EM induction from tsunamis Sea and submarine volcanic eruptions Sea

Dr. Neesha R. Schnepf

they / she

Motivation	Oceanic vs Ionospheric	Tsunami 続	Hunga Tonga 🤽	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

March 11, 2011 : The Tohoku tsunami

in a model and a

- M9.0 earthquake
- Sendai had 8-10 minutes of warning
- Fukishima nuclear disaster
- Human toll:
 - 19,759 deaths
 - 6,242 injured
 - 2,553 people missing
 - As of 2015, 228,863 people still displaced

Motivation	Oceanic vs Ionospheric	Tsunami 🕾	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

January 15, 2022: The Hunga Tonga submarine volcano eruption

MAXAR

- VEI-5 eruption
- Displaced 10 km³ of rock, ash and sediment
- Largest atmospheric explosion recorded by modern instrumentation

- Human toll:
 - At least 6 deaths
 - Some injured & missing in Tonga (main island 40mi south of the eruption)

Motivation	Oceanic vs Ionospheric	Tsunami 🅾	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

- What magnetic signals can be identified from these events?
- Can those magnetic fields be used to better understand the geophysical processes occurring here?
- Can magnetic fields be incorporated into warning systems?

	Summary & Outlook	Hunga Tonga 🦄 magnetic signals	Tsunami 絵 magnetic signals	Oceanic vs Ionospheric magnetic fields	Motivation	
		Line,				
		P				
and the second s						

The electric current from ocean flow

Motivation	Oceanic vs Ionospheric	Tsunami 🕾	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

Marine electromagnetic induction

MotivationOceanic vs Ionospheric
magnetic fieldsTsunami &
magnetic signalsHunga Tonga &
MotivationSummary &
Outlook

Oceanic vs. Ionospheric magnetic fields

- Ionosphere's electrical conductivity depends on solar ionization, is time-of-day dependent
 - Oceanic electrical conductivity depends on salinity & temperature
- Ionospheric magnetic fields can be driven by neutral waves
 > Oceanic magnetic fields are driven by all types of ocean flow
- At a ground observatory, oceanic magnetic fields are *internal* and ionospheric magnetic fields are *external*
 - Enables separating the two field sources

Motivation

Oceanic vs Ionospheric magnetic fields

Tsunami 🚣 magnetic signals Hunga Tonga \lambda magnetic signals

Summary & Outlook

Tsunami magnetic fields

Motivation	Oceanic vs Ionospheric	Tsunami 🖾	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

- Water wave propagates from epicenter
- Produces a "frozen-in" magnetic field
- Field dominated by Lorentz force contribution
 - But there is also a self-induction contribution from db/dt

	Motivation	Oceanic vs Ionospheric magnetic fields	Tsunami 🚵 magnetic signals	Hunga Tonga 🚴 magnetic signals	Summary & Outlook
Гуler	(2005):				

- $\frac{b_z}{B_{main,z}} \text{ varies directly with } \frac{\eta}{h}$
 - b_z vertical component of tsunami magnetic field
 - η tsunami sea surface height
 - h ocean depth
 - Can determine tsunami velocity vector from 1 observatory's vector magnetic field observations

Kicked off excitement for using magnetic field data to improve tsunami warning systems

Manoj et al (2011): observed tsunami magnetic field from the Feb. 27 2010 Chilean earthquake (M8.8).

Motivation	Oceanic vs Ionospheric	Tsunami 🚵	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

Tsunami magnetic field may arrive *before* the tsunami water wave by 4-20 minutes [Minami et al, 2015; Tatehata et al, 2015; Schnepf et al, 2016]

Minami+2015: tsunami magnetic field depends on ocean depth.

