Low-noise Magnetic Field Measurements using Copper Permalloy Fluxgate Cores

B. Barry Narod¹, David Miles²

¹ University of British Columbia ² University of Iowa

What is permalloy, and why do we care?

- Permalloy originated in 1923 and is a ferromagnetic alloy of Nickel and Iron. Additional alloying elements have been added to improve magnetic performance, molybdenum, chromium or copper.
- Our particular interest lie in Permalloy's use in low-noise fluxgate magnetometer sensors, for use in earth sciences, such as magnetotelluric surveys, magnetic observatories or in space physics.
- At this time there is no long-term viable source of the lowest noise permalloy materials.
- Our present examination of Copper Permalloys may be thought of as a continuation of a copper Permalloy study undertaken by Siemens & Halske, which terminated in 1937. These results include the first ever tests of copper alloys in fluxgate sensors.
- Our new permalloys, new in both configurations and materials, should offer much improved performance compared with the now unavailable legacy devices.

A bit of history about our favored Infinetics S1000 series ring cores

A bit of history about our favored Infinetics S1000 series ring cores

Special Advisory LAST-EVER CHANCE to buy ---Magnetic Core S 1000C31-JC-2239-C ... (NAVSEA Ctrl No. 53771-6784-629-1) For low-noise, premium-level magnetometers... "...one last and final production run..." "...last-ever supply, up to 19 April, '96 end-date..." - M. Schwartz, 7 Mar 1996.

Two events now have moved us forward: 1) Figuring out the physics of magnetometer noise (2010)

Geosci. Instrum. Method. Data Syst., 3, 201–210, 2014 www.geosci-instrum-method-data-syst.net/3/201/2014/ doi:10.5194/gi-3-201-2014 © Author(s) 2014. CC Attribution 3.0 License.

The origin of noise and magnetic hysteresis in crystalline permalloy ring-core fluxgate sensors

B. B. Narod^{1,2}

¹Narod Geophysics Ltd., Vancouver, Canada ²Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada

Correspondence to: B. B. Narod (bnarod@eos.ubc.ca)

Received: 19 March 2014 – Published in Geosci. Instrum. Method. Data Syst. Discuss.: 19 June 2014 Revised: 17 August 2014 – Accepted: 26 August 2014 – Published: 29 September 2014

$$E_{\rm d} \propto t^{-1/2} \times \alpha \times B_{\rm s}^{3/2} \times K^{1/4}$$

magnetocrystalline and magnetoelastic anisotropies and saturation induction, are all optimum in the Fe–Ni–Mo system. In such polycrystalline permalloy fluxgate sensors, a sinA simplified domain energy model can then provide a predictive relation between ring-core magnetic properties and fluxgate sensor noise power. Four properties are predicted to

(8)

Stremme, 1974

The simplest grain:

Actual stripe domains in a 7.5mm single crystal, viewed on a polished, carefully oriented cut face. Note the complex collection of closure domains at the grain perimeter.

Geometry matters! Noise increases with free surface area

 $E_{\rm d} \propto t^{-1/2} \times \alpha \times B_{\rm s}^{3/2} \times K^{1/4}.$ Total magnetic anisotropy Saturation moment Crystalline alignment Foil thickness*

Domain wall volumetric energy density

*or crystal size, whichever is smaller

Two events now have moved us forward: 2) Discovering the potential of Cu-permalloys (2007)

At a S

Über Eisen-Nickel-Kupfer-Legierungen hoher Anfangspermeabilität

Von

Otto v. Auwers und Hans Neumann

Mit 20 Bildern

Mitteilung aus dem Zentrallaboratorium und der Abteilung für Elektrochemie des Wernerwerkes der Siemens & Halske A.-G. und dem Forschungslaboratorium Siemensstadt

Eingegangen am 25. März 1935

History of copper permalloys

•These composition Figures show the 130 Copper alloys made for the 1935 Siemens and Halske study (circles and crosses), and the 50 Copper alloys made for our present study (left, larger dots).

•The right Figure shows the initial permeability contoured data from the original study.

•The red dots mark the end points of the range we have tested up to today, concentrated on the high permeability ridge.

Original Figures from Otto v Auwers and Hans Neumann, 1935 "Über Eisen-Nickel-Kupfer-Legierungen hoher Angfangspermeabilitat" (On Iron-Nickel-Copper Alloys of high initial permeability), Springer

Materials results - compositions

- Nickel content is plotted vertically, increasing down in 1% increments.
- Copper content is plotted horizontally, increasing to the right in 1% increments.
- Red circles/text mark compositions for more extensive testing.
- Small numbers are Iron contents, as are color codes.

