

Australian Government Geoscience Australia Exploring for the Future

Julia based geophysical optimization and Bayesian inference

Anandaroop Ray

With grateful thanks to

Ross C. Brodie, Richard Taylor, Yusen Ley-Cooper, Neil Symington, Andrew McPherson, Karol Czarnota, Kerry Key, Thomas Bodin, Jan Dettmer, Steve Constable, Catherine Constable, Brent Wheelock, Sam Kaplan, John Washbourne, Uwe Albertin, Daniel Blatter, Negin Moghaddam, Malcolm Sambridge, ...

High Quality Geophysical Analysis: HiQGA.jl

- Can do a variety of modeling, inversion and inference:
- AEM, SMRI, MT, CSEM, image regression, and Gauss-Newton/Occam inversion
- Can also do generic joint inversion, e.g., MT and AEM
- Open source, very flexible MIT license

https://julialang.org/downloads

https://github.com/GeoscienceAustralia/HiQGA.jl

Installation

To install the latest stable release, in a perfect world we'd use Julia's Pkg REPL by hitting] to enter pkg> mode. Then enter the following, at the pkg> prompt:

pkg> add HiQGA

Download the entire HiQGA package

$\leftrightarrow \rightarrow G$	🔒 github.com/GeoscienceAustralia/H	liQGA.jl									
🕞 GitHub - Jul	iaPy/P M The Mary Sue - A 💿 Rosb	och Book Re 🔥 The Atlantic — Ne	🖷 McSweeney's 🛅 clipart	🍿 notcoming.com 👎 BB0							
C Se	earch or jump to /	Pull requests Issues Codespace	es Marketplace Explore								
🖵 Geoso	cienceAustralia / HiQGA.jl (Publ	ic		★ Edit Pins ▼							
<> Code	⊙ Issues 3 រੈ¹ Pull requests	O Actions ☐ Projects ☐	Wiki 🛈 Security 🗠 Ir	nsights 🟟 Settings							
(ੇ P master 🗸 ੈ 9 branches 🛇	6 tags	Go to file Add file - Code -								
	e a2ray removed Line1D example fr	om docs	Local Codespaces Ne								
	.github/workflows	version bump to Julia 1.7, also	Clone								
	docs	removed Line1D example fron	HTTPS SSH GitHub CLI								
	examples	Update readme.md	git@github.com:GeoscienceAustralia/HiQGA.								
	src	image_revBayes/	Use a password-protected SSH key.								
	test	WIP refactors for hankeltx and	ⁿ ເ ເ Open with GitHub Desktop								
	L .editorconfig	Update .editorconfig									
	C .gitignore	WIP ended? McMC works on	Download ZIP								

- Go to the highlighted URL
- Hit the Code box
- Download the entire package as a zip file
- Or you can clone it with git

Inference in a nutshell

https://xkcd.com/2652/

How would you fit this?

m = 39 data points

One way to represent this

n = 65

Representing one observation

But we don't have all observations

m = 3 data points for example

A system of equations

Least squares ... and we're done!

$$\phi = ||\mathbf{y} - \mathbf{A}\mathbf{x}||^2,$$

set $\nabla_x \phi = 0,$
 $\mathbf{\hat{x}} = (\mathbf{A}^{\mathbf{t}} \mathbf{A})^{-1} \mathbf{A}^{\mathbf{t}} \mathbf{y}.$

Or are we?

A

Add to the diagonal of A^tA

$\mathbf{\hat{x}}_{\text{ridge}} = (\mathbf{A}^{\mathbf{t}}\mathbf{A} + \delta^{2}\mathbf{I})^{-1}\mathbf{A}^{\mathbf{t}}\mathbf{y}.$

Ridge solution

Enforce smoothness instead

Oh no, not again ...

$$egin{aligned} \phi &= ||\mathbf{y} - \mathbf{A}\mathbf{x}||^2 + \lambda^2 ||\mathbf{R}\mathbf{x}||^2, \ & ext{set }
abla_x \phi &= 0, \ & extbf{\hat{x}}_{ ext{smooth}}^{ ext{MLE}} &= (\mathbf{A}^{ extbf{t}} \mathbf{A} + \lambda^2 \mathbf{R}^{ extbf{t}} \mathbf{R})^{-1} \mathbf{A}^{ extbf{t}} \mathbf{y} \ & ext{smooth} \end{aligned}$$

Occam vs MLE and "distance from the truth"

Occam = ?Guaranteed¿ smoothest model within data noise!

