

TDEM applications for exploring for magmatic Ni-Cu-PGE deposits – Zooming in to the "brownfield" scale

Circé Malo-Lalande, Eng. Senior Geophysicist, Exploration Canadian Royalties Inc.

Table of content

- 1. Geological setting
- 2. Physical rock properties
- 3. Time-Domain Electromagnetics theory
- 4. A selection of very exciting EM profiles
- 5. Conclusions

CANADIAN (ROYALTIES INC.

	Stratigraphic Column	Dated Igneous	Rocks	
Unit	Description	Age	Description	Lithology
Chukotat Group				
Volcanic Formations	cyclic sequences of komatiitic, pyroxene- phyric, and plagioclase-phyric tholeiitic basalt and intercalated semipelite	1870 Ma (7)	Raglan Formation	subvolcanic sills of peridotite, pyroxenite and gabbro
		▶ 1887 +39/-11 Ma (6)	Raglan Formation	gabbro sill
Povungnituk Group		1918 +/-9 Ma (5)	Intrusive Contact	gabbro sill
Nuvilik Formation 1100 m	laminated semipelite, minor quartz a/enite, e conglomerate	■ 1882.7 +/-1.3 Ma (4)	Expo Intrusive Suite	melagabbronorite.pyroxenite, peridotite sills and dikes
Cecilia Formation 300 m	nephelinite, basanite, phonolite, rhyolite	1958.6 +3.1/-2.7 (3)	Conformable Contact	lava flow
Beauparlant Formation 200 Upper Member Middle Member	00 - 4000 m basait pillow and sheet flows, minor intercalated graphitic pelites basait sheet flows, pyroclastic rocks, pelites, semipelites, turbiditic quartz arenites, minor carbonates basait pillow and sheet flows, minor	1991 Ma +/-2 (2)	Intrusive Contact	diorite dike
Dumas Formation 3400 m	intercalated graphitic pelites and carbonates iron formation, arenite, semipelite, pelite, dolostone, rare meimechite/carbonatite flows and pyroclastics	2038 +4/-2 Ma (1)	Intrusive Contact	subvolcanic layered peridolite-gabbro sills
		? unknown ?	Angular Unconformity	
Superior Province	Gneiss, schist			
	(From	Mungall, 2007)		

CANADIAN

ROYALTIES INC.

Typical shape of UM intrusion crosscutting the volcano-sedimentary basin

	EM Conductivity over Core (Nunavik Nickel)	
	Mean (S/m)	Range (S/m)
Massive sulfides - SF(MA)	35,000	22,000 – 70,000
Net-textured – SF(NET)	3000	100 - 6300
Disseminated Sulfides – SF(DISS)	0	-
Sulfides in veins – S6(PO)	9000	1000 - 26,000 🗸
GP-rich Sediments – S6(GP)	500	10 – 2000

Comparison between (left) theoretical Conductivity values (Palacky, 1988) and (right) *in-situ* measurements from the Nunavik Nickel Project

https://em.geosci.xyz/

2. Physical Rock Properties

2. Physical Rock Properties

3. Time-Domain Electromagnetics – Theory

Time

Time

- Time

Figure 6.18. Conceptual diagram of electromagnetic induction processing system generating eddy currents in subsurface conductive mass.

CANADIAN

ROYALTIES INC.

3. Time-Domain Electromagnetics – Theory

Courtesy of Jean-François Martin

- -

Optimal Ground EM survey parameters:

- Very low base frequency
- B-Field measurement (3 components)
- Moving loop configuration (small loop)

11

• Tight line spacing

3. Time-Domain Electromagnetics – Theory

Timing settings Transmitter current Sensor sensitivity Loop configuration TX loop size & location

Nature & texture of exploration target Shape of exploration target Size & depth of exploration target Geological setting

Infrastructures & cultural noise

MLTEM profiles (CH30-39)

CANADIAN (ROYALTIES INC.

- Low amplitude EM anomalies (<2pT/A) vs formationals
- Isolated conductor (ore) i.e. fair distance away from formationnals
- Interpretation of conducteur's center with Y component

Basalte (V3)

2.3 x 10⁻³

[1.2 – 2.6] x 10⁻³

5b. Time-Domain Electromagnetics – Sandwich-style challenge

5b. Time-Domain Electromagnetics – Sandwich-style challenge

5b. Time-Domain Electromagnetics – Sandwich-style challenge

- MLTEM & BHEM station spacing;
- Sensor location (surface vs underground);
- Heterogeneous nature of Ni-Cu deposits (SFDISS, SFNET, SFMA)

Undo: On Graphical Ve

42

NUNAVIKNICKEI

8. Time-Domain Electromagnetics – Concerning EOH Build-Ups

8. Time-Domain Electromagnetics – Concerning EOH Build-Ups

NORTH loop

9. Time-Domain Electromagnetics – Underestimated signatures

In conclusion

Timing settings Transmitter current Sensor sensitivity Loop configuration TX loop size & location

Nature & texture of exploration target Shape of exploration target Size & depth of exploration target Geological setting

Infrastructures & cultural noise

Acknowledgements

Canadian Royalties inc. Yueshi Lei, Maxim Boisvert & CRI Exploration team

MTNet - EMinars

Discovery Int'l Geophysics MIRA Geoscience & ALL our exploration partners

