

Julia based geophysical optimization and Bayesian inference

Anandaroop Ray
With grateful thanks to
Ross C. Brodie, Richard Taylor, Yusen Ley-Cooper, Neil Symington, Andrew McPherson, Karol Czarnota, Kerry Key, Thomas Bodin, Jan Dettmer, Steve Constable, Catherine Constable, Brent Wheelock, Sam Kaplan, John Washbourne, Uwe Albertin, Daniel Blatter, Negin Moghaddam, Malcolm Sambridge, ..

High Quality Geophysical Analysis: HiQGA.jI

- Can do a variety of modeling, inversion and inference:
- AEM, SMRI, MT, CSEM, image regression, and Gauss-Newton/Occam inversion
- Can also do generic joint inversion, e.g., MT and AEM
- Open source, very flexible MIT license

https://github.com/GeoscienceAustralia/HiQGA.j|

ρ Installation

To install the latest stable release, in a perfect world we'd use Julia's Pkg REPL by hitting] to enter pkg> mode. Then enter the following, at the pkg> prompt:

```
pkg> add HiQGA
```


Download the entire HiQGA package

> - Go to the highlighted URL
> - Hit the Code box
> - Download the entire package as a zip file
> Or you can clone it with git

Inference in a nutshell

https://xkcd.com/2652/

How would you fit this?

One way to represent this

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Representing one observation

$$
\left[y_{2}\right]=\left[\begin{array}{llll}
0 & 1 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\mathbf{e}_{2}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

But we don't have all observations

$m=3$ data points for

A system of equations

Least squares ... and we're done!

$$
\begin{aligned}
\phi & =\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2} \\
\text { set } \nabla_{x} \phi & =0 \\
\hat{\mathbf{x}} & =\left(\mathbf{A}^{\mathbf{t}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathbf{t}} \mathbf{y}
\end{aligned}
$$

Or are we?

Add to the diagonal of $A^{t} A$

Ridge solution

Enforce smoothness instead

$$
\begin{array}{rl}
{\left[\begin{array}{ccccc}
-1 & 0 & & & \\
& -1 & 1 & 0 & \\
& 0 & & \ldots & \\
& -1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]} & =\left[\begin{array}{c}
0 \\
-x_{1}+x_{2} \\
-x_{2}+x_{3} \\
\vdots \\
-x_{n-1} x_{n}
\end{array}\right] \\
\mathbf{R} & \mathbf{X}
\end{array}
$$

Oh no, not again ...

$$
\phi=\|\mathbf{y}-\mathbf{A x}\|^{2}+\lambda^{2}\|\mathbf{R x}\|^{2},
$$

set $\nabla_{x} \phi=0$,
$\hat{\mathbf{x}}_{\text {smooth }}^{\mathrm{MLE}}=\left(\mathbf{A}^{\mathbf{t}} \mathbf{A}+\lambda^{\mathbf{2}} \mathbf{R}^{\mathbf{t}} \mathbf{R}\right)^{-1} \mathbf{A}^{\mathbf{t}} \mathbf{y}$

Occam vs MLE and "distance from the truth"

Occam = ?Guaranteedi smoothest model within data noise!

But the truth this is from a well log!

The general, non-linear case
$\phi(\mathbf{m})=\frac{1}{2}\left(\|\mathbf{W}(\mathbf{d}-\mathbf{f}(\mathbf{m}))\|^{2}+\lambda^{2}\|\mathbf{R m}\|_{p}^{p}\right)$,
but now set $p=2$,
$\phi(\mathbf{m})=\frac{1}{2}\left(\|\mathbf{W}(\mathbf{d}-\mathbf{f}(\mathbf{m}))\|^{2}+\lambda^{2}\|\mathbf{R m}\|^{2}\right)$,
but how to set $\nabla_{m} \phi=0$?
linearize $\phi(\mathbf{m})$ to $\phi(\mathbf{m}+\boldsymbol{\Delta} \mathbf{m})$ i.e.,
$\mathbf{f}(\mathbf{m}) \rightarrow \mathbf{f}(\mathbf{m}+\Delta \mathbf{m}), \mathbf{R m} \rightarrow \mathbf{R}(\mathbf{m}+\Delta \mathbf{m})$ first.
$\mathbf{f}(\mathbf{m}+\Delta \mathbf{m}) \approx \mathbf{f}(\mathbf{m})+\mathbf{J} \Delta \mathbf{m}$.