But the truth this is from a well log!

The general, non-linear case

$$\phi(\mathbf{m}) = \frac{1}{2} \Big(||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||^2 + \lambda^2 ||\mathbf{Rm}||_p^p \Big),$$

but now set $p = 2,$
$$\phi(\mathbf{m}) = \frac{1}{2} \Big(||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||^2 + \lambda^2 ||\mathbf{Rm}||^2 \Big),$$

but how to set $\nabla_m \phi = 0$?
linearize $\phi(\mathbf{m})$ to $\phi(\mathbf{m} + \Delta \mathbf{m})$ i.e.,
 $\mathbf{f}(\mathbf{m}) \rightarrow \mathbf{f}(\mathbf{m} + \Delta \mathbf{m}), \mathbf{Rm} \rightarrow \mathbf{R}(\mathbf{m} + \Delta \mathbf{m})$ first.
$$\boxed{\mathbf{f}(\mathbf{m} + \Delta \mathbf{m}) \approx \mathbf{f}(\mathbf{m}) + \mathbf{J}\Delta \mathbf{m}.}$$

Radiohead said it ... creep

first write residual $\mathbf{r} \approx \mathbf{f}(\mathbf{m}) - \mathbf{d}$ derive with respect to $\Delta \mathbf{m}$, set $\frac{\partial \phi}{\partial \Delta \mathbf{m}} = 0$, giving, $\mathbf{\Delta m} = - \Big(\mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{J} + \lambda^2 \mathbf{R}^t \mathbf{R} \Big)^{-1} \Big(\mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{r} + \lambda^2 \mathbf{R}^t \mathbf{R} \mathbf{m} \Big) \Big|$ note also, that $\nabla_m \phi = \mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{r} + \lambda^2 \mathbf{R}^t \mathbf{R} \mathbf{m}$. Gradient note finally, that $\frac{\partial (\nabla_m \phi)}{\partial \mathbf{m}} = \mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{J} + \lambda^2 \mathbf{R}^t \mathbf{R}$. Approximate Hessian

Gradient descent!

$$\mathbf{m}_{\mathrm{new}} = \mathbf{m} + \mathbf{\Delta}\mathbf{m}$$

writing
$$\nabla_m \phi = \mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{r} + \lambda^2 \mathbf{R}^t \mathbf{R} \mathbf{m}$$
,
and $\eta = \left(\mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{J} + \lambda^2 \mathbf{R}^t \mathbf{R} \right)^{-1}$ we now say,

$$\mathbf{m}_{\rm new} = \mathbf{m} - \eta \nabla_m \phi$$

Successive linearization: Replace m with m_{new} Continue until residual is within noise Find smoothest model within data error, as usual.

Gradient descent \rightarrow Bayes theorem

rewriting
$$\phi(\mathbf{m}) = \frac{1}{2} \left(||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||^2 + \lambda^2 ||\mathbf{R}\mathbf{m}||^2 \right)$$
 as $\phi(\mathbf{m}) = \frac{1}{2} \left([\mathbf{d} - \mathbf{f}(\mathbf{m})]^t \mathbf{W}^t \mathbf{W} [\mathbf{d} - \mathbf{f}(\mathbf{m})] + \lambda^2 \mathbf{m}^t \mathbf{R}^t \mathbf{R} \mathbf{m} \right),$
identifying $\lambda^2 \mathbf{R}^t \mathbf{R} = \mathbf{C}_m^{-1},$
and $\mathbf{W}^t \mathbf{W} = \mathbf{C}_d^{-1},$

$$\phi(\mathbf{m}) = \frac{1}{2} \Big([\mathbf{d} - \mathbf{f}(\mathbf{m})]^t \mathbf{C}_d^{-1} [\mathbf{d} - \mathbf{f}(\mathbf{m})] + \mathbf{m}^t \mathbf{C}_m^{-1} \mathbf{m} \Big),$$