Motivation	Oceanic vs Ionospheric	Tsunami 🚵	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

Tsunami magnetic field may arrive *before* the tsunami water wave by 4-20 minutes [Tatehata et al, 2015; Minami et al, 2015; Schnepf et al, 2016]

Tsunami magnetic field may arrive *before* the tsunami water wave by 4-20 minutes [Minami et al, 2015; Tatehata et al, 2015; Schnepf et al, 2016]

Motivation	Oceanic vs Ionospheric	Tsunami 🚵	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

... but can these magnetic signals actually be used for tsunami warning systems? MotivationOceanic vs Ionospheric
magnetic fieldsTsunami &
magnetic signalsHunga Tonga &
magnetic signalsSummary &
Outlook

Challenge #1: Earth's main field term

B_z from World Magnetic Model

Detection challenges near magnetic equator!? MotivationOceanic vs Ionospheric
magnetic fieldsTsunami &
magnetic signalsHunga Tonga &
Magnetic signalsSummary &
Outlook

Challenge #1: Earth's main field term 🔽

Minami, Schnepf, Toh (2021): Tsunami-generated magnetic fields have primary and secondary arrivals like seismic waves

can always use at least Bh or Bz to identify tsunami magnetic signals!

MotivationOceanic vs Ionospheric
magnetic fieldsTsunami a
magnetic signalsHunga TongaSummary &
Outlook

Challenge #2: real-time tsunami detection

- NWP was the only near-continuous, nearreal-time seafloor geomagnetic observatory (Toh+2004, Toh+2006)
 - Trying to deploy a long-term seafloor magnetometer
- Work needed to develop time-frequency methods suited to real-time (rather than historic) tsunami identification

MotivationOceanic vs Ionospheric
magnetic fieldsTsunami a
magnetic signalsHunga TongaSummary &
Outlook

Challenge #3: events must be large

(Schnepf+2016)

These are the *smallest* earthquakes causing tsunamis with detectable magnetic fields... and they are still M8+!

Magnetic Signatures of the January 15 2022 Hunga Tonga-Hunga Ha`apai Eruption

Sea surface deformed by atmospheric waves meteotsunami Internal magnetic field

Tsunami from oceanic shock wave Internal magnetic field

Motivation	Oceanic vs Ionospheric	Tsunami 麄	Hunga Tonga📥	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

- INTERMAGNET observatories
- 1 minute sampling rate
- Vertical component, Z
- Horizontal component, $H = [X^2 + Y^2]^{0.5}$
- Red: magnetic signals likely from eruption
- Challenge: most of the day was geomagnetically disturbed

(Schnepf+2022, GRL)

External signals common to the ASP station have been removed from these wavelet spectrograms.

API is the only observatory to have these sort of high frequency signals.

(Schnepf+2022, GRL)

Email your support in the API observatory to:

Mr. Lameko Talia, Principal Scientific Officer Meteorology Division Ministry of Natural Recourses and Environment (MNRE) Apia, Samoa Iamekotalia@mnre.gov.ws

Dr. Tanja Petersen I Applied Research Senior Specialist / Project Leader Geomagnetism Project GNS Science, New Zealand **T.Petersen@gns.cri.nz**

Apia Observatory

National University of Samoa - Marine Campus

(•)

Soogle

•

Motivation	Oceanic vs Ionospheric	Tsunami 🅾	Hunga Tonga📥	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

Magnetic signals of 60-90 min period.

External signals common to the ASP station have been removed from these wavelet spectrograms.

common to the ASP station have been removed from these wavelet spectrograms.

period at CBI... but lots of noise.

Minami et al presentation

Magnetic signals of 13–19 min period at CBI.

-5

F

5

(Schnepf+2022, GRL)

IPM

Motivation	Oceanic vs Ionospheric	Tsunami 🕾	Hunga Tonga 👗	Summary &
	magnetic fields	magnetic signals	magnetic signals	Outlook

- Magnetic signals identifiable from tsunamis, meteotsunamis, and ionospheric disturbances
- Can those magnetic fields be used to better understand the geophysical processes occurring here?
 - Magnetic fields help clarify tsunami source
 - Need improved understanding of external vs internal sources for post-eruption magnetic fields
- Can magnetic fields be incorporated into warning systems?
 - Need long-term seafloor observatory and reliable real-time methods

EM induction from tsunamis Sea and submarine volcanic eruptions Sea

Dr. Neesha R. Schnepf

they / she