Ni	Cu>	> 2	8 2	29	30	31	32	33	34	35	36	37	38	3	9 40) 41	42	43	44	45	46	47	48	49	50	51
42																							10	9	8	7
43																						10	9	8	7	6
44	ا	The		10tc		a ta	ha n	ublia	hadi	n on	upo	omin	a	hmi	noion	to th					10	9	8	7	6	5
45			se c				be h		neu i	n an	upc	omin	y su		551011			50		10	9	8	7	6	5	4
46		Geo	opny	/SIC	ai ir	istru	Imen	tatio	n Jol	Jrnai	•								10	9	8	7	6	5	4	3
47																		10	9	8	7	6	5	4	3	2
48										17	16	15	14	1	3 12	2 11	L 10	9	8	7	6	5	4	3	2	1
49									17	16	15	14	13	1	21	1 10) 9	8	4449	6	5	4	3	2	1	0
50								17	16	15	14	13	12	1	1 10	0 9	4250	7	445	4550	4	3	2	1	0	
51							17	16	15	14	13	12	11	1	0 405 1	6	4251	6	445	ľ	3	2	1	0		
52						17	16	15	14	13	12	11	10		9 4052	2 7	4252	4352	4452	3	2	1	0			
53					17	16	15	14	13	12	11	10	3857		8 4053	4153	4253	4	4453	2	1	0				
54				17	16	15	14	13	12	11	3654	9	38: 4	3954	4 +054	ł	4254	3	2	1	0					
55		1	7	16	15	14	13	12	3455	10	3655	3755	385.		4055	5 4	1 3	2	1	0						
56		1	6	15	14	13	3256	11	3456	3556	3656	7	3856		5 4	4 3	3 2	1	0			*P:				
57		1	5	14	13	12	3257	3357	3457	8	3657	6	5	-	4 3	3 2	2 1	. 0					-)		
58		1	4	13 3	058	11	325 B	3358	458	7	6	5	4		3 2	2 1	L 0)						-		
59		285	9	12 3	059	3159	3255		7	6	5	4	3	_	2 :	1 ()				тп			ուղուլուղ	uluuluuli	
60		286	0	11 3	060	9	3260	7	6	5	4	3	2		1 ()									91 11	
61		286	1 296	51 3	061	8	7	6	5	4	3	2	1	-	0							Typic	al 30)g in	got	
62		286	2	9 3	062	7	6	5	4	3	2	1	0						_							
63		286	3	8	7	6	5	4	3	2	1	0						11	compo	sitions ir	n the o	riginal 1	935 Sie	emens	study	
64			8	7	6	5	4	3	2	1	0															
65			7	6	5	4	3		3% Fe	4% Fe	5% Fe	6% Fe	7% Fe	8% Fe	9% Fe	10%F	e 11% F	e 12% F	e 13% Fe	•						
66																				-						

Materials results - resistivity

Ni

42

43 44

45 46

47

48 49

50

51 52

53

54 55

56

57 58

59

60 61

62

63 64

65

66

- We present here resistivities as a function of Copper and Nickel contents.
- Red filled specimens are lower resistivity, and blue specimens are high resistivity.
- Resistivities for our Copper alloys are similar to those for more traditional Permalloys, with values increasing with both Cu and Ni contents. Higher resistivity reduces eddy current losses.