Radiohead said it ... creep

first write residual $\mathbf{r} \approx \mathbf{f}(\mathbf{m})-\mathbf{d}$
derive with respect to $\Delta \mathbf{m}$,
set $\frac{\partial \phi}{\partial \boldsymbol{\Delta} \mathbf{m}}=0$, giving,
$\boldsymbol{\Delta} \mathbf{m}=-\left(\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W} \mathbf{J}+\lambda^{2} \mathbf{R}^{t} \mathbf{R}\right)^{-1}\left(\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W} \mathbf{r}+\lambda^{2} \mathbf{R}^{t} \mathbf{R} \mathbf{m}\right)$
note also, that $\nabla_{m} \phi=\widetilde{J}^{t} \mathbf{W}^{t} \mathbf{W r}+\lambda^{2} \mathbf{R}^{t} \mathbf{R m}$.
Gradient
note finally, that $\frac{\partial\left(\nabla_{m} \phi\right)}{\partial \mathbf{m}}=\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W J}+\lambda^{2} \mathbf{R}^{t} \mathbf{R}$.

Gradient descent!

$$
\mathbf{m}_{\text {new }}=\mathbf{m}+\Delta \mathbf{m}
$$

$$
\text { writing } \nabla_{m} \phi=\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W r}+\lambda^{2} \mathbf{R}^{t} \mathbf{R} \mathbf{m}
$$

$$
\text { and } \eta=\left(\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W} \mathbf{J}+\lambda^{2} \mathbf{R}^{t} \mathbf{R}\right)^{-1} \text { we now say, }
$$

$$
\mathbf{m}_{\text {new }}=\mathbf{m}-\eta \nabla_{m} \phi
$$

```
Successive linearization:
Replace m}\mathrm{ with m}\mp@subsup{\mathbf{m}}{\mathrm{ new}}{
Continue until residual is within noise
Find smoothest model within data error, as usual.
```


Gradient descent \rightarrow Bayes theorem

rewriting $\phi(\mathbf{m})=\frac{1}{2}\left(\|\mathbf{W}(\mathbf{d}-\mathbf{f}(\mathbf{m}))\|^{2}+\lambda^{2}\|\mathbf{R m}\|^{2}\right)$ as,
$\phi(\mathbf{m})=\frac{1}{2}\left([\mathbf{d}-\mathbf{f}(\mathbf{m})]^{t} \mathbf{W}^{t} \mathbf{W}[\mathbf{d}-\mathbf{f}(\mathbf{m})]+\lambda^{2} \mathbf{m}^{t} \mathbf{R}^{t} \mathbf{R} \mathbf{m}\right)$,
identifying $\lambda^{2} \mathbf{R}^{t} \mathbf{R}=\mathbf{C}_{m}^{-1}$,
and $\mathbf{W}^{t} \mathbf{W}=\mathbf{C}_{d}^{-1}$,
$\phi(\mathbf{m})=\frac{1}{2}\left([\mathbf{d}-\mathbf{f}(\mathbf{m})]^{t} \mathbf{C}_{d}^{-1}[\mathbf{d}-\mathbf{f}(\mathbf{m})]+\mathbf{m}^{t} \mathbf{C}_{m}^{-1} \mathbf{m}\right)$,
further identifying $\log p(\mathbf{m} \mid \mathbf{d})=-\phi(\mathbf{m})+$ const,
and $\log p(\mathbf{d} \mid \mathbf{m})=-\frac{1}{2}\left([\mathbf{d}-\mathbf{f}(\mathbf{m})]^{t} \mathbf{C}_{d}^{-1}[\mathbf{d}-\mathbf{f}(\mathbf{m})]\right)$,
and $\log p(\mathbf{m})=-\frac{1}{2} \mathbf{m}^{t} \mathbf{C}_{m}^{-1} \mathbf{m}$,
we can write for the non-linear yet Gaussian case,
posterior $p(\mathbf{m} \mid \mathbf{d}) \propto p(\mathbf{d} \mid \mathbf{m}) \cdot p(\mathbf{m})$.

A traditional Bayesian view

updated belief \propto likelihood of belief \cdot prior belief $p(\mathbf{m} \mid \mathbf{d}) \propto p(\mathbf{d} \mid \mathbf{m}) \cdot p(\mathbf{m})$

m is a model
obtained from
prior notions,
e.g., well data,
geology, etc.

