# Surface geometry inversion of geophysical electromagnetic data

Xushan Lu<sup>1</sup>, Chris Galley<sup>2</sup>, Colin Farquharson<sup>1</sup>, Peter Lelièvre<sup>3</sup> <sup>1</sup>Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada <sup>2</sup>Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada <sup>3</sup>Department of Mathematics and Computer Science, Mount Allison University, Sackville, NB, Canada





# Outline

- Motivation
- Surface geometry inversion
- Marine CSEM examples
- ➤TEM examples
- ➤Conclusions





# Outline

### **>**Motivation

➤Surface geometry inversion

Marine CSEM examples

► TEM examples

➢ Conclusions





## Geological models



(Thornton et. al., Scientific Data, 2018)





### Geological models



Ovoid massive sulfide ore deposit (Lelièvre et. al., TLE, 2012)



Jahandari & Farquharson (Geophysics, 2014)





# Geological models



(Jefferson et. al., 2007)





Lu et al. (Geophysics, 2021)



# Geophysical modelling



Geological wireframe model



Structured rectilinear mesh



Unstructured tetrahedral mesh

UNIVERSITY



# Geophysical modelling

#### Quality mesh from geological models



Surface mesh generation (Irakarama1 M.,2022)



Geologic boundaries generated with Gocad (Zehner et. al., 2015)





# Geophysical model building

#### Quality mesh from geological models





FacetModeller (https://github.com/pglelievre/facetmodeller)



Lelièvre et al. (SoftwareX, 2018)



# Geophysical modelling

#### ► Numerical methods

- Finite element
- Finite volume
- Mimetic finite difference
- Mesh free
- ➤Geophysical data types
  - Gravity & magnetic
  - CSEM, TEM, MT, DC/IP
  - Seismic travel time





Jahandari & Farquharson (Geophysics, 2014)





(Lelièvre et. al. GJI, 2012)

MEMORIAL UNIVERSITY



Seismic travel time inversion

# Minimum-structure inversion objective function:

 $\phi(\boldsymbol{m}) = \phi_d(\boldsymbol{m}) + \beta \phi_m(\boldsymbol{m}),$ 

Data misfit:

 $\phi_d(\boldsymbol{m}) = \parallel \boldsymbol{W}_d \ [\boldsymbol{d}^{obs} - \boldsymbol{d}(\boldsymbol{m})] \parallel^2,$ 

Model structure (smoothness):

$$\phi_m(\boldsymbol{m}) = \sum_k \| W_k (\boldsymbol{m} - \boldsymbol{m}^{ref}) \|^2.$$

JNIVERSITY



(Lelièvre et. al. GJI, 2012)



Seismic travel time inversion

Minimum-structure inversion objective function:

 $\phi(\boldsymbol{m}) = \phi_d(\boldsymbol{m}) + \beta \phi_m(\boldsymbol{m}),$ 

Data misfit:

 $\phi_d(m) = \| W_d [d^{obs} - d(m)] \|^2$ ,

Model structure (smoothness):

$$\phi_m(\boldsymbol{m}) = \sum_k \| \boldsymbol{W}_k (\boldsymbol{m} - \boldsymbol{m}^{ref}) \|^2.$$

JNIVERSITY



(Lelièvre et. al. GJI, 2012)



PULSE-EM surface-borehole TEM data inversion of the Lalor deposit





Yang et al. (Canadian Journal of Earth Sciences, 2018)

MEMORIAL UNIVERSITY

- Constructed models are smooth
- Lack of boundary information for the anomaly
- Problematic for steeply dipping thin structures





Keller (SEG, 2019)

UNIVERSITY

# Thin, steeply dipping ore bodies



Jinchuan nickel sulphide deposit (Lightfoot, proceedings of Exploration 07)

Mount Allison

UNIVERSITY



Lemarchant Zn–Pb–Cu–Ag–Au-rich volcanogenic massive sulphide deposit, Newfoundland, Canada (Lajoie et al.,

2018)



### Inversion techniques to get sharper boundary

#### L1-norms and wavelet-based methods

Mount

Allison

UNIVERSITY



Liu et. al. (GJI, 2015)



### Inversion techniques to get sharper boundary

#### Clustering





Sun et. al. (Interpretation, 2020)



# Inversion techniques to get sharper boundary

• Level-set inversion



# Surface geometry inversion (SGI)

- Conventional inversion: physical properties inside a cell
- Boundaries: large physical property gradient





Galley et. al. (Geophysics, 2020)



