANDARDIZATION

Time Series

• EDI [fun fact]

- Suggested standards by Kirkby (2019) https://doi.org/10.1080/14432471.2019.1600210
- Geoscience Australia suggests MTH5 moving forward
 - Duan et al. (2021) https://doi.org/10.1080/14432471.2021.2012035

Transfer Functions

- EDI Wright (1988) https://doi.org/10.1190/1.1892244
- EMTF XML Kelbert (2020) https://doi.org/10.1190/geo2018-0679.1
 - For archiving see: Kelbert et al. (2011) https://doi.org/10.17611/DP/EMTF.1.
 - For Fortran tools see: Kelbert (2019) <u>https://doi.org/10.5066/P98PPLDV</u>

STANDARDIZING

- In 2019 IRIS established a working group to develop MT time series metadata standards.
- For 2 years standards were developed/argued/debated during monthly meetings
- Follow logically MT surveys, hierarchical
- Proposed standards are in Peacock et al. (2021) <u>http://dx.doi.org/10.5066/P9AXGKEV</u>

Jared Peacock	USGS	Member (Chair)
Bruce Beaudoin	IRIS PASSCAL Instrument Center	Observer
Ninfa Bennington	USGS-HVO	Ex Officio
Lloyd Carothers	IRIS PASSCAL Instrument Center	Observer
Jerry Carter	IRIS DMC	Member
Gary Egbert	Oregon State University	Observer
Andy Frassetto	IRIS	Project Lead
David Goldak	IRIS PASSCAL Instrument Center	Observer
Karl Kappler	DataCloud	Observer
Anna Kelbert	USGS	Member
Maeva Pourpoint	IRIS PASSCAL Instrument Center	Observer
Tim Ronan	IRIS DMC	Observer
Adam Schultz	Oregon State University	Observer
Maxim Smirnov	Luleå University of Technology	Member
Chad Trabant	IRIS DMC	Observer

METADATA STANDARDS

Keywords are defined by

- Name: A full descriptive name that is logical for the keyword. Forced to be all lower case and full words separated by _
- **Type:** Base data type [string | float | int | Boolean]
- Style: Describes how the string should be formatted.
- **Required:** True if required or False if optional
- Units: Physical units of the keyword. Given as full name all lowercase separated by __and a – for multiplicative units [*ohm-meters*] and per for a ratio of units [*meters per second*]
- **Description:** Detailed description of what the keyword represents
- **Options:** If "style" is "controlled vocabulary" this is a list of accepted options
- **Example:** An example use of the keyword
- **Default:** A default value, only set if Required = True

<u>Example</u>

Name: measurement_azimuth type: float style: number required: True **units:** degrees description: Measurement angle in specified coordinate system. options: [] **example:** 23.134 default: 0.0

MT METADATA: TIME SERIES

"survey": {

"acquired by.author": null, "citation dataset.doi": null, "citation journal.doi": null, "country": null, "datum": null, "geographic name": null, "name": null. "northwest corner.latitude": 0.0, "northwest corner.longitude": 0.0, "project": null, "project lead.author": null, "project lead.email": null, "project lead.organization": null, "release license": "CC-0", "southeast corner.latitude": 0.0, "southeast corner.longitude": 0.0, "summary": null, "survey_id": null, "time period.end date": "1980-01-01", "time period.start date": "1980-01-01"

MT METADATA: TIME SERIES

"time period.start": "1980-01-01T00:00:00+00:00"

Experiment

Experiment Contents

Number of Surveys: 1 Survey ID: MT Number of Stations: 1

> Station ID: mt001 Number of Runs: 1

Run ID: a Number of Channels: 5 Recorded Channels: ex, ey, hx, hy, hz Start: 1980-01-01T00:00:00+00:00 End: 1980-01-01T00:00:00+00:00

MT METADATA: TIME SERIES

MT_METADATA: OPEN-SOURCE SOFTWARE

GOAL: develop tools to validate standardized MT metadata

- Time series has been developed from a collaborative project between USGS and IRIS (IRIS MT Software Working Group) funded in part by USGS Community for Data Integration
- **Transfer Functions** follows the time series with capability to read/write (EDI, EMTFXML, z-files, j-files, AVG files)

Code repository can be found at: <u>https://github.com/kujaku11/mt_metadata</u> Documentation can be found at: <u>https://mt-metadata.readthedocs.io/en/latest/</u>