Equivalence of Bayes' theorem with optimization

```
updated belief \propto likelihood of belief c prior belief
    p(\mathbf{m}|\mathbf{d})\proptop(\mathbf{d}|\mathbf{m})\cdotp(\mathbf{m})
```



```
\[
\arg \min \phi(\mathbf{m})=\|\mathbf{W}(\mathbf{d}-\mathbf{f}(\mathbf{m}))\|_{2}^{2}+\lambda^{2}\|\mathbf{R m}\|_{p}^{p}
\]
```

There is NO objective, unbiased inversion.

- Choices need to be made!
- Occam is one good choice

An AEM inverse problem

Occam and posterior solutions

Hierarchical Bayesian nuisance crossplots

Notice how nuisance estimates are within bounds

Julia code

Get insight into the inversion, within Julia

Line searches and step sizes are a nasty bag of tricks!

2 stage alternating inversion

- Conductivities (within bounds Occam)
- Tx-Rx Geometry (Barrier BFGS)

Write code as the math is derived

Matrix free regularization operator construction!

```
function makeregR1(F::Operator1D)
    n = length(F.\rho) - F.nfixed
    LinearMap(R1Dop, Rt1Dop, n)
end
function R1Dop(x::Vector)
    vcat(0, diff(x))
end
function Rt1Dop(y::Vector)
    x = vcat(-diff(y),y[end])
    x[1] = -y[2]
    x
end
```

- julia> R = transD_GP.makeregR1(tempest)
65×65 LinearMaps.FunctionMap\{Float64\}(R1Dop, Rt1Dop; ismutating=false, issymmetric=false, ishermitian=false, is posdef=false)

Inspect it explicitly

| julia> Matrix(R) | |
| :---: |
| 65×65 | Matrix\{Float64\}: | | | | | | | | | | | | | | | | | | | |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | \ldots | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| -1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | -1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \vdots | | | | \vdots | | | | | \ddots | \vdots | | | | | | \vdots | | | | |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | 1.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | 1.0 | 0.0 |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | 1.0 |

Cascade operators and inspect!

julia> Matrix(R*R) 65×65 Matrix\{Float64\}:																				
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	..'	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	-2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
!					:											:				
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0

note finally, that $\frac{\partial\left(\nabla_{m} \phi\right)}{\partial \mathbf{m}}=\mathbf{J}^{t} \mathbf{W}^{t} \mathbf{W} \mathbf{J}+\lambda^{2} \mathbf{R}^{t} \mathbf{R}$. Approximate Hessian

Natively parallel programming paradigm

```
function domcmciters(iterlast, nsamples, chains, m::DArray{ModelStat},
        opt::DArray{OptionsStat}, stat,
        current_misfit, F, wp, nominaltime)
    # purely stationary GP moves
    t, tlong = map(x->time(), 1:2)
    for isample = iterlast+1:iterlast+nsamples
        swap_temps(chains)
        @sync for (chain_idx, chain) in enumerate(chains)
        # purely stationary GP moves
        @async chain.misfit = remotecall_fetch(do mcmc step, chain.pid,
        m, opt, stat,
        current misfit, F,
        chain.Te isample, wp, chain idx, chain.master pid)
    end
    t, tlong, doquit = disptime(isample, t, tlong, iterlast, nsamples, nominaltime)
    doquit && break
    end
end
```

One-sided parallelism - no need to do something
different depending on MPI rank

Scale up your prototype, within Julia

25,000 line-km of
AEM data,
inverted using
HiQGA.jl

(19)

NSW and
and
Environment

Zooming in

25,000 line-km of
AEM data,
inverted using
HiQGA.jl

NSW and
and
Environment

Beautiful, layered earth

Inspect probabilities around one sounding

Remember, the Occam model is an extremal model! There are other models in high probability regions (in chicken neck CIs)

Back to the deterministic section

Compare: P10, median and P90 section displays

Line_100401 $\Delta x=5.0$ m, Fids: 1994, 1 of 1, VE=10X

Percentile 90 conductivity

Far more interpretable information in percentiles

Go big: GA-LEI Occam inversions for AusAEM

Deterministic inversion goes back to reference model at depth

40X Vert. Exagg. Max depth ~ 350 m

20 km spaced continental scale AEM data https://dx.doi.org/10.26186/145744 Lines are approx. 500 km long

Go big: Compare P10 section

40X Vert. Exagg.
Max depth ~350 m

High probability conductors stand out
© Commonwealth of Australia (Geoscience Australia) 2023.