Cu	> 28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
																					10	9	8	7
			Resisti	ivities a	t 20C,	ohm-m	eters x	10^-7												10	9	8	7	6
																	_		10	9	8	7	6	5
	Thes	e da	ta ar	e to l	be p	ublis	hed i	in an	upco	omin	g sul	omis	sion	to th	e EG	SU		10	9	8	7	6	5	4
	Geor	hys	ical I	nstru	men	tatio	n Joi	urnal									10	9	8	7	6	5	4	3
l																10	9	8	7	6	5	4	3	2
								17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
							17	16	15	14	13	12	11	10	9	8	3.62	6	5	4	3	2	1	0
						17	16	15	14	13	12	11	10	9	**	7	3.93	4.30	4	3	2	1	5.0	
					17	16	15	14	13	12	11	10	3.15	8	3.78	6	4.24	4	3	2	1	0		
				17	16	15	14	13	12	11	10	9	**	7	4.04	4.54	4.55	3	2	1	0			
		. –	17	16	15	14	13	12	11	10	3.44	8	3.85	4.10	4.21	4	4.89	2	1	0				
		17	16	15	14	13	12	11	3.30	9	3.56	3.79	4.27	5	4.50	3	2	1	0					
	1/	16	15	14	13	12	2.99	2 2 4	3.60	3.67	3.72	6	4.22	4	3	2	1	0						
	16	15	14	13	2.99	2 1 2	3.40	3.34	2.99	/	4.00	5	4	3	2	1	0							
	15	14	3 08	12	3 3 1	3.13	3.50	8	5.00	5	5	4	3	2	1	0								
	2 86	13	2.93	3 27	3 22	J.22	3.37	6	5	2	4	2	2	1	U									
	3.08	11	3.21	9	3.66	7	, 6	5	4	7	2	1	0	0										
	3.16	3.19	3.45	8	7	, 6	۲ 5	4	3	2	1	4.8	Ű			**	data n	ot availa	ble					
	3.24	9	3.55	7	6	5	4	3	2	- 1	- 0					11	compo	sitions ir	n the or	iginal 1	935 Sie	emens	studv	
	3.48	8	7	6	5	4	3	2	1	0	-					5.0	resistiv	/itv data	from D	elatorre	e et al,	2003	,	
	8	7	6	5	4	3	2	1	0	-								,						
	7	6	5	4	3		>2.80	>3.00	>3.20	>3.40	>3.60	>3.80	>4.00	>4.20	>4.40	>4.60	>4.80							

Materials results – saturation induction

Ni

- Maximum saturation • moment is at 28%Cu.
- Minumum saturation ٠ moment is at 44-45%Cu.
- Test conditions: +/-1200 A/m 24Hz. Values are consistent with Auwers & Neumann (1935)
- Lower saturation ٠ moment reduces both power consumption and sensor noise.

	Cu>	> 28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	3 44	45	46	47	48	49	50	51
42																						10	9	8	7
43				Resist	ivities a	at 20C,	ohm-m	eters x	10^-7												10	9	8	7	6
44																		-		10	9	8	7	6	5
45		Thes	e da	ita ar	e to	be p	ublis	hed i	n an	upc	omin	g su	bmis	sion	to th	e EC	SU		10	9	8	7	6	5	4
46		Geor	bhvs	ical I	nstru	Imen	tatio	n Joi	urnal			•						10	9	8	7	6	5	4	3
47	L		J														10	9	8	7	6	5	4	3	2
48									17	16	15	14	13	12	11	10	ç	8	7	6	5	4	3	2	1
49								17	16	15	14	13	12	11	10	9	. 8	3.62	6	5	4	3	2	1	0
50							17	16	15	14	13	12	11	10	9	**	7	3.93	4.30	4	3	2	1	5.0	
51						17	16	15	14	13	12	11	10	3.15	8	3.78	e	4.24	4	3	2	1	0		
52					17	16	15	14	13	12	11	10	9	**	7	4.04	4.54	4.55	3	2	1	0			
53				17	16	15	14	13	12	11	10	3.44	8	3.85	4.10	4.21	4	4.89	2	1	0				
54			17	16	15	14	13	12	11	3.30	9	3.56	3.79	4.27	5	4.50	3	3 2	1	0					
55		17	16	15	14	13	12	2.99	10	3.60	3.67	3.72	6	4.22	4	3	2	2 1	0						
56		16	15	14	13	2.99	11	3.40	3.34	**	7	4.06	5	4	3	2	1	0							
57		15	14	13	12	3.11	3.13	3.56	8	3.88	6	5	4	3	2	1	C)							
58		14	13	3.08	11	3.31	3.22	3.57	7	6	5	4	3	2	1	0									
59		2.86	12	2.93	3.27	3.22	8	7	6	5	4	3	2	1	0										
60		3.08	11	3.21	9	3.66	7	6	5	4	3	2	1	0											
61		3.16	3.19	3.45	8	7	6	5	4	3	2	1	4.8				**	data r	ot availa	able					
62		3.24	9	3.55	7	6	5	4	3	2	1	0					11	compo	ositions i	n the or	iginal 1	.935 Sie	emens	study	
63		3.48	8	7	6	5	4	3	2	1	0						5.0	resisti	vity data	from D	elatorr	e et al,	2003		
64		8	7	6	5	4	3	2	1	0															
65		7	6	5	4	3		>2.80	>3.00	>3.20	>3.40	>3.60	>3.80	>4.00	>4.20	>4.40	>4.60) >4.80							
66																									