MT-METADATA OPEN-SOURCE SOFTWARE

In [19]: from mt_metadata.timeseries import Station

```
In [20]: example_station = Station()
```

In [21]: example_station.attribute_information("location.latitude")
location.latitude:
 alias: ['lat']
 description: latitude of location in datum specified at survey level
 example: 23.134
 options: []
 required: True
 style: number
 type: float
 units: degrees

In [22]: example_station.location.latitude = "45:20:10"

In [23]: example_station.location.latitude
Out[23]: 45.33611111111116

MT METADATA: REPRESENTATION

JSON

```
?xml version="1.0" ?>
<location>
                                                                      "location": {
   <declination>
                                                                          "declination.model": "WMM2015",
       <model>WMM2015</model>
                                                                          "declination.value": -13.5,
       <value units="degrees" type="float">-13.5</value>
                                                                          "elevation": 345.2,
   </declination>
                                                                          "latitude": 45.6,
   <elevation units="degrees" type="float">345.2</elevation>
                                                                          "longitude": -122.23
   <latitude units="degrees" type="float">45.6</latitude>
   <longitude units="degrees" type="float">-122.23</longitude>
</location>
```

XML

MT METADATA STANDARDS: HELP

<u>Station — MT Metadata 0.1.1 documentation (mt-metadata.readthedocs.io)</u>

ts	location.latitude		
ry	location.latitude	Description	Example
entions -S 1etadata Structure	Required: True Units: decimal degrees Type: Float Style: Number	Latitude of station location in datum specified at survey level.	23.134

location.longitude

Crea Hista Com BASI MT I

TIME SERIES METADATA STANDARDS

 A Standard for Exchangeable Magnetotelluric Metadata
 Introduction General Structure
 Metadata Definitions Survey

> Station Attributes Example Station JSON

Auxiliary Channels Electric Channel

Station

Run

location.longitude	Description	Example
Required: True Units: decimal degrees Type: Float Style: Number	Longitude of station location in datum specified at survey level.	14.23

orientation.method

orientation.method	Description	Example
Required: True Units: None Type: String Style: Controlled Vocabulary	Method for orienting station channels. Options: [compass; GPS; theodolite; electric_compass]	compass

- In [27]: from mt_metadata.timeseries import Location
- In [28]: 1 = Location()

In [29]: 1?

<pre>Type: Location String form: location: declination.model = None declination.value = None elevation = 0.0 latitude = 0.0 longitude = 0.0 Length: 6 File: c:\users\jpeacock\documents\github Docstring: </pre>	\mt_metadata\mt_metadata\timeseries\location.py	
Metadata Key	**Description**	**Example**
latitude Required: True Units: degrees Type: float Style: number	latitude of location in datum specified at survey level	23.134
longitude Required: True Units: degrees Type: float Style: number	longitude of location in datum specified at survey level	14.23

MT METADATA: TO DO

- Publish the standards
 - Create XSD and JSON Schema files to validate against
- Create a permanent working group within IAGA Division VI focused on metadata standards

Goal: Develop a standardized HDF5 container to store time series data and transfer functions while providing open-source tools to read, write, and access the data from an HDF5 file

Funded by IRIS and USGS Community for Data Integration

Benefits of HDF5

- 1. Base code is open-source and community driven
- 2. Files are flexible
- 3. File size is only limited by available resources
- 4. Files are portable across nearly all operating systems and platforms from laptops to cloud based parallel systems, and have no limitations on the number of data objects contained within the file
- 5. RAM requirements are optimized with a highperformance input/output system to only load requested data
- 6. Chunking and compression are inherent to optimize efficient storage and retrieval
- 7. A single writer with multiple readers (SWMR) is supported
- 8. Parallel reading/writing needs parallel HDF5 (PHDF5). For cloud environments the HDF Group provides highly scalable data services (HSDS)

Each level has it own MTH5 group including:

- Metadata
- add/get/remove group

Data container is <u>xarray</u>

- Lazy access
- Has a container for metadata
- Indexed by time
- Easily searchable, indexed, etc like a Pandas Dataframe

Includes a summary tables of all channels and transfer functions for easy querying

