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        We have developed a nonlinear magnetotelluric inversion based on a standard finite dif-
     ference TE/TM mode forward solution, including static distortion effects, and a new genetic 

     algorithm for general functional optimisation and hypothesis testing. We have used this to 
    invert a subset of the COPROD2 data in terms of best-fitting 2-D electrical conductivity dis-

    tributions. Our optimal electrical conductivity model, defined by 66 electrical conductivity 
     parameters and 20 static shift coefficients, attains an rms misfit of 1.48, for standard errors 

     in the data of at least 10% in apparent resistivity and 3° in phase. This may represent the 
     minimum level of misfit given this coarse parameterisation of the earth. The optimal model 

     contains certain features, including the North American Central Plains conductivity anomaly 
     and a surface layer of 1000 S conductance, that are consistent with previous electromagnetic 

     inversions and the local geology. The global optimisation took -12 days to compute on a 
     -20-40 Mflop (million floating point operations per second) computer. We have chosen not 

     to seek a smooth model consistent with the data, a task well handled by existing, faster 
     regularized inversions, but instead to use the genetic algorithm for the more demanding task 
    of extracting the global best-fitting conductivity model. 

  1. Introduction 

   The North American Central Plains (NACP) conductivity anomaly within the Trans-Hudson 
orogen is thought to be the electromagnetic expression of a geosuture zone formed during the 
collision of the Superior and Churchill Provinces in the Early Proterozoic (CAMFIELD and GOUGH, 
1977). The NACP anomaly was discovered by GDS techniques (REITZEL et al., 1970) and its 
location beneath the Phanerozoic Williston Basin has been refined by subsequent analyses of 
additional electromagnetic data, including the COPROD2 magnetotelluric (MT) data set (JoNEs 
and CRAVEN, 1990). 
   The full COPROD2 data set, 35 MT sites collected over a 407 km traverse (see JONES and 
CRAVEN, 1990, for location map) with 40 responses in the range 384 Hz to 1820 s, has been 
distributed by A. G. Jones of the Geological Survey of Canada to workers prior to the 1992 MT 
Data Interpretation Workshop in Wellington, New Zealand (JONES, 1993). The distribution is 
intended to form the basis for cross-validation, comparison and development of various 2-D MT 
inversion codes. As part of this multinational collaborative effort, we have developed a nonlinear 
2-D inversion based on a genetic algorithm and a standard finite difference TE/TM mode forward 
solution, and have inverted a subset of the COPROD2 data for an optimal (i. e. minimum misfit) 
2-D electrical conductivity distribution. 

   In particular, we present the results of a search for a 2-D electrical conductivity model 
whose response minimises the misfit to the COPROD2 observed TE/TM apparent resistivity and 
phase data, given the fewest a priori assumptions about the structure this model. Elsewhere in 
this issue, the reader will find.results of regularised inversion schemes which produce maximally 
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smooth models. Unlike existing regularised schemes, the approach taken here is fully nonlinear, 
and the intent is to find the global minimum misfit model. 
   Although our algorithm can handle general nonlinear functionals of electrical conductivity, 
such as smoothness, we chose to minimise misfit since our eventual aim is to develop analytical 
and numerical algorithms capable of determining the best possible fit between responses of mul-
tidimensional electrical models of the earth and arbitrary collections of MT observations. We are 
motivated by the desire to develop a multidimensional analogue of the D+ 1-D minimum misfit 
algorithm (PARKER, 1980; PARKER and WHALER, 1981). Such algorithms are important not 
necessarily as techniques to construct geologically tenable models of the subsurface, but rather 
to provide an absolute lower bound on the misfit, so that the goodness-of-fit of arbitrary models 
can be meaningfully evaluated. Furthermore, the genetic algorithm is such that one must place 
prior bounds on all model parameters. By careful selection of a priori information, nonlinear 
hypothesis testing is possible. One may, for instance, ask whether any 2-D model exists that 
fits the data, given particular bounds placed on one or more model parameters. Finally, fully 
arbitrary objective functionals (e.g. misfits) may be easily defined, making it possible to direct 
the search in an extremely flexible manner. 