Materials results – Curie temperature (preliminary)

- We present here Curie temperature data for our four studied Copper alloys, and for 6%Moly' Permalloy.
- Interpreted Tc's are:
- 6Mo81 360C
- 28-60Cu >360C
- 33-58Cu 310C
- 39-54Cu 250C
- 45-50Cu 100C

Materials results – Curie temperature

- Five specimens:
 - 28Cu60Ni
 - 33Cu58Ni
 - 39Cu54Ni
 - 44Cu51Ni
 - 45Cu50Ni
- 44Cu53Ni was paramagnetic.

Ni	Cu>	> 28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
42																						10	9	8	7
43				Curie t	emper	ature, (0														10	9	8	7	6
44																		_		10	9	8	7	6	5
45		Thes	se da	ata ar	e to	be p	ublis	hed	in an	upco	omin	a su	bmis	sion	to th	e EC	SU		10	9	8	7	6	5	4
46		Geo	ohvs	ical I	nstri	' Imer	ntatio	n Jo	urnal			0						10	9	8	7	6	5	4	3
47	L	000	pingo	loai i			nu la la la		anna	•							10	9	8	7	6	5	4	3	2
48									17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
49								17	16	15	14	13	12	11	10	9	8	4449	6	5	4	3	2	1	0
50							17	16	15	14	13	12	11	10	9	4250	7	4450	100	4	3	2	1	0	
51						17	16	15	14	13	12	11	10	4051	8	4251	6	100	4	3	2	1	0		
52					17	16	15	14	13	12	11	10	9	4052	7	4252	4352	4452	3	2	1	0			
53				17	16	15	14	13	12	11	10	3853	8	4053	4153	4253	4	<20	2	1	0				
54			17	16	15	14	13	12	11	3654	9	3854	250	4054	5	4254	3	2	1	0					
55		17	16	15	14	13	12	3455	10	3655	3755	3855	e	4055	4	3	2	1	0						
56		16	15	14	13	3256	11	3456	3556	3656	7	3856	5	4	3	2	1	0							
57		15	14	13	12	3257	3357	3457	8	3657	6	5	4	3	2	1	0								
58		14	13	3058	11	3258	310	3458	7	6	5	4	3	2	1	0									
59		2859	12	3059	3159	3259	8	7	6	5	4	3	2	1	0										
60		>350	11	3060	9	3260	7	6	5	4	3	2	1	0											
61		2861	2961	3061	8	7	- 6	5	4	3	2	1	- c				<20	Curie te	emperat	ure, C					
62		2862	9	3062	7	6	5	4	3	2	1	0													
63		2863	8	7	6	5	4	3	2	1	0						11	compo	stions in	the ori	iginal 1	935 Sie	mens s	tudy	
64		8	7	6	5	4	3	2	1	0								-							
65		7	6	5	4	3																			
66																									

Materials results – initial permeability

- Test conditions:
- +/- 0.4 A/m,
- 250Hz
- Cells outlined in red are a selection of local high values for permeability, and local low values for coercivity (next slide). Both are indicators for better noise performance (Musmann, 2010).

