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       The results of the inversion of the COPROD2 magnetotelluric data set are presented using 
    two implementations of the AIM inverse method. The two algorithms invert magnetotelluric 

    data over 2D conductivity structures. Both algorithms use an approximate inverse mapping 
   based on approximate sensitivities that arise from the 1D conductivity profile beneath each 
    station; this avoids the large computations normally required to approximate the exact inverse 

   mapping, for example, by using the full 2D Jacobian. The primary difference between the 
   algorithms is that the first algorithm minimizes the li norm of the data misfit with regularization 
   provided by minimizing the 11 norm of the conductivity. This problem is solved with standard 

    linear programming techniques. The second algorithm uses the 12 norm in place of the li norm 
    and is solved using a subspace approach., Both algorithms produce models with predicted data 

   in satisfactory agreement with the COPROD2 data. The difference between the final models 
    is evidence of the well known nonuniqueness in geophysical inverse problems; the similarities of 
   the final models give a suggestion of that which might be common to all models which fit the 

   data. 

 1. Introduction 

   Over the past four years the COPROD2 magnetotelluric (MT) data set (JONES and SAVAGE, 
1986; JONES, 1988) has become the de facto standard test for 2D MT inversion programs for sev-
eral reasons. First, it traverses the North American Central Plains (NACP) anomaly which, being 
essentially two dimensional, makes it ideal for quantitative analysis via 2D inversion. Second, the 
data have been "preprocessed" to some extent by the removal of static shift effects, and third, this 
data set has been inverted by at least two other MT inversion algorithms: Occam (DEGROOT-
HEDLIN and CONSTABLE, 1990) and RRI (SMITH and BOOKER, 1991). Consequently, inversion of 
the COPROD2 data set using the Approximate Inverse Mapping (AIM) technique (OLDENBURG 
and ELLIS, 1991) will be doubly beneficial: not only might more geophysical constraints be placed 
on the intriguing NACP anomaly, but a comparison of inversion algorithms will also be possible. 

   In this paper, we present the results of the inversion of the COPROD2 MT data using 
two implementations of the AIM inverse method. Both algorithms use an approximate inverse 
mapping based on approximate sensitivities generated from the 1D conductivity profile beneath 
each station. This avoids the large computations normally required to approximate the exact 
inverse mapping, for example, by using the full 2D Jacobian matrix. Here we give only a brief 
overview of the AIM method per se, and refer the interested reader to OLDENBURG and ELLIS 
(1991). The primary difference between the two implementations is that the first algorithm 
minimizes the l1 norm of the data misfit with regularization provided by minimizing the li norm 
of the conductivity. This is solved by linear programming techniques. The second algorithm 
uses the 12 norm in place of the 11 norm and is solved using the subspace approach. Here 
also we will present only a brief overview of the subspace approach and refer the reader to the 
literature (KENNETT and WILLIAMSON, 1988; OLDENBURG and ELLIS, 1993). We show that both 
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algorithms produce models with predicted data in satisfactory agreement with the COPROD2 
data. 

   It is well known that geophysical inverse problems are ill-posed. In particular, there are 
usually infinitely many models that give rise to predicted data, which, when compared to the 
observed data, provide satisfactory agreement. Consequently, the result of any single inversion 
cannot be relied upon to represent the true earth. It is necessary to explore the class of models 
which "fit the data" before any meaningful conclusion can be reached. In this vein, the 11 and 
12 AIM implementations produce significantly different models. The difference between the final 
models is evidence of nonuniqueness; the similarities of the final models gives a suggestion of the 
features that might be common to all the models which "fit the data" and hence which might 
represent the true Earth. 

 2. Inversion Algorithms 

   Great flexibility exists in setting up any inverse problem. We begin by presenting details 
about our choices for: (1) forward modelling, (2) data, (3) model parameterization and (4) 
sensitivities. These items are the same for both algorithms. Explicit details about the model 
norm to be minimized and the method of solution will be given after these four items have been 
considered. 

