

"When I was very young and the urge to be someplace else was on me, I was assured by mature people that maturity would cure this itch. When years described me as mature, the remedy prescribed was middle age. In middle age I was assured that greater age would calm my fever and now that I am fifty-eight perhaps senility will do the job. Nothing has worked. I fear the disease is incurable."

DRONES IN GEOPHYSICAL EXPLORATION AIRBORNE MAGNETICS AND ELECTROMAGNETICS

JOHANNES B. STOLL - CELLE/GERMANY

MOBILE GEOPHYSICAL TECHNOLOGIES GMBH

- A complex system: Drone Geophysics
- The annoying companion of geophysics: Sources of Electromagnetic Interference Signals generated by Drones
- Small and Light-Weight: geophysical sensors used on drones Drone-Borne Magnetometry Drone-Borne EM: Very Low Frequency- Method Drone-Borne EM: Semi-Airborne Electromagnetics
- Future Trends in Geophysical Exploration

DRONE-BORNE GEOPHYSICS

The link between ground and traditional airborne geophysics

Platform Complexity: No aerial platform does the job perfectly in all cases Decision to deploy the right platform for a given survey area in terms of:

- Size of survey area and total length of line kilometres
- Flight altitude above ground surface
- Terrain and environment
- accessibility of the terrain

BUT: In commercial projects only the economic viability of an aerial platform will change the game

Kahramanmaraş/Turkey, 2011 airborne magnetics

Type MTOW Propulsion Endurance Payload Costs SCOUT100BAeroscout, CH75kg2-stroke fuel engineup to 90minmax 15kg200k€

Switzerland, 2012 VLF-measurements over gas pipeline Eroess et al., 2013

Туре
MTOW
Propulsion
Endurance
Payload
Costs

quadrocopter MD100, microdrones
5kg
battery driven
up to 40min
max 1kg
40k€

Type MTOW Propulsion Endurance Payload Costs fixed wing S180, Hanseatic 5kg battery driven up to 30min max 1kg 20k€

Туре MTOW Propulsion Endurance Payload Costs

X825, MGT-HAVS 25kg electric motor up to 35min max 9kg 40k€

Туре MTOW Propulsion Endurance Payload Costs

10kg electric motor up to 40min max 3.5kg 30k€

MULTICOPTER-BORNE EM SYSTEM

- Configuration
- Endurance
- Max. velocity
- Max. payload
- Max. Take-Off weight
- Autopilot Functions
- **Technical Specifications**

- Octocopter (8 engines) in coaxial configuration
- up to 35 min. @ 6 kg payload (EM System)
- horizontal: 15 m/s vertical: 5 m/s
- 9 kg (@ 25,0 kg Take-Off Weight)
 - 25,0 kg

EM INTERFERENCE GENERATED BY DRONES

EM INTERFERENCE GENERATED BY DRONES

EM INTERFERENCE GENERATED BY DRONES

GEOPHYSICAL SENSORS DEPLOYED ON DRONES

DRONE-BORNE GEOMAGNETICS

Sensor:

Noise	< 20pT/VHz (typ
Long-term stability	< 10 nT per year
Orientation	X, Y, Z
Range	±65 μΤ
Orthogonality	<0.02°
Temperature range	-20 to +75 °C

Data Acquisition System:

Field range	± 65 μΤ
Resolution	10 pT
sample rate	1, 10, 50, 100 Hz
Data format	ASCII, binary
Time and Position	GPS-receiver

CALIBRATION OF FLUXGATE SENSORS

Clover leaf test flight pattern

CALIBRATION OF FLUXGATE SENSORS

AIRBORNE MAG SURVEY OVER GOLD PROSPECT IN TURKEY

Day 3

Day 4

Day 5

Day 2

Day 1

Area Size	4 x 4 km²							
ine spacing Regular Tie	50 m 500m							
otal Distance	~ 650km							
errain elevation	150m – 900m							
light alt	50-100m above ground							
Production time	10 days							
80 -	⁸⁰⁰ –							
70 - 70%	75% 77% 74% - 700 ဋ							
60 73% • 6								
50 - 70%								
40 - 72%	400 g							
30 -								
20 -								
	- 100 근							

Day 6

Day 8

Day 7

Day 9

0 ב

Day 10

total km flown per day total km flown per day accumulation of produced line km accumulation of total km flown Production Ratio in %

AIRBORNE MAG SURVEY OVER GOLD PROSPECT IN TURKEY

MULTICOPTER BORNE UXO DETECTION IN GERMANY

MULTICOPTER BORNE UXO DETECTION IN GERMANY

MULTICOPTER BORNE UXO DETECTION IN GERMANY

MULTICOPTER BORNE ELECTROMAGNETICS

Heading sensor 2 GPS receivers

EM Data Acquisition system

Inertial Navigation Unit

Fluxgate Magnetometer

Sensor SHFT02 (Metronix: 100 Hz-300kHz3-axis induction coilsWeight 2.1 kg

Bz

By

Bx

Hx, Hy, Hz 524kHz ca. 4.0 kg

High Precision GPS Receiver: 50mm accuracy

VERY LOW FREQUENCY METHOD

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

511800

611800

611900

BUKKEN

611900

JXN 16.4kHz IN-PHASE TIPPER B

Date of Survey: Feb 17th, 2022

Coordinate Grid: UTM ZONE 33N

[m]

BUKKEN

612000-

612000-

JXN 16.4kHz OUT-OF-PHASE TIPPER B

Date of Survey: Feb 17th, 2022

Coordinate Grid: UTM ZONE 33N

612100-

612100-

FROM TIME SERIES TO TRANSFER FUNCTION

DETECTION OF A PALEOCHANNEL

CASE STUDY: PALEOCHANNEL

Depth: -0.210--0.226 km

GROUNDWATER EXPLORATION IN GERMANY

Results of 3D Inversion provided by MODEM: Naser Meqbel, 2022

INTERFEROGRAPHIC TEM IMAGING METHOD – BRYAN JAMES

Copyright by Dr. Bryan James, EGIS LLC, Seattle | USA

25KG LONG ENDURANCE FIXED WING UAV

"Camp-Scale Decision!"