	Cu:	> 28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
42																						10	9	8	7
43				Iniitial	relativ	e perm	eability	/, G/Oe													10	9	8	7	6
44																		•		10	9	8	7	6	5
45		Thes	se da	ita ar	e to	be pı	ublis	hed i	n an	upco	omin	g sul	omis	sion	to th	e EC	SU		10	9	8	7	6	5	4
46		Geor	ohvs	ical I	nstru	men	tatio	n Jou	urnal			-						10	9	8	7	6	5	4	3
47	L		,														10	9	8	7	6	5	4	3	2
48									17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
49								17	16	15	14	13	12	11	10	9	8	360	6	5	4	3	2	1	0
50							17	16	15	14	13	12	11	10	9	10	7	860	660	4	3	2	1	0	
51						17	16	15	14	13	12	11	10	600	8	480	6	3580	4	3	2	1	0		
52					17	16	15	14	13	12	11	10	9	**	7	2180	3920	3620	3	2	1	0			
53				17	16	15	14	13	12	11	10	840	8	3300	3500	3100	4	1	2	1	0				
54			17	16	15	14	13	12	11	1120	9	2400	1880	3620	5	2580	3	2	1	0					
55		17	16	15	14	13	12	1040	10	700	3840	2440	6	3240	4	3	2	1	0						
56		16	15	14	13	840	11	2700	3300	**	7	3120	5	4	3	2	1	0							
57		15	14	13	12	2580	2640	5400	8	3220	6	5	4	3	2	1	0								
58		14	13	1680	11	2440	2560	3920	7	6	5	4	3	2	1	0									
59		2140	12	2000	3900	5620	8	7	6	5	4	3	2	1	0										
60		4460	11	3900	9	4820	/	6	5	4	3	2		0			**	ير مغماد	-+	b 1.					
01		5220	6300	4500	8	/	6	5	4	3	2	1	0				1400				16::				
62		5200	9	3300		6	5	4	3	2	1	0					6200	initial		permea		من ما من			
64		5040	8		6	5	4	3	2	1	0						11		unuary II	nuicates	iginal 1		ues	ctudy	
65		8		6	5	4	3	-2400	2800	-3200	~3600	~4000	-4400	~4800	~5200	~5600	<6000			n the or	igilial 1	.555 316	mens	study	
66		/	0	5	4	3		~2700	2000	-3200	~3000	\TUUU	~++00	\T000	~3200	3000	20000	20000							

Material results – OHz coercivity

- Test conditions:
- +/- 50 A/m,
- 10Hz
- Cells outlined in red are a selection of local high values for permeability (previous slide), and local low values for coercivity.

i	Cu:	> 28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
42																						10	9	8	7
43				coerciv	vity, me	easured	at 10H	lz, A/m	1												10	9	8	7	6
44																				10	9	8	7	6	5
45		Thes	e da	ita ar	e to	be p	ublis	hed i	in an	upco	omin	a sul	bmis	sion	to th	e EC	SU	l L	10	9	8	7	6	5	4
46		Geor	ohvsi	ical I	nstri	ımen	tatio	n Joi	urnal	•		0						10	9	8	7	6	5	4	3
47	L	0001	Jilyo						annai	•							10	9	8	7	6	5	4	3	2
48									17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
49								17	16	15	14	13	12	11	10	9	8	13	6	5	4	3	2	1	0
50							17	16	15	14	13	12	11	10	9	35	7	9	4.5	4	3	2	1	0	
51						17	16	15	14	13	12	11	10	36	8	11	6	3.5	4	3	2	1	0		
52					17	16	15	14	13	12	11	10	9	**	7	6	3.5	2.5	3	2	1	0			
53				17	16	15	14	13	12	11	10	10.5	8	7	5.5	4.5	4	**	2	1	0				
54			17	16	15	14	13	12	11	13	9	8	6.5	5.5	5	4	3	2	1	0					
55		17	16	15	14	13	12	24.5	10	12.5	6.5	6.5	6	5	4	3	2	1	0						
56		16	15	14	- 13	19	11	9.5	8.5	**	7	6	5	4	3	2	1	0							
57		15	14	13	12	11.5	10	7	8	7	6	5	4	3	2	1	0								
58		14	13	13	11	10.5	7.5	7	7	6	5	4	3	2	1	0									
59		12	12	8	9.5	7	8	7	6	5	4	3	2	1	0										
60		10	11	8.5	9	8	7	6	5	4	3	2	1	0											
61		9	7.5	7.5	8	7	. 6	5	4	3	2	1	0				**	data no	t availal	ole					
62		7.5	9	7.5	7	6	5	4	3	2	1	0					6200	red bou	ndary ir	dicates	local l	nigh val	ues		
63		7.5	8	7	6	5	4	3	2	1	0						11	compos	tions in	the ori	ginal 1	935 Sie	mens s	study	
64		8	7	6	5	4	3	2	1	0															
65		7	6	5	4	3	2	<4	<5	<6	<7	<8	<9	<10	<11	<13	<15	>15							
66			•		-																				