further identifying
$$\log p(\mathbf{m}|\mathbf{d}) = -\phi(\mathbf{m}) + \text{const},$$

and
$$\log p(\mathbf{d}|\mathbf{m}) = -\frac{1}{2} \Big([\mathbf{d} - \mathbf{f}(\mathbf{m})]^t \mathbf{C}_d^{-1} [\mathbf{d} - \mathbf{f}(\mathbf{m})] \Big),$$

and
$$\log p(\mathbf{m}) = -\frac{1}{2}\mathbf{m}^t \mathbf{C}_m^{-1}\mathbf{m},$$

we can write for the non-linear yet Gaussian case,

posterior $p(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}) \cdot p(\mathbf{m}).$

A traditional Bayesian view

Equivalence of Bayes' theorem with optimization

updated belief \propto likelihood of belief \cdot prior belief $p(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}) \cdot p(\mathbf{m})$ \int $\arg \min \phi(\mathbf{m}) = ||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||_2^2 + \lambda^2 ||\mathbf{Rm}||_p^p$

There is NO objective, unbiased inversion.

- Choices need to be made!
- Occam is one good choice

An AEM inverse problem

Occam and posterior solutions

HiQGA.jl / examples / tempest / synth / gradientbased /	Q
01_make_model.jl	
02_set_options.jl	
03_run_inversion.jl	
03_run_inversion_nuisance.jl	
04_plot_results.jl	
HiQGA.jl / examples / tempest / synth / McMC /	
D 01_make_model.jl	
02_make_aem_inversion_opts_nuisance.jl	
03_run_aem_inversion_s.jl	
04_plot_results.jl	

Notebook style code execution

Hierarchical Bayesian nuisance crossplots

Julia code

Get insight into the inversion, within Julia

2 stage alternating inversion

- Conductivities (within bounds Occam)
- Tx-Rx Geometry (Barrier BFGS)

Line searches and step sizes are a nasty bag of tricks!

Write code as the math is derived

function makeregR1(F::Operator1D)
 n = length(F.p) - F.nfixed
 LinearMap(R1Dop, Rt1Dop, n)
end
function R1Dop(x::Vector)
 vcat(0, diff(x))
end
function Rt1Dop(y::Vector)
 x = vcat(-diff(y),y[end])
 x[1] = -y[2]
 x

end

JtW, Wr = F.J'*F. H = (JtW*(JtW)' + U = cholesky(Pos: Matrix free regularization operator construction!

• julia> R = transD_GP.makeregR1(tempest)

65×65 LinearMaps.FunctionMap{Float64}(R1Dop, Rt1Dop; ismutating=false, issymmetric=false, ishermitian=false, is posdef=false)

Inspect it explicitly

) julia>	Matri	x(R)																	
65×65	Matrix	{Floa	t64}:																
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	-1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	1.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	1.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	1.0

Cascade operators and inspect!

	• julia> 65×65	Matri Matrix	.x(R*R {Floa) t64}:																
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
w, r.w*r.res	-1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- λ²*R'R + λ²*β²*I)	1.0	-2.0	1.0	0.0	0.0	0.0 :	0.0	0.0	0.0	0.0	0.0 :	0.0	0.0	0.0	0.0	0.0 :	0.0	0.0	0.0	0.0
tive, H, Val{false}).U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	-2.0	1.0

note finally, that
$$\frac{\partial (\nabla_m \phi)}{\partial \mathbf{m}} = \mathbf{J}^t \mathbf{W}^t \mathbf{W} \mathbf{J} + \lambda^2 \mathbf{R}^t \mathbf{R}$$
.

