#### Cross-well EM: Technology for reservoir monitoring, image and characterization

Ping Zhang







- > Introduction
- Cross-Well EM Technology
- Case Histories
- > Conclusion

# **EM Survey Methods**



# **Cross-well EM technology**

#### The Measurement Principle of Cross-Well EM



Secondary Field: H<sup>s</sup>

#### **Inter-Well Region Interrogated by Tomography**



## **Cross-Well EM Tomography**



#### **Tool Specifications**

#### Well type and separation



# **Cross-well EM Applications**



#### **Applications**

- Fluid front monitoring
- Identification of bypassed pay
- Enhanced reservoir characterisation & modelling
- Drilling optimisation

# **Monitoring Water Flood**





Permeability ranges from 1 md to 500 md

Peripheral water in uppermost reservoir units (high permeability)





## Permeability: unit 4 ~max 50md unit 5 ~max 15md



Baseline survey (September 2007, before the injection)



Time-lapse 1 (June 2008, after 6 months of injection)



Time-lapse 2 (December 2008, after 1 year of injection)



Time-lapse 3 (July 2009, after 1.5 years of injection)



Time-lapse 4 (March 2010, after 2.3 years of injection)

## Defining Fracture System and Locating by-passed Hydrocarbon



Mapping saturation distribution

**Cross-well EM** 

#### **Project workflow:**



### **Pre-survey simulation (1)**



### **Pre-survey simulation (2)**





coiled-tubing conveyance

140 data profiles acquired

6 days field operations



# **Inversion challenges**

How to integrate open-open and open-steel cased data

How to handle 3D inversion with horizontal wells

# First challenge

Open-cased data is distorted

Data correction has to be applied before inversion



# Second challenge

#### Underdetermined problem:

- 1. Model unknowns ~500,000
- 2. Data points ~25,000
- Data are confined within thin reservoir
- Good starting model and constrains are needed to achieve useful inversion results







#### Interpretation Challenges: Inversion Non-Uniqueness











#### Data misfit for cased hole data

#### Data misfit for open hole data



# Workflow (1)





# Workflow (2)



### **Saturation mapping**









# **Summary and conclusions**

Excellent resistivity imaging tool at reservoir scale
Very efficient for monitoring fluid movements
Capable to locate by-passed oil in a fractured reservoir
Need two wells and providing 2D images
Cannot work on two steel cased wells