   In general, finding best-fitting multidimensional electrical conductivity models is problematic. 
There are uncertainties inherent in numerically modelling forward responses, and the use of 
finite dimensional model spaces to represent the earth's electrical structure is clearly inadequate. 
Additional difficulties arise when global search algorithms are employed to find the minimum 
of the misfit functional. For example, large amounts of computer time are often required to 
search model space and the possibility exists for the optimisation routine to become trapped in 
a local minimum. Global search algorithms based on numerical solutions to the forward problem 
therefore provide only an approximate value for the true minimum misfit. Furthermore, the result 
depends strongly on the degrees of freedom permitted by the earth's electrical structure. 

  2. The Forward Solution 

    The earth is assumed to possess an electrical conductivity structure which varies with posi-
tion in the vertical and one horizontal co-ordinate, but is invariant in the orthogonal horizontal 
(strike) direction. Furthermore, any lateral conductivity variations are contained within a central, 
inhomogeneous region, outside of which the conductivity depends only on depth. In such cases, 
Maxwell's equations for an incident, down-going plane wave source reduce to a pair of indepen-
dent scalar differential equations in the along-strike electric (TE mode) and along-strike magnetic 
(TM mode) fields. The forward code we have developed to solve the two scalar equations is based 
on the finite difference method and is similar to that of SMITH and BOOKER (1991), e.g. the 
discretisation of the governing equations and the boundary conditions are equivalent. 

   In our formulation, the finite difference mesh is truncated at large lateral and vertical dis-
tances. from the inhomogeneous region, where the earth is assumed to be locally 1-D, and boundary 
conditions are applied there. For both TE and TM modes, the fields at the sides of the mesh are 
set to the known, exact 1-D solutions. The impedance, or ratio of a field to its vertical derivative, 
at the bottom of the mesh is fixed to that of the half-space below. 
   The boundary conditions imposed at the top of the mesh are fundamentally different for the 
two modes. In the TM mode, the surface of the earth coincides with the top of the mesh and a 
unit magnetic field is specified as the source. However, since the electric field in air is sensitive 
to the structure inside the earth, for TE mode computations the finite difference mesh must be 
extended upwards from the surface. At the top of the air layer, set to -104 km, we fix the vertical 
gradient of the electric field such that the associated horizontal magnetic field is unity. At the 
sides of the mesh, we force the electric field to increase linearly with height above the surface of 
the earth, in a manner that is consistent with the other boundary conditions.
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   The linear systems of equations in the unknown nodal values of along-strike electric field 
(TE mode) and magnetic field (TM mode) are solved on the Institute of Theoretical Geophysics 
Convex C210 (N20-40 Mflop) computer using Veclib complex band matrix routines. Meshes used 
in the work reported here contain as many as 91 x 91 nodes for the longest period, leading to linear 
systems of up to 8281 equations. Apparent resistivities and phases are derived by numerically 
differentiating the computed field values at nodes near the surface of the earth, and are linearly 
interpolated onto the measurement sites. The apparent resistivity at each site is then scaled by a 
frequency independent static shift coefficient to account for the effects of near-surface conductivity 
heterogeneities too small to be individually modelled. 

   It is well-known that errors in the finite difference solutions to electromagnetic equations 
diminish as the node density increases near large variations in electrical conductivity. However, 
our forward solver must contend with an immense variety of irregular conductivity distributions 
as the inversion proceeds. Adapting the finite difference mesh for each forward problem is not a 
recommended strategy in our case, since inconsistent numerical errors between forward problems 
are likely to result, biasing the misfit in an unpredictable manner. We experimented with an 
adaptive meshing scheme in which the uniform node spacing depended on both the period and an 
averaged conductivity of the model, but abandoned this approach for the reason just stated. We 
prefer consistent solutions, though they may be individually less accurate than those computed on 
specially tailored meshes. As a result, our meshes are uniform, with the node spacing depending 
only on the period. In particular, we enforce a mesh density of exactly 5 nodes per skin depth, 
where the latter is calculated using the geometric mean of the smallest and largest permissible 
values of electrical conductivity. These values are respectively the infimum of the lower bounds 
and the supremum of the upper bounds placed on individual model parameters. 