Go big: Compare median section

40X Vert. Exagg.
Max depth ~350 m

Median features

Go big: Compare P90 section

40X Vert. Exagg.
Max depth $\sim 350 \mathrm{~m}$

High probability resistors stand out

P10 section: Conductors line up to show saline groundwater

Reds: 90\% probability mass at conducting end
© Commonwealth of Australia (Geoscience Australia) 2023.

P90 section: Resistors line up near freshwater zones

Landsat imagery in the background

Blues: 90\% probability mass at resistive end

Identify ambiguous structure: GA-LEI (Occam)

[^0]
Identify ambiguous structure: P10 section

[^1]
Identify ambiguous structure: median section

[^2]
Identify ambiguous structure: P90 section

[^3]Different geophysics problems, same Julia interface

Surface Magnetic
 Resonance (SMR) imaging

```
pkg> add SMRPInversion[
```


Julia Subtypes <: Different forward problems, same McMC interface

```
julia> typeof(sounding)
    SMRPInversion.SMRSoundingKnown
julia> typeof(sounding)<:transD_GP.0perator
true
```


Different physics operator, same McMC method

```
transD_GP.main(opt, aem, Tmax=Tmax, nsamples=nsamples, nchains=nchains, nchainsatone=nchainsatone)
```

```
julia> typeof(aem)
```

HiQGA.transD_GP.SkyTEM1DInversion.dBzdt
julia> typeof(aem)<:transD_GP.Operator true

Under the McMC hood: Represent n_{d} earth properties with same equation

$K\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\exp \left(-\frac{1}{2}\left[\mathbf{y}-\mathbf{y}^{\prime}\right]^{t} \mathbf{C}_{\lambda}{ }^{-1}\left[\mathbf{y}-\mathbf{y}^{\prime}\right]\right)$, where $\mathbf{y} \in \mathbb{R}^{n_{d}}$ Rasmussen \& Williams (2006)
Now we can use these r points to do Bayesian Trans-D McMC

Regress images with McMC

I'm sure you recognize what you're looking at - these are 332 points sampled from a 293×262 image

Reconstructing an image using deep GP parameterisations (2-layer)

HiQGA.jl / examples / 2D / image_revBayes /

But we had started here ...

Using a 2-layer GP

With 200-300 GP nuclei, we can represent a 293×262
image $=76,766$ pixels -a compression of ~300X

Geophysical Journal International, 2019, 2021

Bayesian inversion using nested trans-dimensional Gaussian processes
Anandaroop Ray ${ }^{\circ}$
https://academic.oup.com/gii/article/226/1/302/6189704

Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning
Anandaroop Ray ${ }^{\oplus 1}$ and David Myer ${ }^{\oplus 2}$
https://academic.oup.com/gii/article/217/3/1706/5366736

2D marine MT with a 1-layer GP parameterization, 2-layer would be better!

TransD-GP
https://academic.oup.com/gii/article-abstract/226/1/548/6188387

- 168 processors, 10 days, 1_000_000 samples
- 0.85 s per forward
- 10 frequencies, 7 sites
- 8424 cell inversion model
- Native Julia on Columbia University’s Habanero cluster

TransD-GP uncertainty

Geophysical Journal International, 2021

Two-dimensional Bayesian inversion of magnetotelluric data using trans-dimensional Gaussian processes

Daniel Blatter ${ }^{\oplus},{ }_{1}^{1}$ Anandaroop Ray ${ }^{02}$ and Kerry Key ${ }^{\oplus 1}$
© Commonwealih of Australia (Geoscience Australia) 2023.

Last and often ignored: Distribute your code

Package management in Julia

Make your changes

Invoke the Julia Registrator bot on GitHub

Wait for the pull request to complete Users can then do:

To conclude

- Occam inversion models have low entropy
- Many geophysics priors should generally encourage low entropy
- Bayesian posteriors encourage rapid, probabilistic interpretation of geology
- A general Julia inversion framework with these ideas are at:
- https://github.com/GeoscienceAustralia/HiQGA.jl
- Julia's type hierarchy makes it easy to dispatch generic optimizers or samplers to the right physics type
- Julia is just in time compiled and fast ... see https://julialang.org/benchmarks/
- Excellent numerical package libraries are available (FFTW, interpolations, Bessel etc.)
- Code reads like math and is easy to follow
- Do it all in Julia, no more Python prototyping \rightarrow C++/Fortran/MPI production \rightarrow Python visualization
- Avoid dealing with Makefiles et al. - incremental recompilation massively boosts productivity
- Julia is excellent for prototyping to production and package distribution

Get involved!

https://github.com/GeoscienceAustralia/HiQGA.j
We welcome your contributions

Anandaroop.Ray@ga.gov.au

Backup slides

Uncorrelated posterior realizations are unsatisfactory

On structure-based priors in Bayesian geophysical inversion

Why are effective parameterizations necessary?

