

Integrated Electromagnetic methods supported by Machine Learning for Risk Mitigation in Exploration Geosciences

Paolo Dell'Aversana – RIGE – Eni S.p.A.

Summary of the presentation

In this presentation, we discuss a general method for supporting exploration with multidisciplinary data and Machine Learning methods. We explain the method directly using a real application as a significant case history. We explain how we obtained a suite of oil prediction maps in the Barents Sea combining seismic, electromagnetic and gravity data, and with the crucial support of a full Machine Learning workflow. We discuss data analysis and methods and show the results vs. the wells drilled in the area of study. The following are useful reference papers, including all the technical details of our approach:

1)Paolo Dell'Aversana, Stefano Colombo, Barbara Ciurlo, Johan Leutscher and Jan Seldal, 2012. <u>CSEM data</u> <u>interpretation constrained by seismic and gravity data: an application in a complex geological setting</u>. First Break.

2) Paolo Dell'Aversana, Stefano Colombo, Barbara Ciurlo, 2018. <u>Integrated Geophysics and Machine Learning for Risk</u> Mitigation in Exploration Geosciences. EAGE Conference Extended abstract.

Summary slide: data, methods and results

Data	Methods
1) 2D seismic lines	1) Seismic interpretat.
2) 2D CSEM lines	2) CSEM-Grav. Interpr.
3) Satellite gravity data	3) Cooperat. Modelling
4) Well logs	4) Constrained invers.
5) Prior geological	5) Joint inversion
and structural info	6) Machine Learning
 Wells used for cal the 2010-2017 sto Appraisal well drive 	ibration in udy lled in 2019
'Old' (2012) HC/W contac seismic data Interpretation provided in 2010-2012.	t based on on and wells,

CSEM layout vs oil prediction map, recent appraisal and exploration wells

Map of electric and magnetic response (normalized: 2005-2006)

Defining the lateral extension of hydrocarbon distribution in stacked sand reservoirs, in a complex geological setting characterised by many fault systems, carbonate and sharp lateral geological variations.

Training Machine Learning algorithms with labelled data/models calibrated at well location

Location of the reservoir area, co-rendered with the map of top carbonates

Upper reservoir

Lower reservoir

Top carbonates

Seismic, gravity and CSEM information, and map of gravity response.

A couple of CSEM lines are shown and discussed in the following slides.

CSEM 3D forward modeling example

Line 2 (it corresponds with the first CSEM Line acquired in the 2006 CSEM survey)

Top of carbonates vs. First Vertical Derivative (FVD) of Bouguer anomaly

CSEM modelling constrained by seismic data

en

535.5 535.0 535.5 537.0 537.5 538.0 538.5 539.0 539.5 540.0 540.5 541.0 541.5 542.0 542.5 543.0 543.5 544.0 544.5 544.0 544.5 548.0 548.5 547.0 547.5 548.0 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.5 548.0 548.0 548.0 548.5 548.0 548.0 548.0 548.5 548.0 548.5 548.0

Examples of misfit analysis

eni

Constrained joint inversion of electric and magnetic CSEM data

Gravity modelling constrained by seismic data

CSEM and gravity models comparison

Integrated interpretation along another line: Line 01 - 2005

First Derivative of the Bouguer anomaly

PSDM seismic section

en

Gravity modelling on resistivity model in background

CSEM inversion [Line 03TX001 (running near)]

eni

Gravity model line 1 CSEM 2005: First Vertical Derivative

Data analytics and Machine Learning

- 1) Definition of a feature matrix including all the observations (data space) and all the model parameters extracted from modelling, inversion, interpretation model/interpretation space).
- 2) Feature analytics (statistical distribution), Normalization, Pre-processing, Ranking ...
- 3) Training using data near the wells
- 4) Selection of various learning algorithms
- 5) Classification and mapping

Features

DATA SPACE

Seismic: TWT at target depth

<u>CSEM</u>: EM amplitudes/phase at multiple frequencies and offsets; derived CSEM attributes; symmetry attributes.

<u>Gravity</u>: Observed gravity (and/or Bouguer), spatial filters, derivatives

MODEL SPACE

Seismic: interpreted horizons in depth ...

<u>CSEM</u>: resistivity models (at target depth)

<u>Gravity:</u> density models (at target depth)

Features

Sequential number of CSEM receivers

Ranking of features

	#	Info. gain	Gain ratio	Gini	ANOVA	χ²	ReliefF
RESISTIVITY RESERVOIR 1		0.647	0.335	0.331	19.015	9.224	0.343
DEPTH RESERVOIR 1		0.463	0.233	0.231	7.441	2.545	0.129
CSEM SYMMETRY ATTR 1		0.380	0.191	0.209	_ 3.748	4.845	0.113
DEPTH RESERVOIR 2		0.380	0.191	0.209	7.035	2.545	0.148
CSEM SYMMETRY ATTR 2		0.330	0.166	0.176	. 0.941	1.364	0.018
NORM EM 6_7 KM_OFF (*10)		0.273	0.139	0.149	4.405	2.701	0.052
NORMALIZED EM 6_7KM_OFF		0.273	0.139	0.149	4.405	2.701	0.052
RESISTIVITY RESERVOIR 2		0.216	0.118	0.131	. 1.854	3.180	0.100
BOUGUER HP FILTER (*4)		0.063	0.032	0.042	. 0.650	. 0.810	0.021