 3. The Genetic Algorithm 

   Genetic algorithms (HOLLAND, 1975) have been used recently to solve nonlinear optimisation 
problems in many disciplines, including 1-D seismic inverse problems (GALLAGHER et al., 1991; 
SCALES et al., 1992; SAMBRIDGE and DRIJKONINGEN, 1992; JIN and MADARIAGA, 1993), and 
the 1-D magnetotelluric inverse problem (SCHULTZ, 1992; SCHULTZ et al., 1993). Since our 
GA will be described in detail for 1-D conductivity studies (Genetic algorithms for nonlinear 
magnetotelluric inversion and hypothesis testing, manuscript in preparation), we merely outline 
the essential strategy and briefly discuss some of the novel features of our implementation. 
   The basic idea behind the genetic approach for optimising nonlinear functionals is to mimic 
the manner by which biological organisms evolve to produce more successful organisms. The 
algorithm is an iterative one. An initial population of Q models is specified. Each model, or 
"chromosome", is either randomly generated or read in as a set of N real numbers, which are 
the model parameters, or "genes". In our case the model parameters are logarithms of electrical 
conductivities (log a) of the elements of the 2-D electrical model and, optionally, TE and TM 
static shift coefficients at each measurement site. The values of individual model parameters are 
constrained to lie within user-specified upper and lower bounds. The forward problem is solved 
for each of the models, and the misfit to the data of each model response is computed. Based 
on the misfit information and constrained by probablistic rules, the population of Q models is 
refined, and the forward problems are solved again. The process is repeated until the misfit can 
no longer be reduced. The evolution of the population is directed such that models which fit the 
data well are given a good chance of surviving into the next generation, while models which do not 
fit rapidly die out. SAMBRIDGE and DRIJKONINGEN (1992) describe the reproduction, crossover 
and mutation stages involved in a single iterative step. We perform an identical crossover to 
Sambridge and Drijkoningen, but have developed new reproduction and mutation strategies.
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3.1 Reproduction 
   Natural selection, or survival of the fittest, occurs during the reproductive stage. After the 
misfits for the current generation of models have been evaluated, a survival tournament is held. 
Random pairs of models are drawn from the population, but only one model from each pair will 
survive to the next generation. Normally, the survivor is the better fitting of the two. However, 
to facilitate exploration of a wide range of model space, the conductivity model with the higher 
misfit occasionally goes forward to the next generation. The choice of which model survives is 
determined by the flip of a coin and an input parameter called the tournament probability. If 
tournament probability is nearly unity, then the better fitting model nearly always survives and 
the population is inexorably driven towards a few promising neighbourhoods in model space. A 
random walk through model space results as tournament probability approaches its lower limit 
of 0.5. Our experience in 2-D MT inversion is that a tournament probability set between 0.8-0.9 
leads to adequate global coverage of model space yet provides fine scale probing of the objective 
function in the vicinity of a local minimum. 

3.2 Mutation 
   Without mutation, crossover (SAMBRIDGE and DRIJKONINGEN, 1992) is the only stage at 

which new models are created. Crossover is a mechanism by which genetic material (values of 
.individual model parameters) is transferred between pairs of chromosomes. However, crossover 
alone is not enough to ensure a rich gene pool, as no new genetic material is introduced into 
the gene pool, and in the absence of mutation the diversity of the models deteriorates within a 
few generations: a situation we have termed saturation. In cases where the mutation rate is set 
too low we have observed the genetic algorithm to converge prematurely to an incorrect value, 
probably not even a local minimum of the objective function. There is simply not enough genetic 
diversity to further explore model space. As the mutation rate is increased, the model search 
becomes increasingly a random walk and, if set too high, Monte Carlo behaviour once again 
governs, inhibiting convergence. 
   Saturation can be avoided by increasing the size Q of the population, which provides more 

genetic material for the algorithm to manipulate in its search for the optimal model. However, 
this approach is unsatisfactory if the forward problem is costly to evaluate since adding new 
members to the population requires additional solutions the forward problem at each generation. 

    To stave off saturation and yet maintain a respectable convergence rate, while restricting 
Q-100 to keep the number of forward problems within practical CPU-time limitations, we decided 
to implement a floating mutation mechanism. Individual mutations are performed in the manner 
of SAMBRIDGE and DRIJKONINGEN (1992), but the novel concept is that the mutation rate 
is dynamically controlled between generations by the genetic diversity of the population. For 
example, if genetic diversity at the end of a generation is high, the mutation rate is automatically 
lowered. Conversely, the mutation rate is raised whenever the population diversity falls below 
some critical value. The diversity of a single model parameter is measured by the number of 
different values that the parameter assumes within a generation, normalised by the total number of 
models Q. The diversity of the entire population is simply the sum of these individual diversities, 
divided by the total number of model parameters N. Thus, model diversity is a statistic which 
ranges from zero to unity. We have obtained good results when the mutation rate is adjusted to 
keep the model diversity statistic approximately 0.02-0.1. 