File Window Tools Help				
🖻 🗂 < 🗿 🗓				
Recent Files C:\Users\jpeacock\from_ele	ctric_stationxml.h5			
from_electric_stationxml.h5	Object Attribute Info General Object	Info		
~ 🖼 Survey				
∽ 🖼 Filters	Number of attributes = 23			Add Attrib
> 🗅 coefficient	Name	Type	Array Size	Value[50]/_)
🗅 fap	hame	Type String longth = variable string n	Anay Size	Radrasian D A
🗅 fir	acquired_by.author	String, length – variable, string p	Ocalar	Deurosian, F. A.
🗅 time_delay	citation_dataset.doi	String, length = variable, string p	Scalar	10.17611/DP/EM1
> 🛍 zpk	citation_journal.doi	String, length = Variable, string p	Scalar	10.3133/01/201511
🖕 Reports	country	String, length = variable, string p	Scalar	none
> 😂 Standards	datum	String, length = variable, string p	Scalar	none
~ 🖼 Stations	fdsn.network	String, length = variable, string p	Scalar	XX
~ 🖼 FL001	geographic_name	String, length = variable, string p	Scalar	Florida, USA
~ 🖼 a	hdf5_reference	String, length = variable, string p	Scalar	none
🧠 ex	mth5_type	String, length = variable, string p	Scalar	none
~ 🖼 b	name	String, length = variable, string p	Scalar	none
🧠 ex	northwest_corner.latitude	64-bit floating-point	Scalar	29.7203555
	northwest_corner.longitude	64-bit floating-point	Scalar	-83.4854715
	project	String, length = variable, string p	Scalar	USGS-GEOMAG
	project_lead.author	String, length = variable, string p	Scalar	Bedrosian, P. A.
	project_lead.email	String, length = variable, string p	Scalar	pbedrosian@usgs
	project_lead.organization	String, length = variable, string p	Scalar	U.S. Geological Sur
	release_license	String, length = variable, string p	Scalar	CC-0
	southeast_corner.latitude	64-bit floating-point	Scalar	29.7203555
	southeast corner.longitude	64-bit floating-point	Scalar	-83.4854715
	summary	String, length = variable, string p	Scalar	Long-period and wi
	survev id	String, length = variable, string p	Scalar	Florida
	time period end date	String, length = variable, string p	Scalar	2016-06-01
	time_period_start_date	String length = variable string p	Scalar	2015-01-08
	ame_penoa.start_adte	stang, longer – valuele, stang p	ocului	2010-01-00

Example File (HDFView)

HDFView root - C:\Users\jpeacock\AppData\Local\HDF_Group\HDFView\3.0.0 User property file - C:\Users\jpeacock\.hdfview3.0

HDFView 3.0

🖻 🖆 Recent # Imports

from mth5 import read_file from mth5 import mth5

from mt metadata import timeseries as metadata

```
# write some simple metadata for the survey
survey = metadata.Survey()
survey.acquired by.author = "MT Master"
survey.fdsn.id = "TST01"
survey.fdsn.network = "MT"
```

```
survey.name = "test"
```

```
# open mth5 file
m = mth5.MTH5(h5 fn)
```

```
m.open_mth5()
```

```
# add survey metadata
m.survey_group.metadata.from_dict(survey.to_dict())
```

```
# add station metadata from z3d files
for fn in list of z3d files:
   mtts obj = read file(fn)
```

```
station group = m.add station(
    mtts obj.station metadata.id, station metadata=mtts obj.station metadata,
```

```
run group = station group.add run(run id, mtts obj.run metadata)
```

```
ch_list.append(run_group.from_channel_ts(mtts_obj))
```

```
# need to update metadata
station group.validate station metadata()
```

```
m.close_mth5()
```


- Plug-ins include: •
 - Zonge (.Z3D)
 - USGS ASCII
 - NIMS (BIN.DAT) \bullet
 - LEMI 424 •
 - Needs to be extended to • other data types like Phoenix (help)

from mt_metadata.timeseries import Experiment
from mth5.mth5 import MTH5
from mt_metadata.utils import MT_EXPERIMENT_SINGLE_STATION

```
mt_experiment = Experiment()
mt_experiment.from_xml(fn=MT_EXPERIMENT_SINGLE_STATION)
```

```
mth5_obj = MTH5()
mth5_obj.open_mth5(MT_EXPERIMENT_SINGLE_STATION.parent.joinpath(r"test.h5"), mode="w")
```

```
mth5_obj.from_experiment(mt_experiment)
```

```
for fn in zip_ref.filelist:
    mtts_obj = read_file(zen_dir.joinpath(fn.filename))
```

```
station_group = m.add_station(
    mtts_obj.station_metadata.id, station_metadata=mtts_obj.station_metadata,
)
```

```
run_group = station_group.add_run(run_id, mtts_obj.run_metadata)
```

```
ch_list.append(run_group.from_channel_ts(mtts_obj))
```

```
# need to update metadata
station_group.validate_station_metadata()
```