   (1) For the forward mapping, the 2D conductivity model is first divided up into rectangular 
elements. The model is partitioned into ny horizontal cells and nz vertical cells and the 2D 
conductivity Q(y, z) is partitioned into an nz x ny array aij, i = 1, ... , nz7 j = 1, ... , ny. The 
thickness of the cells increases (usually logarithmically) with depth. Lateral partitioning in the 
survey region is dictated by the observation locations which are specified to be at the center 
of each surface cell. This grid is terminated laterally by uniform layers and below by prisms 
elongated with depth. The conductivity is assumed to be constant in each cell and the 2D MT 
responses are computed using a transmission surface modelling code (MADDEN, 1972). 

    (2) TE or TM impedances at ny observation sites and at n f frequencies can be inverted 
individually, jointly, or as determinant averages. Determinant average impedances are generated 
by 

                           Zdet = (ZxxZyy - ZxyZyx)112 (1) 

(BERDICHEVSKY and DIMITRIEV, 1976, p. 208). When data are provided in the form of apparent 
resistivity and phase we transform these to the response 

                  Rjl = LQE(yj, 0,w) j = 1,...,ny; l = 1,...,nf (2) 
                     (y~ ) 

where E and H are the electric and magnetic field strengths measured at the jth station located 
at yj and with angular frequency wl. We choose as data the amplitude and phase of Rjl. Errors in 
the observations are converted by numerical simulation assuming that these errors are Gaussian , 
unbiased and independent. 

   (3) For the 2D MT inverse problem we choose In(a) as the "model". We let mij, i = 
1, ..., nz; j = 1, ... , ny denote the cellularized array of ln(aij) values. This cellular parameteri-
zation is the same as that used for the forward modelling. 

   (4) Following OLDENBURG and ELLIS (1991), we begin by defining the exact forward mapping 
F to be that which maps the conductivity model into the data response, 

                         F : m(y, z) -* R(y; w). (3)
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Linearizing, in the z direction, about a model m(n) yields 

                       00   F[m, w] (y=yo = F[m(r'"); .]I y=yo + fo 91D [m(n); yo, z, w] (m(yo, z) - m(n) (yo, z))dz + ... (4) 
0 where giD is the 1D kernel function associated with the conductivity v(y, z) at model offset 

y = yo and the superscript denotes the nth iteration. The form of 91D for the amplitude and 
phase responses used here is given by, OLDENBURG (1979, Eq. 7) 

2 

                 91D [m(n); yo, z, w] = loa(n) (yo, z) E(yo, z, w ) (5)                                            E(
yo, 0, w 

where E(yo, z, w) is the electric field strength at the point (yo, z). In the simplest approximation 
E(yo, z, w) is taken to be the E field in a 1D earth with conductivity a(yo, z). This assumes 
that the E field in the 2D conductivity structure differs only slightly from that in a purely 1D 
model with conductivity o(z) = a(yo, z). The positive attributes and limitations of using these 
sensitivities are illustrated in OLDENBURG and ELLIS (1993). A better approximation to the 
sensitivities is that of SMITH and BOOKER (1991) in which it is recognized that the E field may 
show a significantly different z-dependence from the field in the 1D model given by u(yo, z). But 
these improved sensitivities now assume that the horizontal derivatives of the E field in the 2D 
model conductivity structure are small. This second form of the approximate sensitivities is also 
given by Eq. (5) but with the E field calculated from the 2D model conductivity structure. It 
should be noted that the first form of the approximate sensitivities based on the E field in the 
1D model is the same for both the TE and TM modes. 

 3. AIM-DS 11 Norm Inversion Algorithm 

   The basic AIM-DS equation (OLDENBURG and ELLIS, 1991) is 

                   _F[m(n+l)] = dubs + ~[m(n)] - .F[m(n)], (6) 

where F denotes a true forward mapping, F denotes an approximate forward mapping, and d°bs 
denotes the data to be inverted. Defining the approximate forward mapping by keeping only the 
first two terms in Eq. (4) yields 

     y[m; w] jy=yo = F[m(n); w] l y=yo + f 91D [m(n); yo, z, w] (m(yo, z) - m(n) (yo, z))dz, (7) 
and substituting into Eq. (6) yields 