 4. Synthetic Inversion 

   We have tested the GA on a synthetic data set generated using the same TE/TM mode 
forward solver that is incorporated in the genetic algorithm. The synthetic study is therefore 
a true test of the performance of the GA; we are not testing the performance of the forward
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code. Foward modelling errors and the finite dimensionality of the synthetic model are essentially 
irrelevant, while the target misfit is exactly zero. The electrical conductivity model we aim to 
recover is a uniform, outcropping rectangular conductor (cr=0.1 S/m) 30 km deep and 60 km 
wide embedded in a uniformly resistive half-space (a=0.02 S/m). The response to this model is 
a set of TE and TM mode apparent resistivities and phases. 

   We define the objective functional ' to be the rms misfit 

                                          obs 2 obs 2 1/2 
                          __ 1 Papa 1 ~ 

                     M Op bs + ~ M Aoobs (1) 

where M is the number of degrees of freedom. The right hand side of (1) contains the sum of 
two Euclidean norms, 

                                       Nx NT 1/2 
                 IIfII = EEI.f(xz,Ti)12 (2) 

                                            i=1 j=1 

one which measures the distance between the computed Pa and observed (or synthetic) pabs 
apparent resistivities, and one which measures the distance between computed 0 and observed 
(synthetic) ,sobs impedance phases. The quantities Opabs and bobs are the standard errors in 
apparent resistivity and phase, respectively. There are NT periods (T), Nx measurement sites (x) 
and 2 modes (TE and TM); therefore the number of degrees of freedom M=4NT•Nx, where the 
additional factor of 2 reflects the fact that apparent resistivity and phase, real quantities derived 
from the complex surface impedance measurements, are independent degrees of freedom. The 
objective functional (1) attributes an equal weighting to each datum regardless of its mode (TE 
or TM), location along the traverse, period, and type (Pa or 0). The expected value of the rms 
misfit, denoted E((D), is unity. In the special case of synthetic data without noise added, E(4)=0. 

Table 1. The locations and periods of the TE and TM mode apparent resistivity and phase COPROD2 data used 

   in the inversion. The locations are measured in kilometers east of the town of Macoun, Saskatchewan, which 
   is 18.87 km west of longitude 103'W. 

                                  positions periods 
                                    -55.7 km 85.33s 

                                    -45 .8 km 170.7s 
                                   -35 .0 km 341.3s 

                                    -25 .9 km 682.7s 
                                      -14 .6 km 

                                          -5 .9 km 

                                    4.9 km 

                                    22.8 km 

                                  41.8 km 

                                   54.5 km 

   Synthetic TE/TM mode apparent resistivities and phases were generated for the test model, 
at the 10 locations and 4 periods shown in Table 1, hence the total number of degrees of freedom 
M=160. The conductor in the test model is centered about position 0.0 km, the longitude of 
Macoun, Saskatchewan. Standard errors of APabs/Pa=10% and dO=3° are assumed. These 
standard errors are similar in magnitude to those typically estimated from actual data. The 
synthetic data and standard errors were then inverted using the genetic algorithm with population 
size Q=100, tournament probability 0.85, and crossover probability 0.85. The latter was chosen on
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Fig. 1. The joint TE/TM mode rms misfit D of the best-fitting model of each generation of the synthetic inversion. 
   The run was terminated after 88 generations with a best misfit of 0.37. Synthetic TE and TM mode apparent 

   resistivities and phases for the test model described in the text were computed at each combination of period 
   and position given in Table 1. 

the basis of prior experience inverting 1-D MT data using the genetic algorithm. We maintained 
a fixed mutation probability 0.002 throughout, i, e., the floating mutation rate mechanism was 
turned off. 

   The embedded electrical conductor is parameterised by a fixed, uniform 4 x 4 grid of constant 
conductivity rectangular blocks. Two additional model parameters include the conductivity of the 
terminating half-space beneath the inhomogeneity and the conductivity of the semi-infinite layers 
to the left and the right of the inhomogeneity. We found it convenient, although not necessary, 
to keep the conductivities of the left and right semi-infinite layers equal. The static shift option 
was disabled, i. e. all static shift coefficients remained unity throughout the run. Hence, there 
are N=4 x 4+2=18 independent model parameters. To reduce the search of model space, and to 
ensure that the finite difference meshes are of manageable size, individual model conductivities 
were constrained within the bounds 0.01-1.0 S/m. 