10^{2} pixels is hard. What about 10^{5} ?

Figure 7: Estimates of means (top) and standard deviations (bottom) for the 100-dimensional example, using random-walk Metropolis (left) and HMC (right). The 100 variables are labelled on the horizontal axes by the true standard deviaton of that variable. Estimates are on the vertical axes.

Handbook of McMC, 2011
MCMC using Hamiltonian dynamics

Gaussian Processes - naturally Bayesian

Rasmussen \& Williams (2006) Ray \& Myer 2019

Fitting a function using a Gaussian process mean

Represent N_{d} functions with same equation

1D

2D

3D

Gaussian process mean

$K\left(\mathbf{y}, \mathbf{y}^{\prime}\right)=\exp \left(-\frac{1}{2}\left[\mathbf{y}-\mathbf{y}^{\prime}\right]^{t} \mathbf{C}_{\lambda}^{-1}\left[\mathbf{y}-\mathbf{y}^{\prime}\right]\right)$, where $\mathbf{y} \in \mathbb{R}^{n_{d}}$ Rasmussen \& Williams (2006)

1D

Now does this look like an earth property?

Transdimensional Gaussian processes (TDGP) Ray \& Myer 2019

What we'll do different now: self parameterisation

Ordinary McMC	Change model parameters while sampling
trans-D McMC (and TDGP)	Add/delete parameters while sampling
Nested TDGP	Construct above parameters using another trans-D Gaussian process

$$
\begin{aligned}
\mathbf{C}_{\mathrm{avg}} & =\frac{\mathbf{C}_{i}+\mathbf{C}_{j}}{2} \\
k\left(\mathbf{y}_{i}, \mathbf{y}_{j}\right) & =\left|\mathbf{C}_{i}\right|^{\frac{1}{4}}\left|\mathbf{C}_{j}\right|^{\frac{1}{4}}\left|\mathbf{C}_{\mathrm{avg}}\right|^{-\frac{1}{2}} R\left(\sqrt{Q_{i j}}\right)
\end{aligned}
$$

2-layer Gaussian process

$$
\begin{aligned}
& \text { contains length scale val- } \\
& \text { ues and their locations } \\
& \qquad \boldsymbol{\theta}_{\mathrm{S}}, \boldsymbol{\lambda}_{\mathrm{s}}, \sigma_{\mathrm{s}} \xrightarrow[\text { with Equation (4) }]{\text { use Equation (1) }} \boldsymbol{\mu}_{* \mathrm{~s}}
\end{aligned}
$$

```
contains property values
and their locations
```

To compute the misfit, we need $\mu_{* \mathrm{~ns}}$

To compute $\mu_{*_{\mathrm{ns}}}$ we need $\boldsymbol{\mu}_{*_{\mathrm{s}}}$

Structure of changes in an update \#2

$$
\begin{aligned}
& \text { contains length scale val- } \\
& \text { ues and their locations } \\
& \qquad \begin{array}{|l|}
\boldsymbol{\theta}_{\mathrm{S}}
\end{array}, \boldsymbol{\lambda}_{\mathrm{S}}, \sigma_{\mathrm{S}} \quad \underset{\text { with Equation (4) }}{\text { use Equation (1) }} \boldsymbol{\mu}_{* \mathrm{~S}}
\end{aligned}
$$

```
contains property values
and their locations
\[
\stackrel{\theta_{\mathrm{ns}}}{ }, \boldsymbol{\mu}_{* \mathrm{~s}}, \sigma_{\mathrm{ns}} \xrightarrow[\text { with Equation (7) }]{\text { use Equation (1) }} \boldsymbol{\mu}_{* \mathrm{~ns}}
\]
```


- Only propagate significant changes in $\boldsymbol{\mu}_{*_{\mathrm{s}}}$ to $\boldsymbol{\mu}_{*_{\mathrm{ns}}}$
- KDTree searches for elements of $\theta_{\mathrm{ns}}(+)$ "close" to $\theta_{\mathrm{s}}(\bullet)$

[^0]: 2 incised palaeovalleys?

[^1]: Maybe not

[^2]: Looking more like not

[^3]: One synclinal palaeovalley!