  91D [m(n); yo, z, w]m(n+l) (z)dz = dabs (yo, w) -d(n) (yo)w)+ f 91D [M(n) ; yo, z, w]m(n) (z) dz. (8) f 
Discretizing this equation produces 

        nz nz 

        Aijkm(n +i) = d~ks - d~k) + AijkMZ) = Bjk ~ = 1, ... , ny, k = 1, ... , 2n f                                                   (9) 

where Aijk is the integral of the kth 1D kernel function giD at model offset yj over the ith depth 
partition.
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   At this stage the inverse problem has been reduced to the solution of a set of simultaneous 
equations. Under usual circumstances the matrix A is poorly conditioned and must be regularized 
before a meaningful solution is obtained. A measure of the misfit between the predicted data and 
the observed data can be defined by Od, 

                                       ny 2n f nz (n+1) 

                         Od = A27kma7 E
jk - B3k (10) 

                            j k i 

where Ejk is the standard deviation of the datum Res. Regularization of the inverse problem can 
be achieved by defining a model norm objective function, 

     4bm = ,Q f d dydz + 'y f dm dydz 

y 

                      nx ny-1 n,z-1 ny (11) 
                AZ, ~m% +1) - m~ +1) + ry Ayj ~m~+1 ~) - m~ ~+1) I. 

The inverse problem is solved by minimizing the objective function, 

                            0 _ Om + MOd• (12) 

The parameters /3 and -y control the relative weighting of the x and z variations and are fixed 
for each inversion. The Lagrange multiplier p is generally sought by trial and error so that the 
final misfit achieves a target value consistent with the errors associated with the data. However, 
rather than start with this final value of p, a schedule of p values is found to be desirable. This 
schedule is a monotonically increasing sequence which asymptotes to a constant. The increasing 
nature of p prevents unnecessary roughness being accumulated in the model at intermediate 
steps. Although this approach has the possible disadvantage that a non-optimum sequence of 
µ's may be selected, the major advantage is that only one forward modelling need be carried 
out per iteration. This may be compared to the approach where a schedule of target misfits is 
chosen and then a line search performed to find the corresponding Lagrange multiplier µ at each 
iteration. Of course, with this second approach there is the possible disadvantage that a non-
optimum sequence of target misfits may be selected with the associated non-optimum number 
of line searches. Although the best approach is somewhat model dependent, we find, in general, 
that the computational savings associated with a simple schedule of u values can be substantial 
because line searches typically involve 3 to 8 forward modellings. 
   The use of the 11 norm requires the definition of an appropriate misfit measure. Here we 
follow PARKER and MCNuTT (1980) and define 

                                                     _ R(n)                                     1 2nf ny Robs                                             k ak XN = 2n 
fny 2 k j Ejk (13) 

Note that E[XN] = 1. 
   The problem of minimizing (12) is solved using linear programming (LP) techniques. Here, 
we simply note that minimization of an 11 model norm gives rise to models with large regions of 
constant conductivity, i.e., block type models, and the use of an 11 data norm provides robustness 
in the presence of noise on the data. These two characteristics of the 11 norm are well suited to 
inverting MT data with static shift effects.
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 4. AIM-MS 12 Norm Inversion Algorithm 

   The blockiness of models produced by the ll norm inversion may be a desirable characteristic 
for some earth geologies, but other geological environments might be better emulated by smoother 
models. Correspondingly, we present an algorithm that minimizes the 12 norm of the conductivity 
model. In this algorithm, we incorporate a reference model in the objective function so that 
structure is minimized with respect to this reference model. 

   In the 11 norm inversion the model is found by explicitly solving for the conductivity in each 
cell. Effectively, each cell is a basis element in model space and finding values of the conductivities 
requires solving a large matrix system. This is quite efficient for the sparse LP solver XMP 
(MARSTEN, 1981) given the size of problem considered in this paper. The 12 norm inversion 
however requires the solution of an M x M system of equations where M is the number of cells 
in the model. This computation can become prohibitive as the number of cells increases. To 
obviate this difficulty, we appeal to a generalized subspace methodology. We adopt the formalism 
outlined in OLDENBURG et al. (1993) but present only the essence of the calculation here. 
   The basic AIM-MS equation is 

                      m(n+1) = m(n) +.~-1 [dobs] -,~-1.T[m(n)] (14) 

where denotes an approximate inverse mapping defined such that Ze where Ze is 
the identity operator in data space. Equation (14) can be rewritten: 

                   Sm(n) = m(n+1) - m(n) = -1 [dobs] - -1 [d(n)]. (15) 