   The initial population was generated randomly. The best fitting randomly generated model 
achieved a misfit of -3.5 compared to the synthetic data, using formula (1). The misfit of the 
best-fitting model as a function of generation for the entire run is plotted in Fig. 1. The misfit 
was still decreasing steadily when CPU-time limitations required that the run be prematurely 
terminated after 88 generations at which point the misfit was 0.37. Over the entire run, TE and 
TM mode responses were evaluated at four different periods for a total of 88Q=8.8 x 103 different 
conductivity models, corresponding to a total of 7.O x 104 finite difference matrix inversions. At 
approximately 750 matrix inversions per C210 CPU-hour, the run took 93 CPU-hours to complete.
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Fig. 2. The joint TE/TM mode rms misfit ' of the best-fitting model of each generation of the COPROD2 
   inversion. The run was terminated after 263 generations with a best rms misfit of 1.48. The solid circles at 

   generations 117 and 168 mark the widening of the bounds on permissible electrical conductivities and the onset 
   of static shift coefficients as model parameters, respectively. 

 5. COPROD2 Inversion 

   The genetic algorithm was then run for the COPROD2 data set (see Table 1 for the positions 
and periods inverted). The standard errors on pa were taken to be the greater of 10% or the 
standard error quoted in the distributed data set. Similarly, the minimum standard error on 0 
was set to 3'. The population size, tournament probability, crossover probability and bounds 
on the values of individual model conductivities were kept as they were during the synthetic 
inversion. Initially, the static shift option was turned off in order to keep the global search as 
simple as possible during the early iterations. The size of the inhomogeneous region was extended 
to 120 km wide by 60 km deep and was parameterised by a uniform 8x8 grid, hence the total 
number of model parameters is N=66. The initial population consisted of a 0.1 S/m half-space 
and Q - 1 randomly generated models. The dynamic mutation rate was turned on. 
   The genetic algorithm ran for 263 generations, which took 278 C210 CPU-hours. After 117 
generations, the lower bound on individual model conductivities was decreased to 0.002 S/m since 
it was observed that 50% of the block conductivities were at the minimum value of 0.01 S/m. 
After 168 generations, the static shift option was switched on, increasing the total number of 
model parameters to N=86. The rms misfit of the best-fitting model versus generation is shown 
in Fig. 2. The initial 0.1 S/m half-space achieved a misfit of 3.87. The expected value E(-D) was 
not attained in 263 generations, and the misfit had stabilised when the run was terminated. The 
best rms misfit is 1.48. The additional degrees of freedom gained by switching on static shifts 
brought the misfit down to 1.48 from 1.63.
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   The responses of the best-fitting model are compared to the original data set in Fig. 3. The 
most notable systematic (site-independent) discrepancies are in the short period TM mode phase 
and the TE mode apparent resistivity for period 170.7 s. These systematic biases may be explained 
by the lack of a sufficiently thin surface layer in our parameterisation, or by 3-D effects in the 
data. Alternatively, the biases may be due to the misalignment of the finite difference meshes 
with conductivity block boundaries (we essentially solve a different conductivity model for each 
frequency). This effect can be removed by ensuring that, for each period, every conductivity block 
boundary coincides with either a row or column of nodes in the finite difference mesh. We highly 
recommend the adoption of this strategy in the future. There may also be numerical problems 
introduced by inconsistencies in the linear interpolation of the computed apparent resistivities 
and phases onto measurement sites, since the horizontal locations of finite difference nodes vary 
with period. 
   The evolution of the best-fitting model at various stages of the inversion is displayed in 
Fig. 4. The electrical conductivity of the left and right semi-infinite layers does not change after 
generation 27, suggesting that the misfit is very sensitive to this model parameter. By contrast, 
the conductivity of the terminating half-space changes from generation 55 to 117. This suggests 
that the responses are insensitive to the terminating conductivity. Inside the inhomogeneous 
region, the electrical conductivity in the first few rows near the surface is more or less fixed by 
generation 55. 
   The reduction in misfit afterwards appears to be due to fluctuations in the conductivity of 
the lower part of the inhomogeneous region and the terminating half-space. There are several 
intriguing conductivity structures in the upper part of the inhomogeneous region. The most 
persistent feature is a layer of moderately high conductivity across the top of the model; this has 
clearly established itself by generation 27. At generation 117, the average conductance across 
the topmost row of the inhomogeneous region is 1040±100 S, corresponding to a 7.5 km thick 
layer of conductivity x-0.15 S/m. By generation 55, a single, highly conductive (-1 S/m) block 
appears in the upper central part of the inhomogeneous region. This feature persists throughout 
the remainder of the run. The overall background conductivity of the inhomogeneous region and 
terminating half-space is quite low. 