Direct Costs per Line km: 5-7€/km

3 hrs flight time Payload 5kg Avg. speed 100km/h Daily production rate: 500km

Progressively exploring under deeper cover

Primary copper production for World 1900-2050

Sources: Historical data from USGS and Office of the Chief Economist

	1																	18
1	1 ○ H 1,0079	2			1 · 1 ·	- 11 - 94	8: di • nat	isco\ tural	ere ele	d men	ts		13	14	15	16	17	2 0 He 4.0026
2	3 0 Li 6.941	4 0 Be 9.0122		1 – 83: primordial								5 ° B 10.811	6 ° C 12.011	7 ° N 14.007	8 0 0 15.999	9 0 F 18.998	10 ° Ne 20.18	
3	11 ° Na 22,99	12 ○ Mg 24,205	3	4	5	6	7	8	9	10	11	12	13 0 Al 26,982	14 ⊂ Si 28,086	15 ° P 30.974	16 ° S 32,065	17 • Cl 35,453	18 0 Ar 39,948
4	19 ° K 39,098	20 ° Ca ^{40,078}	21 ○ Sc 44.956	22 ○ Ti 47.867	23 ° V 50.942	24 ° Cr 51,996	25 ° Mn ^{54,938}	26 ° Fe 55.845	27 ○ Co 58.933	28 ○ Ni ^{58.693}	29 ° Cu 63.54	30 ○ Zn 65.38	31 ○ Ga 69.723	32 ○ Ge 72.64	33 ° As 74,922	34 0 Se 78.96	35 ° Br 79,904	36 ○ Kr 83,798
5	37 0 Rb 85,468	38 ° Sr 87,62	39 ○ Y 88 906	40 ○ Zr 91,224	41 ○ Nb ^{92,906}	42 ○ Mo ^{95,96}	43 [⊙] Tc [97.90]	44 ○ Ru 101,07	45 ° Rh 102,91	46 ○ Pd 106.42	47 ○ Ag 107,87	48 ° Cd 112,41	49 ○ In 114 82	50 ° Sn 118,71	51 ° Sb 121,76	52 ° Te 127.6	53 ° 126.9	54 ° Xe 131,29
6	55 ° Cs 132.91	56 ° Ba 137.33	57 - 71	72 ○ Hf ^{178,49}	73 ° Ta ^{180,95}	74 ○ W	75 ° Re 186.21	76 ° Os 190,23	77 ° Ir 192,22	78 ○ Pt	79 ° Au 196.97	80 ° Hg 200.59	81 ° Tl 204.38	82 ° Pb 207.2	83 ° Bi 208,98	84 ≌ Po [208,9]	85 🕑 At [209,9]	86 2 Rn [222,0]
7	87 🐨 Fr [223,0]	88 塗 Ra [226.0]	89 103	104 \$ Rf [263.1]	105 f Db [262,1]	106 Sg [266.1]	107 ÷ Bh [264,1]	108 4 Hs [269,1]	109 4 Mt [268,1]	110 4 Ds [272.1]	111 * Rg [272.1]	112 * Cn [277]	113 * Nh [284]	114 * Fl [289]	115 * Mc [288]	116 \$ Lv [292]	117 * Ts [292]	118 f Og [294]
	Innere Übergangsmetalle (Lanthanoide und Actinoide)																	
			57 ° La ^{138,91}	58 ° Ce 140.12	59 © Pr 140.91	60 0 Nd 144.24	61 💿 Pm [144.9]	62 0 Sm 150,36	63 © Eu 151,96	64 0 Gd 157,25	65 0 Tb 158.93	66 d Dy 162,5	67 0 Ho 164.93	68 C Er 167.26	69 Tm 168.91	70 a Yb 173.05	71 ¢ Lu 174.91	
			89 🕑 Ac [227.0]	90 ° Th 232.04	91 🔮 Pa 231,04	92 ° U 238.03	93 ≌ Np [237.0]	94 0 Pu [244.0]	95 ¢ Am [243.0]	96 ¢ Cm [247.0]	97 ∮ Bk [247.0]	98 4 Cf [251.0]	99 4 Es [252,0]	100 % Fm [257.0]	101 Md [258.0]	102 4 No [259.1]	103 4 Lr [262,1]	

Silizium

Kobalt

Nickel

Gallium

Indium Kupfer

Lithium

Platin

Germanium

Magnesium

Wolfram

Palladium

Scandium

Yttrium

Lanthan

Terbium

Cer

Gadolinium

Praseodym

Dysprosium Neodym

Promethium

Holmium

Erbium

Thulium Europium

Samarium

Ytterbium

Lutetium

14

27

28

31 32

49

29

3

78

12

74

46

21

39

57

64

58

65

59 66

60

67

61

68

62 69

63

70

71

THANK YOU