Example for data collected by IRIS PASSCAL MT instruments

To Do:

- Extend data readers
- Time series Visualizer (in development)
- Extend parallel access
- Button push to calibrate data (should be done by early May)
- Figure out an efficient way to transfer an MTH5 file over a network
 → miniseed + Experiment metadata

OPEN-SOURCE FRAMEWORK

CURRENT REPOSITORIES

- Standardized HDF5 container for time series data
- Can store an entire survey in one file
- Provides tools to access data, read various file types

<u>mt metadata</u>

- A package to standardize metadata for time series and transfer functions
- All metadata is validated against "accepted" standards

<u>aurora</u>

- Compute the transfer functions for MT and GDS
- Uses MTH5 files
 as input

- Tools to read/write, analyze, plot transfer functions
- Read/write input output files for existing processing and modeling codes

Developers: Peacock, Kappler, Heagy Funding: USGS CDI, IRIS Developers: Peacock, Kappler, Heagy Funding: USGS CDI, IRIS Developers: Kappler, Heagy, Peacock Funding: IRIS Developers: Kirkby, Zhang, GA, Peacock Funding: Partial USGS, GA

AURORA

- Transfer function estimation based mainly on Gary Egbert's EMTF
- Funded by IRIS
- Main developers: Karl Kappler, Lindsey Heagy, advised by Doug Oldenburg
- In development, first version will be released in September

- Will be hosted by SimPEG group
- Input is MTH5
- Output will be a Transfer Function object that can write EMTF XML, EDI,...

MTPY

GOAL: Develop tools to deal with MT transfer functions

Collaborative effort:

- Jared Peacock (USGS)
- Geoscience Australia (going in a different direction now)
- Seems to be growing, join the fun, don't be shy

• Publications:

- Krieger, L. & Peacock, J. 2014. A Python Toolbox for Magnetotellurics. Computers and Geosciences, v.72, p167-175
- Kirkby, A., Zhang, F., Peacock, J., Hassan, R., & Duan, J. (2019). The MTPy software package for magnetotelluric data analysis and visualisation. Journal of Open Source Software, 4(37), 1358-1358. doi:10.21105/joss.01358

For an in-depth tutorial see Alison's EMinar

<u>Alison's EMinar video</u> <u>Alison's EMinar slides</u>

MTPY VERSION 2

PACKAGE SYNERGY

GET INVOLVED

Git Issues

Search	or jump to / Pull requests Issues Marketplace Explore	4 · -
🛱 kujaku11	/ mt_metadata	⊙ Unwatch → 2 🚔 Unstar 2 💱 Fork
<> Code	🕽 Issues 12 🕅 Pull requests 1 💿 Actions 🔟 Projects 1 🕮 Wiki 🛈 Security 🗠 Insights 🕸 Settings	
	Label issues and pull requests for new contributors Now, GitHub will help potential first-time contributors discover issues labeled with good first issue	Dismiss
	Filters - Q is:issue is:open	Milestones 0 New issue
	□ O 12 Open ✓ 20 Closed Author - Label - Projects -	Milestones - Assignee - Sort -
	Pass mth5 station_metadata to transfer_function_header #42 opened yesterday by kkappler	
	Filters Plot function should take an argument for a save_path #41 opened 5 days ago by kkappler	

Can be:

- Bug
- Suggestion
- Broad idea

GET INVOLVED

Git Issues

Create a useful and explanatory title: "Bug in mtpy.mt.core.MT"

Put a label on the issue so developers can sort and assign tasks.

FUTURE

How to make these packages Community driven?

- Start using and breaking things
 - Suggest starting from the main or master branches on most of the packages, check develop branches too
- Create issues
- Create pull requests
- Slack (SimPEG, COOPERATEM, MTNet)

How to get the greater community (young and old) to use these packages

- Make these packages standards with students and people new to the community
- Make the packages so good it would be hard not to use them

LIVE EXAMPLES WHAT COULD GO WRONG