Ranking of classifiers

Method	AUC	CA	F1	Precision	Recall
Tree	0.825	0.733	0.726	0.747	0.733
Random Forest	0.825	0.733	0.733	0.733	0.733
Neural Network	0.750	0.600	0.600	0.600	0.600
Naive Bayes	0.900	0.000	0.000	0.000	0.000
CN2 rule inducer	0.650	0.667	0.664	0.667	0.667
AdaBoost	0.700	0.733	0.733	0.733	0.733

NORM. DEPTH OF UPPER RESERVOIR (m)

NORM. DEPTH OF LOWER RESERVOIR (m)

NORM. AMPL. EM FIELD AT 6-7 KM, 0.5 Hz

NORM. SYMMETRY AT 5 KM, 0.15 Hz

NORM. BOUGUER HIGH PASS FILTER

Multi-physics and Machine Learning

Training Machine Learning algorithms with labelled data/models calibrated at well location

We used a suite of machine learning methods that produced a suite of probability maps.

All the maps are similar, sometimes showing minor differences, depending on the different performances of the predictive algorithm.

Oil probability map for one individual line (L1 – 2006) for upper reservoir

Other maps and additional results vs. recent appraisal well 7122/7-7 S

Many machine learning algorithms ... many maps

The map on the right has been obtained using Deep Neural Networks (<u>Dell'Aversana et Al., 2018</u>).

It fully confirmed the results anticipated In our publication of 2012 (Dell'Aversana et Al., 2012; see next slide).

This map, as well as the other predictive maps, show high (80-90%) probability of oil in the western sector of the field, in agreement with the appraisal well 7122/7-7S completed in 2019.

Purple: high oil probability (90-100%).

Many machine learning algorithms ... many maps

The map on the right has been obtained using Deep Neural Networks (<u>Dell'Aversana et Al., 2018</u>).

It fully confirmed the results anticipated in our publication of 2012 (Dell'Aversana et Al., 2012; see next slide).

It shows high (80-90%) probability of oil in the western sector of the field, in agreement with the appraisal well 7122/7-7S completed in 2019.

Yellow: high oil probability (90-100%).

Oil probability map (P_{oil}) – Using all data

Upper reservoir.

Map obtained in May 2010 and published in 2012, confirmed, with minor changes, using Machine Learning.

 $P_{oil} = 1$ 'Old' (2012) HC/W contact based on seismic data Interpretation and wells, provided by Eni Norge in 2010. $P_{oil} = 0$

This map has been published in our First Break paper in 2012:

'<u>CSEM data interpretation constrained by seismic and gravity data:</u> <u>an application in a complex geological setting</u>' Paolo Dell'Aversana, Stefano Colombo, Barbara Ciurlo, Johan Leutscher and Jan Seldal</u>

first break volume 30, November 2012

technical article

CSEM data interpretation constrained by seismic and gravity data: an application in a complex geological setting

Paolo Dell'Aversana,1* Stefano Colombo,1 Barbara Ciurlo,1 Johan Leutscher2 and Jan Seldal2

Abstract

We describe a novel approach to the interpretation of marine controlled source electromagnetic (CSEM) data based on electromagnetic attributes in combination with gravity and seismic data. This integrated approach involves a new electromagnetic attribute of resistor probability, and has been applied in a complex exploration area in the Barents Sea adjacent to an extensive carbonate platform. We used the data recorded by a total of 172 CSEM receivers from two different surveys. Gravity data were also used to highlight large-scale geological features. Integrating seismic, electromagnetic, and gravity information helped to distinguish resistivity anomalies caused by geological variations from those caused by hydrocarbons. Finally, the hydrocarbon distributions in two stacked reservoirs were accurately mapped. Our integrated approach significantly improved the appraisal of the field, reducing the exploration risk in the surrounding area and facilitating the placement of future wells.

Info summary: data and predictions

Top reservoir probability map expanded

Map for the lower reservoir

Oil probability map (P_{oil}) – All data Lower reservoir

'Summary maps' of oil probability map for all 11 lines (interpolated) for both reservoirs

All the maps produced (and published) with the integrated approach (CSEM + multi-physics + machine learning) from 2012 to 2017 show high (80-90%) probability of oil in the western sector of the field, in agreement with the appraisal well 7122/7-7S completed in 2019.

Finally, our prediction maps show a clear trend of low (or even zero) probability to find oil in the southernmost sector, where the exploration well 7122/10-1 S was effectively dry in the top reservoir formation.