After discretizing, Eq. (15) becomes schematically 

                 Sm2~) = A-ijk ' d~ks - A~ ' d~k) i - 1, ... In, (16) 

where AZjk is the integral of the kth 1D kernel function g1D at model offset yj over the ith depth 

partition and A-1 is the inverse of the matrix A. 
   As before, the inverse problem has been reduced to the solution of a set of simultaneous 
equations involving a poorly conditioned matrix A. We proceed in the usual manner by defining 
a data misfit objective function, (pd, and a model norm objective function, gym. We define the 
data misfit objective function, 

                                          ny 2nf dobs - d k 2 
                     Od - E y 9k E

jk (17)                             j k 

Assuming the measurement errors Ejk arise from Gaussian random noise, the expected value for 
cbd is 2n fny. 
   Our choice for the model norm 0.. is guided by a desire to find a model which has minimum 

energy in the vertical and horizontal directions and at the same time is close to a reference model 
mo. To accomplish this we minimize a discrete approximation to 

  4'm = a{sws(m - mo)2 + aywy (O(m_mo))2 + azwx (0(m_mo))2} d dz. (18)     f ay az 
The parameters as, ay and az, which are fixed for each inversion, control the relative weighting 
of the smallest model component and the y and z variations. The weighting functions ws (y, z),
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Wy (y, z) and wz (y, z) provide additional flexibility to control the characteristics of the final model. 
The model norm used in the inversion is therefore 

                       0m = IIWm(m - mo)II2 (19) 

where the weighting matrix W,,,, is determined from a,s, ay and az, and from w, (y, z), wy(y, z) 
and wz (y, z). 
   The total objective function to be minimized is then 

                             Y'=Y'm+P(4'd-Od) (20) 

where t is again a Lagrange multiplier and 0d is some target misfit consistent with the errors 
associated with the observations. A schedule of the target 0d values at each iteration is found 
to be desirable. This schedule is a monotonically decreasing sequence which asymptotes to the 
desired misfit. The process prevents unnecessary roughness being accumulated in the model at 
early and intermediate steps. A line search is required at each iteration to find the Lagrange 
multiplier u corresponding to the value of cd sought at that particular iteration. 

   In a subspace approach to the solution of Eq. (20), the model perturbation Sm is restricted 
to lie in a q-dimensional subspace (q << M) which is spanned by the vectors {vr : r = 1, q}. The 
model perturbation can be written as 

q 
                            6m = E arVr = V a (21) 
                                              r=1 

and is therefore specified once the parameters ar are determined. 
   The subspace equations are generated by substituting (21) into (20) and differentiating with 

respect to ar: 

          VT(WmWm + / ATA)Va = -/,~VTAT6d - VTWnT,Wm(m - mo). (22) 

At each iteration a line search over possible values of µ is performed to find the value of p so 
that, after Eq. (22) is solved for a, the corresponding model gives rise to a value of Od equal 
to the value of qd required for that iteration. Convergence is reached when the data misfit is 
satisfactory and the model norm is minimized. 
   The success of the subspace methodology depends strongly upon the choice of basis vectors. 
In OLDENBURG et al. (1993) considerable success was achieved by subdividing the misfit objective 
function and using steepest descent vectors associated with each subdivision of the data. Here 
we segment the data misfit objective function according to frequency, amplitude and phase. The 
rt' search vector becomes 

                          ny (Rqas -R (n) 2 
                            Wm)_l Vm 7r ,fir r = 1, ... , 2n f (23)             Vr = (WT                 M E 

                                          Ejr                                           j =1 

where each datum in the summation is an amplitude (or phase) at a single frequency, and Vm 
represents the gradient with respect to the model m. Every inversion carried out contains these 
vectors, as well as the constant vector and (WT,Wm)-1Vm0M = m(n) - m0, which is the 
steepest descent vector associated with the model objective function. In addition, we also segment 
the model norm objective function and form steepest descent vectors from each of these minor 
objective functions. The segmentation is invoked by choosing a rectangular region of the model 
and subdividing this region into smaller groups. The projection of (m(n) - mo) onto any group of
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cells provides a new search direction. The rectangular region can be the entire model or a smaller 
portion of particular interest. In the initial iterations we have used each row of cells to make a 
basis vector, and have also subdivided the entire model into groupings of n x n cells where n is 
typically 5. At later iterations, when features of interest have appeared, we have centered the 
rectangle over these features to see if structure is enhanced or attenuated in a subsequent iteration. 
This process can be both interactive and dynamic. The attractive aspect of the dynamic use of 
additional search vectors is that in the subspace inversion only a model perturbation is sought. 
At worst, a poor choice of vectors produces little benefit. 