Material results – initial permeability

Ni	Cu>	28	29	30	31	32	33	34	35	36	37	38	39	40	41	. 42	43	44	45	46	47	48	49	50	51
42																						10	9	8	7
43				Iniitial	relativ	e perm	eabilit	y, G/Oe	9												10	9	8	7	6
44																		-		10	9	8	7	6	5
45																			10	9	8	7	6	5	4
46		Thes	se dat	a are i	to be	publis	hed in	an up	comin	g sub	missic	on to tl	ne EG	SU				10	9	8	7	6	5	4	3
47		Geo	onysic	carins	trume	ntatio	n Jour	nal.									10	9	8	7	6	5	4	3	2
48									17	16	15	14	13	12	11	. 10	٥	8	7	6	5	4	3	2	1
49								17	16	15	14	13	12	11	10	9	8	360	6	5	4	3	2	1	0
50							17	16	15	14	13	12	11	10	9	10	7	860	6.0	4	3	2	1	0	
51						17	16	15	14	13	12	11	10	600	8	480	6	3580	4	3	2	1	0		
52					17	16	15	14	13	12	11	10	9	**	7	2180	3920	3620	3	2	1	0			
53				17	16	15	14	13	12	11	10	840	8	3300	3500	3100	4	1	2	1	0				
54			17	16	15	14	13	12	11	1120	9	2400	1880	3620	5	2580	3	2	1	0					
55		17	16	15	14	13	12	1040	10	700	3840	2440	6	3240	4	3	2	1	0						
56		16	15	14	13	840	11	2700	3300	**	7	3120	5	4	3	2	1	0							
57		15	14	13	12	2580	2640	5400	8	3220	6	5	4	3	2	. 1	0								
58		14	13	1680	11	2440	2560	3920	7	6	5	4	3	2	1	. 0									
59		2140	12	5140	3900	5620	8	7	6	5	4	3	2	1	0)									
60		4460	11	3900	9	4820	7	6	5	4	3	2	1	0											
61		3220	6300	4500	8	7	- 6	5	4	3	2	1	0				**	data no	ot availa	ble					
62		5280	9	5360	7	6	5	4	3	2	1	0					1400	initial r	elative p	permea	lbiity				
63		5040	8	7	6	5	4	3	2	1	0						6200	red bou	undary ir	ndicates	local h	nigh val	ues		
64		8	7	6	5	4	3	2	1	0							11	compo	sitions i	n the or	iginal 1	935 Sie	emens	study	
65		7	6	5	4	3		<2400	<2800	<3200	<3600	<4000	<4400	<4800	<5200	<5600	<6000	>6000							
66			-		-																				

Material results – OHz coercivity detail

OHz coercivity detail

¹⁵ A/m/div

Fluxgate performance: Racetrack Test Cores

- Test cores manufactured in racetrack geometry
- Permalloy washers are heat-treated and then stacked with interleaved Kapton
- High repeatability and yield compared to standard 1" ring-core

David M. Miles and others, Geosci. Instrum. Method. Data Syst., 11, 111–126, 2022 https://doi.org/10.5194/gi-11-111-2022

Fluxgate performance - Fluxgate Power/Noise

Experiment:

- Alloy sweep from 28 to 45% Cu
- 6-81 Mo used as a control
- All cores used 3 layers of permalloy
- QTY 3 cores for each alloy

Results:

- Noise in Power Spectral Density improves at all frequencies as %Cu increases
- Power consumption generally decreases as %Cu increases
- Cu permalloy outperforms 6-81 Mo in all metrics.

Fluxgate performance - Fluxgate Power/Noise

Experiment:

- Detail study of 45%Cu50%Ni
- 6-81 Mo used as a control
- All cores used 6 layers of permalloy

Results:

- Noise in Power Spectral Density [PSD] at 1Hz is 5 pT/rtHz [most likely]
- Noise PSD at 0.1 Hz is 8 pT/rtHz [most likely]
- Typical performance is well within INTERMAGNET 1 second standard

Tesseract sensor design

- 3 axis symmetric sensor design incorporating six racetrack cores
- 50 x 50 x 50 mm cube
- Merritt style feedback coil, requiring about 30 mW power
- Two racetrack cores per axis with an expected 3 dB further noise improvement with six cores
- Nov 20, 2022, two sensors flew successfully on ACES-II sounding rocket, reaching 188 km altitude.

Kenton Greene and others, Geosci. Instrum. Method. Data Syst., 11, 307–321, 2022 https://doi.org/10.5194/gi-11-307-2022

- Copper permalloy compares favorably to traditional 6-81 Mo in noise and power consumption for use in fluxgate magnetometers
- Potential for future optimization within the Molybdenum alloy range
- Current work enables cores that meet the recent INTERMAGNET requirement <10 pT/VHz @ 0.1 Hz and further improvements are likely

This work is funded in part by:

- MAGnetometers for Innovation and Capability (MAGIC) Technical Demonstration 80GSFC18C0008
- CHIMERA: A hybrid search coil and fluxgate magnetometer for small spacecraft missions 18-HTIDS18_2-0010

History of permalloys: Why were Cu permalloys forgotten?