Approximate Hessian

Natively parallel programming paradigm

One-sided parallelism – no need to do something different depending on MPI rank

Scale up your prototype, within Julia

25,000 line-km of AEM data, inverted using HiQGA.jl

Environment

Zooming in

25,000 line-km of AEM data, inverted using HiQGA.jl

Planning and Environment

Beautiful, layered earth

Line_100401_ β^2 _0.1_R1_bg_0.01Spm Δx =5 m, Fids: 1994 $\phi_{d_{0-1,1}}$: 89 $\phi_{d_{1,1-2}}$: 5 $\phi_{d_{2-\infty}}$: 6, VE=10X

Inspect probabilities around one sounding

Remember, the Occam model is an *extremal* model! There are other models in high probability regions (in chicken neck CIs)

 $\bigcirc \quad \bigcirc$

Back to the deterministic section

Line_100401_ β^2 _0.1_R1_bg_0.01Spm Δx =5 m, Fids: 1994 $\phi_{d_{0-1,1}}$: 89 $\phi_{d_{1,1-2}}$: 5 $\phi_{d_{2-\infty}}$: 6, VE=10X

Compare: P10, median and P90 section displays

Go big: GA-LEI Occam inversions for AusAEM

20 km spaced continental scale AEM data <u>https://dx.doi.org/10.26186/145744</u> Lines are approx. **500 km** long

Go big: Compare P10 section

40X Vert. Exagg. Max depth ~350 m

High probability *conductors* stand out

Go big: Compare median section

Median features

Go big: Compare P90 section

40X Vert. Exagg.

High probability *resistors* stand out

P10 section: Conductors line up to show saline groundwater

Landsat imagery in the background

Reds: 90% probability mass at *conducting* end

P90 section: Resistors line up near freshwater zones

Landsat imagery in the background

Blues: 90% probability mass at *resistive* end

Identify ambiguous structure: GA-LEI (Occam)

Deterministic inversion goes back to reference model at depth

2 incised palaeovalleys?

Identify ambiguous structure: P10 section

Maybe not

Identify ambiguous structure: median section

Looking more like not

Identify ambiguous structure: P90 section

HPC requirements for one line (500 km) with 1039 soundings

- 8320 cpus
- 04:30:00 hours

5 lines inverted simultaneously with McMC: 41,600 cpus

One synclinal palaeovalley!

Different geophysics problems, same Julia interface

Julia Subtypes <: Different forward problems, same McMC interface

julia> typeof(aem)<:transD_GP.Operator</p> true

Under the McMC hood: Represent n_d earth properties with same equation

Regress images with McMC

I'm sure you recognize what you're looking at – these are 332 points sampled from a 293x262 image

Reconstructing an image using deep GP parameterisations (2-layer)

HiQGA.jl / examples / 2D / image_revBayes /

But we had started here ...

HiQGA.jl / examples / 2D / image_revBayes /

Using a 2-layer GP

With 200-300 GP nuclei, we can represent a 293x262 image = 76,766 pixels – a compression of ~300X

Geophysical Journal International, 2019, 2021

Bayesian inversion using nested trans-dimensional Gaussian

Anandaroop Ray®

https://academic.oup.com/gji/article/226/1/302/6189704

Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning

Anandaroop Ray⁶¹ and David Myer⁶² https://academic.oup.com/gji/article/217/3/1706/5366736

2D marine MT with a 1-layer GP parameterization, 2-layer would be better!

TransD-GP

https://academic.oup.com/gji/article-abstract/226/1/548/6188387

- 168 processors, 10 days, 1 000 000 samples
- 0.85 s per forward
- 10 frequencies, 7 sites
- 8424 cell inversion model
- Native Julia on Columbia University's Habanero cluster

Geophysical Journal International, 2021

Two-dimensional Bayesian inversion of magnetotelluric data using trans-dimensional Gaussian processes

Daniel Blatter⁶,¹ Anandaroop Ray⁶² and Kerry Key⁶¹

Last and often ignored: Distribute your code

~ ‡	2 Project.toml 🖸
. <u>†</u> .	@@ -39,6 +39,7 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
39	39 WriteVTK = "64499a7a-5c06-52f2-abe2-ccb03c286192"
40	40
41	41 [compat]
	42 + CSV = "0.10.9"
42	43 DataInterpolations = "3.6.1"
43	44 Distances = "0.10.7"
44	45 DistributedArrays = "0.6.6"
÷	@@ -61,4 +62,5 @@ PyPlot = "2.10.0"
61	62 Roots = "2.0.0"
62	63 SpecialFunctions = "1.6, 2"
63	64 StatsBase = "0.33.16"
	65 + WriteVTK = "1.18.0"
64	66 julia = "1.7"
2 comme	ents on commit dabf6e0
•	a2ray commented on dabf6e0 4 hours ago Member Author ····
	@JuliaRegistrator register
	JuliaRegistrator commented on dabf6e0 4 hours ago ····
	Registration pull request updated: JuliaRegistries/General/84120
	After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
	This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:
	git tag -a v0.3.6 -m " <description of="" version="">" dabf6e0da7a9ecce475b7597caa02c3af4813993 git push origin v0.3.6</description>
	©