 5. COPROD2 Data Set 11 Norm Inversion 

   We now invert a subset of the COPROD2 data set provided by A. G. Jones. These data were 
collected along an east-west traverse in Southern Saskatchewan and Manitoba in Canada. There 
are 35 stations with spacings of approximately 10 km. The data have been analysed by JONES 
and SAVAGE (1986) and JONES (1988) and have been distributed as test data for 2D inversion 
algorithms. We now present the results of the application of the AIM 11 inversion to a subset of 
the COPROD2 data. The subset chosen consists of the data at all 35 stations and at the 8 periods: 
5.3, 10.7, 21.3, 42.9, 85.5, 170.6, 341.3, and 684.9 seconds. From this subset we have extracted 
both the TE mode and TM mode data to form a joint data set. Following DEGROOT-HEDLIN 
and CONSTABLE (1990) we attribute minimum errors of ±10% to the apparent resistivities and 
±5 degrees to the phases. 

   In order to generate a starting model for the inversion the COPROD2 data were converted 
to determinant data, Eq. (1) and inverted (OLDENBURG and ELLIS, 1993) using 1D sensitivities, 
Eq. (5) with the E(yo, z) field derived from a one dimensional earth under each site. This produced 
the starting model shown in Fig. la and the fit to the observed determinant average data shown 
on Fig. 2a. 

   A first attempt was made to jointly invert the TE and TM mode COPROD2 data using an 
approximate inverse mapping based on 1D sensitivities, Eq. (5) with the E(yo, z) field derived 
from a one dimensional earth under each site. However a satisfactory inversion result could only 

be achieved when the approximate inverse mapping was based on the 1D sensitivities, Eq. (5) 
with the 2D E(yo, z) field derived from a two dimensional earth under each site. Using the 1D 
E fields resulted in extremely poor convergence. The result of the successful inversion of the 
joint TE and TM mode data (,3 : •y = 1 : 1) is shown in Fig. lb and the observed and predicted 
data are shown in Fig. 2b. The predicted data have a normalized misfit Xrr = 1.15. We were 
unable to reduce the misfit to Xiv = 1 without increasing the number of cells in the model. Even 
at the Xiv = 1.15 misfit level, the NACP anomaly is clearly resolved into three conductors at 
a depth of 20 km and dipping to the west. The TOBE anomaly is clearly resolved as a strong 
conductor at 10 km depth. These results confirm, in a general sense, the finding of,other workers 
(DEGROOT-HEDLIN and CONSTABLE, 1990) who have inverted this data set. 

 6. COPROD2 Data Set 12 Norm Inversion 

   The AIM 12 norm inversion described in Section 4 was then used to invert the same subset 
of the COPROD2 data set described in Section 5 above. The result of inverting the determinant 
averaged data with the 12 norm inversion is shown in Fig. 1c. This model gave predicted data 
shown in Fig. 3a and was used as the starting model for the 12 norm joint inversion. 
   As with the l1 norm inversion, an attempt was made to invert the joint TE and TM mode 
data set using the 1D approximate sensitivities defined in Eq. (5). Using these sensitivities, the 
algorithm did a poor job of reproducing the significant differences between the TE and TM mode 
responses that can be seen in the COPROD2 data. This failure is not surprising since the 1D
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Fig. 2. Panels (a) and (b) are the observed data (points with error bars) and the predicted data (curves) obtained 
   with the models produced by the 11 inversion of the COPROD2 (a) determinant data and (b) joint TE (solid) 
   and TM (dashed) mode data.