  6. Forward Modelling Error 

   Following the COPROD2 inversion, we analysed the numerical errors in forward responses 
from a suite of test structures in an attempt to illuminate the role of forward modelling error in 
directing the search for the optimal model. In particular, we computed TE and TM responses of 
the three electrical conductivity structures shown at the right in Fig. 5. The checkerboard (100:1 
conductivity contrasts) and the single conductor (10:1 conductivity contrast) models were chosen 
since they should produce responses with large and small horizontal variations, respectively. We 
therefore expect the forward solver to require a large mesh to compute accurate checkerboard 
responses, while relatively small meshes should suffice for computation of the smoother responses 
of the single conductor model. The third test model we considered is the best-fitting COPROD2 
conductivity structure (e.g. bottom right, Fig. 4) obtained by the genetic algorithm. 

   We used the finite difference forward solver to compute responses of the three test structures, 
the results are shown at the left in Fig. 5. The responses for the highest frequency used in the 
inversion were calculated on three uniform meshes of systematically varying node density. The 
coarsest mesh contained 4 nodes in both horizontal and vertical directions per conductivity block, 
the medium mesh contained 8 horizontal nodes per block, and the finest mesh 16 nodes. The 
meshes were specially constructed so that block boundaries coincided with rows and columns of 
nodes. The results indicate that all three TE responses are relatively stable with respect to mesh 
size beyond 8 nodes per conductivity block. Similarly the TM mode responses of the COPROD2
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Fig. 3. The responses of the best-fitting electrical conductivity model (open circles plotted alongside a subset of 
   the COPROD2 data, with standard error, used in the inversion. The site number refers to the position of the 

   measurement, see Table 1, increasing eastward.
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, Fig. 4. This sequence of 2-D electrical cross-sections depicts the evolution of the best-fitting model during the 
   COPROD2 TE/TM inversion. The inhomogeneous region is 120 km wide. VE = 2:1.
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Fig. 5. Three electrical conductivity structures and their TE (left column) and TM (right) mode responses at a 
  period of 85.33 s. The responses are computed on finite difference meshes containing 4 (squares), 8 (circles) 

   and 16 (triangles) nodes per conductivity block.
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and single conductor models are stable beyond 8 nodes per block. The TM mode checkerboard 
responses are very different when computed on the medium and fine meshes, however. Finally, of 
all the responses, only the apparent resistivity of the single conductor model appears to be stably 
determined on the coarse mesh. 

 7. Discussion 

   The genetic algorithm, validated by an inversion of synthetic data for a simple 2-D struc-
ture, has been used to invert a subset of the COPROD2 data in terms of optimal 2-D electrical 
conductivity models. Our best-fitting model attained an rms misfit of 1.48, for standard errors of 
at least 10% in apparent resistivity and 3° in phase. The misfit has stabilised when the inversion 
was terminated. Our coarse parameterisation of the electrical structure is clearly insufficient to 
breach the expected value of unity. However, we are confident that a finer parameterisation of 
the earth and/or an increase in the bounds on individual block conductivities should result in a 
model which does. Similarly, lower misfits would also be attained if the lateral terminations of the 
earth were a general n-layer conductivity structure, instead of the present layer over a half-space 
geometry. We would also like to explore the performance of the algorithm when the conductivity 
blocks are spaced logarithmically with depth, giving rise to relatively more model parameters at 
the shallow depths where spatial resolution is highest. The parameterisation used in this example 
of 2-D GA inversion is inadequate to reproduce fine details of the electrical structure in this area. 
For example, other workers have required a very thin conductive surface layer in order to fit the 
data. The results do, however, demonstrate the basic features and convergence properties of this 
nonlinear inversion method. 
   The best-fitting electrical conductivity model (bottom right, Fig. 4) contains certain features 
that are surprisingly consistent with the local geology and previous electromagnetic inversions. 
We interpret the uniform surface layer of conductance 1000 S to be due to the sediments of 
the Phanerozoic Williston Basin. The single, highly conducting block in the upper central part 
of the inhomogeneous region corresponds to the centre of the NACP conductivity anomaly (c.f., 
JONES and CRAVEN, 1990). The depth to the NACP anomaly is consistent with previous studies. 
The overall low background conductivity (<0.01 S/m) of the inhomogeneous region is also in 
agreement with previous electromagnetic observations (JONES and CRAVEN, 1990). 
   During the inversion of the COPROD2 data set we fixed the size of the finite difference 
mesh at 5 nodes per skin depth, and did not enforce block boundaries to coincide with rows and 
columns of nodes. At the highest frequency, this mesh size corresponds to approximately 5.1 
nodes per conductivity block. The results of the error analysis indicate, however, that at least 
8 nodes per conductivity block are required for the stable determination of TE and TM mode 
responses of electrical conductivity structures with moderate conductivity contrasts. Although 
we were unable to run the inversion at the critical mesh density of 8 nodes per block due to 
computational limitations, the fact that our final model is consistent with previous inversions and 
local geology suggests that the forward modelling error, though significant, did not overwhelm 
the directed search of model space. 