•In the USA the first Permalloys were invented by G. Elmen. These included 4% Moly' Permalloy.

•Parallel developments occurred in the UK and in Germany

•By 1937 all work on Copper alloys had stopped.

•By 1969 all work on Moly' alloys for fluxgates had also stopped. 6% Moly' alloys became the preferred material. **USA** [BELL LABS, NOL]

EUROPE [SIEMENS & HALSKE]

Patented June 1, 1926.

UNITED STATES PATENT OFFICE.

GUSTAF W. ELMEN, OF LEONIA, NEW JERSEY, ASSIGNOR TO WESTERN ELECTRIC COM-PANY, INCORPORATED OF NEW YORK, N. Y., A CORPORATION OF NEW YORK.

MAGNETIC MATERIAL.

Application filed May 31, 1921. Serial No. 473,877.

This invention relates to the production Silicon steel exhibits magnetic qualities . ing certain desirable magnetic qualities, but its employment is limited by its comamong which are high magnetic perme- parative brittleness and the difficulty of 5 ability, especially at low magnetizing working it. A good quality of soft iron forces, and low hysteresis loss. It is one has been commonly employed as the best loading material for signaling conductors tive electromagnets. The principal possible to increase their range and speed of opera- rivals of iron, nickel and cobalt, are far be-10 tion. Another object relates to applying low it in permeability at the magnetizing this loading material to a conductive core forces involved in such apparatus. With transmission line for long range, high speed Heusler's alloy of aluminum, manganese, signaling. These objects and other objects and copper. It has been found that a com-15 will become apparent on consideration of position of about 2/3 nickel and 1/3 copper, examples of practice thereunder which will when tested at low magnetizing forces, gives with the understanding that the definition alone. It will be seen that with the excepof the invention will be given in the ap- tion of aluminum, all these metals stand 20 pended claims.

July 24, 1916.

and use of a new material or substance hav- superior to ordinary iron in some respects, 55 object of this invention to provide a suitable magnetic medium for general use for trac- 60 in a manner to produce a highly efficient nickel and cobalt, in this respect, stands 65 be disclosed specifically in this specification, a permeability higher than that of iron 70 close together in their atomic weights and This application is in part a continuation atomic numbers and in this specification the of application, Serial No. 111,080, filed five elements, manganese, iron, cobalt, nickel 75 uly 24, 1916. and copper, having the consecutive atomic

1,586.884

1.586.884 June 1, 1926. G. W. ELMEN MAGNETIC MATERIAL 2 Sheets-Sheet 1 Filed May 31 , 1921 Fig.I. -1g.J. Fig.4. Fig.g. Inventor

UNITED STATES PATENT OFFICE.

WILLOUGHBY STATHAM SMITH, OF BENCHAMS, NEWTON POPPLEFORD, AND HENRY JOSEPH GARNETT, OF SEVEN OAKS, ENGLAND.

MAGNETIC ALLOY.

No Drawing. Original application filed January 10, 1924, Serial No. 685,432. Divided and this application filed May 2, 1925. Serial No. 27,593.

To all whom it may concern:

STATHAM SMITH, a subject of the King of more easy to forge. Great Britain, residing at Benchams, New-5 ton Poppleford, Devonshire, England, and HENRY JOSEPH GARNETT, a subject of the King of Great Britain, residing at Lymne, Solefields, Seven Oaks, Kent, England, have invented a new and useful Improvement in 10 Magnetic Alloys, of which the following is

a specification.

This application is a division of our application Ser. No. 685,432, filed January 10. 1924.

15 This invention relates to the production 70 of alloys possessing a high magnetic permeability especially at low magnetizing forces.

It is well known that it is desirable to add 20 inductance to telegraphic and telephonic cables and this has before been done by wrapping around the core of the cable an iron tape or wire.

Many research workers have been inves-25 tigating the properties of various alloys, especially those of nickel and iron, with a to discovering an allow that should be

We also preferably include a small 50 Be it known that we, WILLOUGHBY amount of manganese to render the alloy

The following are examples of alloys made in accordance with our invention

No. 1.