 1010 R. G. ELLIS et al. 

           COPROD2 12 Subspace Joint Inversion : Starting model. 
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Fig. 3. Panels (a) and (b) are the observed data (points with error bars) and the predicted data (curves) obtained 
   with the models produced by the 12 inversion of the COPROD2 (a) determinant data and (b) joint TE (solid) 

   and TM (dashed) mode data.
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approximate sensitivities in Eq. (5), which use the E(yo, z) field calculated for a 1D earth below 
each site, are identical for both the TE and TM modes, whereas the COPROD2 TE and TM 
data have very different structure. 
   The COPROD2 joint TE and TM mode data set was then inverted using the modified 
sensitivities described at the end of Section 2 which make use of the E and H fields calculated 
from the 2D conductivity structure. The resulting model is shown in Fig. ld and the predicted 
data in Fig. 3b. The value of the normalized x2 misfit for this model was xN = 2.5. For the initial 
iterations, the model was divided up into large-scale features, such as rows, columns or 5 x 5 blocks 
of cells. These provided additional basis vectors onto which (m(') - mo) could be projected to 
produce new search directions. Later in the inversion process, once features associated with the 
NACP and TOBE anomalies began to appear, smaller groupings of cells (e.g., 2 x 2, 3 x 1, 1 x 
1) were used over the extent of these features in order to improve resolution. 
   The value of misfit for the model shown in Fig. 1d, xN = 2.5, is not as low as the expected 
value, E[xN] = 1, given the stated errors on the observations. However, this did appear to be 
the limit of this algorithm when based on these approximate sensitivities, and on the coarse 
horizontal discretisation forced upon the algorithm by only having sensitivities defined for cells 
directly below observation locations. However, as can be seen from Fig. 3b, the model in Fig. ld 
does produce predicted data which have a qualitative resemblance to the observations. And, once 
again, the conductor associated with the TOBE anomaly and the three conductors associated 
with the NACP anomaly are clearly visible in the model. 

 7. Discussion 

   The MT inverse problem associated with inverting the COPROD2 data is ill-posed. This 
makes it difficult to invert the COPROD2 data to produce meaningful information about the 
Earth's conductivity structure. Unfortunately, the inversion process involves a sequence of "edu-
cated guesses" to enable a single model to be constructed. The main "educated guess" concerns 
what form of the model objective function is to be minimized. To gain meaningful information 
from the inversion of the COPROD2 data, the effect of the "educated guesses" must be ascer-
tained. Consequently, the COPROD2 data set must be inverted not once, but many times with 
different guesses, and practicality demands that the inversion computation be efficient. We have 
shown that working with AIMs and determinant average data, at least in the formative stages 
of the inversion, keeps the inverse problem smaller and avoids the difficulties associated with 
inaccurate phase rotations of the impedance tensor and perhaps other processing difficulties. Our 
11 and 12 inversion results from the determinant average data provide a definite indication of the 
NACP and TOBE conductivity anomalies and provide end members in the spectrum of possible 
conductivity models: the ll result is the most blocky model; the 12 result is the most smooth. 
The 11 and 12 inversions demonstrate that very different models can be produced by altering the 
objective function to be minimized. This; exploration provides a greater understanding about the 
resolving power of the COPROD2 data. 
   Numerical efficiency in both the ll and 12 algorithms was achieved through the use of 1D 
sensitivities. These sensitivities are surprisingly beneficial in 2D problems, at least if misfits of 
about 10 percent on the apparent resistiyities and 5 degrees on the phase are adequate. The fact 
that the 1D sensitivities work as well as they do suggests that rather crude approximations to 
2D sensitivities may work extremely well within the AIM technique. However for the successful 

joint inversion of the COPROD2 data, which have very different TE and TM mode responses, 
it was necessary to modify the purely 1D approximation to include the 2D field variation. The 
results obtained from this improved approximation motivates further research into developing 
even better approximations which are still computationally less demanding than carrying out an 
accurate 2D linearization.
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   In conclusion, we emphasize that the fundamental difficulty with the COPROD2 MT inverse 

problem is that it is ill-posed. Of particular concern is the inherent nonuniqueness which can 
only be addressed by considering the class of models which fit the COPROD2 data to the desired 
level. One method for exploring the class of models is by performing a significant number of 
inversions with different model norms, and this can only be done if inversion algorithms are flexible 
and efficient. The AIM algorithms presented in this paper were designed with flexibility and 
efficiency as a highest priority and we have shown that they provide the means for a preliminary 
investigation of the COPROD2 data. 
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