   Large amounts of computer time are required for global optimisation to find the best-fitting 
electrical conductivity structure. This makes the use of genetic algorithms for 2-D magnetotelluric 
inversion practical only on the most powerful computers. Although the genetic algorithm takes 
much longer to run than other recently published inversions such as the Occam2 algorithm of 
DEGROOT-HEDLIN and CONSTABLE (1990) or the very fast RRI algorithm of SMITH and BOOKER 
(1991), the output is fundamentally different. Whereas the rapid inversion codes simply find the 
smoothest model from amongst the multitude which have a given misfit to the data, the genetic 
algorithm attempts the more demanding task of extracting the global best-fitting model. As 
mentioned in the introduction, minimum misfit algorithms are useful not necessarily to construct
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geologically tenable models of the subsurface. Rather, they provide an absolute lower bound on 
misfit, given a particular model parameterisation and set of prior bounds. 
   An alternative strategy for nonlinear optimisation is the simulated annealing (SA) approach. 
Rather than choosing a biological analogue, SA mimics a thermodynamic system such as crys-
tallisation of melt. A 1-D MT inversion based on SA is described in Dosso and OLDENBURG 
(1991). SCALES et al. (1992) report that for large numbers of model parameters, GAs have more 
freedom to explore model space, and are less prone to converging to purely local minima than 
SAs. For problems with a small number of model parameters, GAs also contrast with linearised 
inversions which use, say, a steepest descent approach to converge to a local minimum near some 
starting model. One consequence of this is that GAs tend to be far more computationally de-
manding than corresponding regularised inversions, or than extremal nonlinear inversions based 
on linear or quadratic programming such as D+. Unlike its extremal counterparts, however, the 
GA is easily adapted to any forward solution or objective function, and allows one to impose a 
priori information on the inversion. 
   The GA approach is, on the other hand, far less computationally demanding than conven-
tional Monte Carlo algorithms. The GA rapidly determines the most likely part of model space in 
which minimum misfit solutions are likely to be found, and directs the search in those subregions 
of model space. For the inversions described in this paper (e.g. 66 model parameters, each of 
which is represented by an 8 bit binary word), discretised model space spans 2258, or 8.8 x 10151, 
possible models. If we consider that a forward solution for each model, for four frequencies and 
two modes, takes -38 s to compute on our present system, a complete Monte Carlo search through 
model space (or an ordered grid search examining every possible discretised model) would take 
 10143 times the age of the universe. 

   We believe that application of the genetic algorithm and other nonlinear optimisation tech-
niques to 2-D inverse problems, currently well within the capabilities of existing computational 
facilities for 1-D, will become increasingly practical as massively parallel processing architectures 
evolve. The GA is inherently a parallel algorithm. Work is underway in porting the code to such 
a machine. 

    We are indebted to P. J. Savage of PanCanadian Petroleum Limited of Calgary, Alberta for making 
the raw (uncorrected for static distortion) data available to the Geological Survey of Canada. We would 
like to acknowledge J. Torquil Smith for valuable discussions on magnetotelluric inversion and genetic 
algorithms and also for providing the software to plot the electrical conductivity models. A. Schultz 
thanks Malcolm Sambridge whose many conversations during the early stages of development of the 1-D 
MT GA influenced the choice of tournament selection. Contribution Number 3362, Department of Earth 
Sciences and Institute of Theoretical Geophysics, University of Cambridge. 
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