Package management in Julia

Make your changes

Invoke the Julia **Registrator** bot on GitHub

Wait for the pull request to complete Users can then do:

○ (@v1.8) pkg> update HiQGA

To conclude

- Occam inversion models have low entropy
- Many geophysics priors should generally encourage low entropy
- Bayesian posteriors encourage rapid, probabilistic interpretation of geology
- A general Julia inversion framework with these ideas are at:
 - <u>https://github.com/GeoscienceAustralia/HiQGA.jl</u>
- Julia's type hierarchy makes it easy to *dispatch* generic optimizers or samplers to the right physics type
- Julia is just in time **compiled** and *fast ...* see <u>https://julialang.org/benchmarks/</u>
- Excellent numerical package libraries are available (FFTW, interpolations, Bessel etc.)
- Code reads like math and is easy to follow
- Do it all in Julia, no more Python prototyping → C++/Fortran/MPI production → Python visualization
- Avoid dealing with Makefiles et al. incremental recompilation massively boosts productivity
- Julia is excellent for prototyping to production and package distribution

Exploring for the Future

Get involved!

https://github.com/GeoscienceAustralia/HiQGA.jl

We welcome your contributions

Anandaroop.Ray@ga.gov.au

Exploring for the Future

Backup slides

Uncorrelated posterior realizations are unsatisfactory

Structure constrained realizations

Figure 4. A simple synthetic test model of radar wave speed *v*. Red crosses represents the 19 equally spaced sources while the blue crosses represents the 19 equally spaced receivers for the crosshole GPR experiment.

Geophysical Journal International, 2017

On structure-based priors in Bayesian geophysical inversion

G. de Pasquale and N. Linde

Why are effective parameterizations necessary?

Figure 7: Estimates of means (top) and standard deviations (bottom) for the 100-dimensional example, using random-walk Metropolis (left) and HMC (right). The 100 variables are labelled on the horizontal axes by the true standard deviaton of that variable. Estimates are on the vertical axes.

Handbook of McMC, 2011

MCMC using Hamiltonian dynamics

Radford M. Neal, University of Toronto

Gaussian Processes – naturally Bayesian

Rasmussen & Williams (2006) Ray & Myer 2019

Fitting a function using a Gaussian process mean

Ray & Myer 2019

Represent *N*_d functions with *same* equation

1D

2D

- 0.5

Gaussian process mean

Rasmussen & Williams (2006)

Now does this look like an earth property?

Transdimensional Gaussian processes (**TDGP**) Ray & Myer 2019

What we'll do different now: self parameterisation

Ordinary McMC	Change model parameters while sampling
trans-D McMC (and TDGP)	Add/delete parameters while sampling
Nested TDGP	Construct above parameters using <i>another</i> trans-D Gaussian process

$$\begin{split} \mathbf{C}_{\text{avg}} &= \frac{\mathbf{C}_i + \mathbf{C}_j}{2}.\\ k(\mathbf{y}_i, \mathbf{y}_j) &= |\mathbf{C}_i|^{\frac{1}{4}} |\mathbf{C}_j|^{\frac{1}{4}} |\mathbf{C}_{\text{avg}}|^{-\frac{1}{2}} R(\sqrt{Q_{ij}}), \end{split}$$

Ray 2021 Following Paciorek & Schervish 2003

2-layer Gaussian process

Ray 2021

To compute the misfit, we need μ_{*ns}

To compute μ_{*ns} we need μ_{*s}

Structure of changes in an update #2

Ray 2021

- Only propagate significant changes in μ_{*s} to μ_{*ns}
- KDTree searches for elements of $\theta_{ns}(+)$ "close" to $\theta_{s}(\bullet)$