An alloy consisting of:----

	rer cent.
Nickel	74.0
Iron	20.0 60
Copper	5.3
Manganese	0.7
as an initial magnetic perm	eability of
000.	

No. 2.

An alloy consisting of:-

Per cent. Nickel 73.0 Copper _____ 5.4 70 Iron _____ 20.7 Tungsten _____ 0.6 Manganese _____ 0.3 has an electrical resistance of 25 microhms per cubic centimetre and an initial magnetic 75 permeability of 6600.

65

55

ATM Archiv für Technisches Messen

Z 913-3 November 1932

T 173 Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 8/6/15 1:23 AM

GEORG KEINATH, 1932 Cr & Mo molybdenum permalloy

Mißhandlung vermindert. Allen diesen ternären Legierungen ist eigen, daß ihr Sättigungswert niedriger liegt. Eine Anzahl (Mumetall, die Nickel-Eisen-Manganlegierungen nach Gumlich) sind bereits in Z 913—1 erwähnt worden. Neue Ergebnisse liegen von Elmen⁶ vor über die Eigenschaften von Permalloy, bei dem ein Teil des Eisens (normal 21 5%) durch Chrom oder der Temperatur. Ohne Molybdänzusatz liegt der Curiepunkt, wo das Material unmagnetisch wird, bei 580° C, nachdem vorher bei etwa 450° C ein starkes Anwachsen der Permeabilität stattfand. Für 10% Mo liegt der

Bild 6. Permeabilität von Mo-Permalloy in Abhängigkeit von der Temperatur.

Im folgenden werden ausführliche Angaben über eine neue hochpermeable Eisen-Nickel-Kupfer-Molybdän-Legierung von Siemens & Halske (Nr. 1040) mitgeteilt. Diese Legierung, die z. Z. die höchsten Werte der Anfangspermeabilität (u....40000) besitzt, hat zwar eine gewisse Ähnlichkeit mit dem Mu-Metall (ATM Z 913-2), unterscheidet sich aber von ihm durch ihren niedrigeren Nickelgehalt, den Zusatz von Molybdän und den dreifach höheren Kupfergehalt. Dieser ist so hoch (14%), daß hohe Werte der Anfangspermeabilität nach den bisherigen Erfahrungen dabei nicht mehr zu erwarten waren. "1040" besteht aus etwa 72% Ni. 11% Fe, 14% Cu, 3% Mo und ist gut walzbar; das spez. Gewicht ist 8,76, der spez. Widerstand 0,56. Die in den Bildern 1...10 gegebenen magnetischen Werte wurden an 0,35 mm starken Ringen von 60 mm Außen-

und 45 mm Innendurchmesser gemessen. Gegenüber den höchsten magnetischen Werten des Mu-Metalls, der bisher besten Legierung für kleine Induktionen, wurden Anfangspermeabilität, Koerzitivkraft und Hysteresisverluste um den Faktor 2 ... 3 verbessert. Die hohe Anfangspermeabilität der Legierung hängt zusammen mit ihrer niedrigen Magnetostriktion, die um eine Größenordnung tiefer liegt als beim Permalloy und etwa 5×10^{-7} beträgt. Die Hysteresisverluste (Bild 4) sind so gering, daß sie bei 0,35 mm Blech nur 25% der Gesamtverluste ausmachen, wie aus der für die Wirbelstromverluste typischen elliptischen Schleifenform (Bild 5) hervorgeht.

Die Alterungsbeständigkeit ist sehr hoch, eine 600 stündige Erwärmung auf 100°C hat keinen nachweisbaren Einfluß auf die magnetischen Werte.

History of permalloys: Why were Cu permalloys forgotten?

•In the USA the first Permalloys were invented by G. Elmen. These included 4% Moly' Permalloy.

•Parallel developments occurred in the UK and in Germany

•By 1937 all work on Copper alloys had stopped.

•By 1969 all work on Moly' alloys for fluxgates had also stopped. 6% Moly' alloys became the preferred material. **USA** [BELL LABS, NOL]

EUROPE [SIEMENS & HALSKE]

Future work – Moly permalloys

- Additional historical examinations have found that Moly' permalloys lack a similar study of high Mo content alloys, a deficit which we intend to correct.
- The red oval indicates our expected region of interest.
- The red star locates the well known 6%Mo permalloy composition.

I.M. Puzey, 1962, A New Range of Compositions in the Highpermeability Alloys on the System Fe-Ni-Mo. Fiz. Metal. Metalloved., 14, No. 3, 347-377