- Conventional inversion: physical properties inside a cell
- Boundaries: large physical property gradient
- Surface geometry inversion: nodal coordinates
- Requires prior information of local geology
  - Anomaly type/shape
  - Typical physical property values
  - Late-stage interpretation





Galley et al. (JGR Solid Earth, 2021)

# SGI: parametric inversion



Discrete body inversion (Oldenburg & Pratt, 2007)





VPem inversion (Fullagar et al, 2015)





# Outline

> Motivation

### Surface geometry inversion

Marine CSEM examples

► TEM examples

➢ Conclusions





- Minimum-structure magnetic inversion
  - Solves for the scalar effective Mag. Susc. in each cell.
  - 62500 inversion variables



- Surface Geometry Inversion
  - Solves for the geometry of a wireframe model
  - Physical properties can be fixed or inverted



NIVERSITY







Hannington et al (1995)





Galley et al. (JGR Solid Earth, 2021)

MEMORIAL UNIVERSITY





UNIVERSITY

# Block parameterization: blocky models



> The connections are fixed during the inversion



Hannington et al (1995)

Galley et al. (JGR Solid Earth, 2021)



### Surface parameterization: thin, plate-like models







MEMORIAL UNIVERSITY

# Surface parameterization: thin, plate-like models





MEMORIAL UNIVERSITY

sea mean



Surface parameterization of thin conductor

# Model estimation





MEMORIAL UNIVERSITY

# Model estimation







## Model estimation



# Initial solution





### Model parameter bounds (search volumes)





Different nodes have different bounds (search volumes)





# Surface geometry inversion objective function:

$$\phi(\boldsymbol{m}) = \phi_d(\boldsymbol{m}) + \beta \phi_m(\boldsymbol{m}),$$

Data misfit:

$$\phi_d(\boldsymbol{m}) = \parallel \boldsymbol{W}_d \left[ \boldsymbol{d}^{obs} - \boldsymbol{d}(\boldsymbol{m}) \right] \parallel^2$$
,

Model structure (smoothness):




# Global optimization with genetic algorithm (GA)



 $\mathbf{m} = (\chi_1, \chi_2, ..., \chi_M)$ 50x50x25 cells  $\rightarrow$  62,500 cells

#### **Requires Regularization**





#### 400 data points

 $\mathbf{m} = (x_1, y_1, z_1, x_2, y_2, z_2, ..., x_M, y_M, z_M)$ 8 vertices  $\rightarrow 24 \text{ model parameters}$ 

Only the Data Misfit is Necessary -> no extra regularization calculations -> no solving for trade-off parameters





# Surface geometry inversion





UNIVERSITY

# Surface geometry inversion



# Model subdivision





# Model subdivision







- Small # of nodes to reduce the # of inversion parameters
- Models can be subdivided up to two times
- 3D interpolation is performed to smooth the model





## Triangle-triangle intersection detection





# Surface geometry inversion for EM data





- To calculate the predicted data, the entire model needs to be discretized
- Automatic mesh generation for a given model (TetGen)
- Finite-element solver
- MPI + OpenMP parallelization



# Outline

> Motivation

Surface geometry inversion

### Marine CSEM examples

► TEM examples

#### ➢ Conclusions





#### Marine CSEM example







MEMORIAL UNIVERSITY



Tetrahedral meshes for the SMS deposits

#### Marine CSEM example: synthetic data



Electric field responses of profile L1

Electric field responses of profile L4





# Marine CSEM example: model setup



Mount

#### Conductivities:

- Ore body: 10 S/m
- Sea water: 0.33 S/m
- Seafloor: 0.1 S/m
- True conductivity is used for inversion

#### Inversion parameters:

- 38 nodes in the surface model
- Each node is allowed to move vertically
- Moving range is (-100, 5) m
- 5% Gaussian noise
- GA population: 239



## Marine CSEM example: data fitting







# Marine CSEM example: convergence



UNIVERSITY

- # parameters: 38 (38 nodes each moving in one direction)
- GA population size: 239
- 240 CPU cores: Intel<sup>®</sup> Xeon<sup>®</sup> Gold 6248
  Processor @ 2.5 GHz
- 1 CPU for each model (1 MPI process with 1 OMP thread)
- Computation time: 43 minutes
- Maximum RAM consumption: 656 GB



### Marine CSEM example: constructed model



Mount Allison

MEMORIAL

# Outline

> Motivation

Surface geometry inversion

➢ Marine CSEM examples

### ➤TEM examples

#### ➢ Conclusions





#### Real-data example: uranium exploration









# TEM example: uranium exploration



(Jefferson et. al., 2007)





MEMORIAL UNIVERSITY

### Preston Lake project



Easting (m)





# Preston Lake project: survey configuration



NIVERSITY

- 100 by 100 m loop source
- Station spacing: 50 m
- Rx located 200 m to the grid north of the center of Tx
- 61 stations: 3 km each profile
- Abitibi Geophysics ARMIT MK2 dB/dt & B sensor
- 20 channels from 0.1042 ms to 6.0928 ms



# Preston Lake project: survey configuration



UNIVERSITY

- Only invert data from L2400E & L3200E
- Drill hole PRE-01 & PRE-02 intersected graphite



# Preston Lake project: survey configuration



Basement: crystalline metamorphic basement rocks of the Taltson domain





# SGI of Preston Lake data: model setup



- Background conductivity model obtained from trial-and-error modelling
- # parameters: 69 (26 nodes moving along strike, 9 nodes moving vertically, and 34 regions)
- GA population size: 599
- Data uncertainties: max(std, 2% data)
- 15 nodes with 600 Intel<sup>®</sup> Xeon<sup>®</sup> Gold
  6248 Processor @ 2.5 GHz
- 1 CPU for each model (1 MPI process with 1 OMP thread)



Mount



# Data fitting



Data fitting of L2400E

Data fitting of L3200E





### Constructed model and convergence







# Constrained inversion





MEMORIAL

UNIVERSITY



## Constrained inversion



Mount

UNIVERSITY

- # parameters: 88 (32 nodes moving along strike, 8 nodes moving vertically, and 48 regions)
- GA population size: 599
- Data uncertainties: max(std, 2% data)
- 15 nodes with 600 CPU: Intel<sup>®</sup> Xeon<sup>®</sup> Gold 6248 Processor @ 2.5 GHz
- 1 CPU for each model (1 MPI process with 1 OMP thread)

JNIVERSITY

## Constructed model and convergence



## Constrained VS unconstrained





MEMORIAL

UNIVERSITY



## Constrained VS unconstrained (L2400E)



Constrained

Unconstrained





#### Decimated data inversion









## Decimated data inversion



# Uncertainty calculation

- > Uncertainty calculation:
  - Std from 3 measurements
  - Max(std, 2% of data)
  - No noise floor used



Station 3900S



Station 5450S

MEMORIAL UNIVERSITY



# Updated uncertainty calculation

- > Uncertainty calculation:
  - Std from 3 measurements
  - Max(std, 2% of data)
  - No noise floor used
- Updated uncertainty calculation
  - Std from 3 measurements
  - Max(std, 5% of data)
  - Noise floor: 0.001 pT



Original Station 5450S



MEMORIAL UNIVERSITY



## Decimated data inversion










# Data fitting



Data fitting of L2400E

Data fitting of L3200E





# Uncertainty quantification: MCMC sampling



- $\circ$  Block in half-space
- Moving loop survey
- Three profiles
- Background: 0.01 S/m
- Block: 2 S/m
- Parameterization: 8 nodes
- # parameters: 24
- Population size: 239
- $\circ$  Search volume: +/-30 m, +/-15 m,
  - +/- 15 m in x-, y-, and z-direction



True model (red); Recovered model (gray)

# Uncertainty quantification: MCMC sampling



Mean model (red) is much closer to the true model (gray)



# Uncertainty quantification: MCMC sampling



- Mean model is closer to the true model
- Uncertainty (standard deviation) is the largest in the x-direction
- In general, bottom nodes have larger uncertainty
- Uncertainty is also related to the initial model
- Uncertainty is the smallest in the zdirection

# Outline

> Motivation

➤Surface geometry inversion

Marine CSEM examples

➤TEM examples

#### ➤Conclusions





### Conclusions

- We have implemented a SGI algorithm for EM data
- The SGI algorithm works with both blocky and thin, plate-like anomalies
- The SGI algorithm has been tested using both synthetic and real-data examples
- Data uncertainties can significantly affect the inversion results
- Cross-line component of a MLTEM survey is also important
- MCMC sampling can be used for model uncertainty quantification





# Acknowledgements

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Orano Canada Inc. (Patrick Ledru, Grant Harrison, Jean-Marc Miehé, Elodie Williard)
- Digital Research Alliance of Canada (www.alliancecan.ca)
- ACENET (<u>www.ace-net.ca</u>)
- Dr. Jianbo Long

#### Email: xl0762@mun.ca

