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       A reduced COPROD2 data set with response estimates at twenty sites for four periods 
    (85 s to 683 s) is interpreted, using an iterative modelling scheme on the basis of linearized 

     integral equations. Input data are the anomalous fields, here E,,,, and B,,, for E-polarisation, 
     which are derived from the supplied impedances Zxy and the magnetic transfer functions Tzy. 

    Prior to 2D modelling a normal 1D reference model is introduced (here a 3-layer model) and 
    an anomalous domain defined (here from zero to 40 km depth and 200 km in width). It is 

     subdivided into M subdomains of constant anomalous conductivity. 
       The linearisation of the non-linear data functional is performed by approximating the 

    internal field Ex within the anomalous domain. An iterative process is started with the 
     normal field E,,,x of the 1D reference model as internal field, gradually improving this first 
     approximation. The evolving linear problem is solved by the least-squares method, adapting 

    the data kernel with each iteration step better to the model which arises from the application 
    of this kernel to the data. No Frechet derivatives of the data functional are involved and no 
     starting model is required. 

       A first set of models is derived from MT data alone, a second set from combined MT/GDS 
     data, increasing the number of subdomains from M = 1 to M = 64. It is found that with 

    M = 8 (i.e. with 20 x 50 km2 subdomains) the resolution power of the data is exhausted. 
       The resulting models have an almost uniform top layer and a deep-seated central region 

    of reduced resistivity of 10 Qm at 20 to 40 km depth. Further modelling studies show that 
    a deep origin of the observed anomalies is indeed more likely than a shallow origin and that 

    the modelling results do not depend significantly on the used periods. The mean residual (if 
     only MT data are used) is greater than the data error and the individual residuals are not 

    randomly distributed; both indicate that the data have not been exploited to their fullest 
    possible extent. Forward modelling shows that the models are not in good agreement with 

     B-polarisation impedances. 

 1. Data Selection and Description 

   From the total COPROD2 data set I decided to interpret a reduced set, comprising response 
estimates from twenty sites and four periods. In strict adherence to given instructions, the sites 
are from station PC5008 at -114 km to station PC5007 at +120 km, without the two in-between 
sites PC5405 and PC5305. The assigned periods for the reduced data set are 85, 171, 341, and 
683 seconds. 
   The interpretation will be based mainly on the impedances Zxy for E-polarisation for reasons 
which will become apparent later. At 683 s five impedance estimates and at 171 s one estimate 
have been marked as unreliable. They are not used. This leaves a total number of 74 apparent 
resistivities pa and phases 0, or 148 real and imaginary parts of the impedance 

                            V w Zxy µo pae 
Separate confidence limits are listed for pa and 0 at an unspecified confidence level. They are used 
to define errors Opa and AO for both quantities. Assuming that Apa/2pa and 0q are equivalent 
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estimates for the relative error of I Zxy I, the following common errors are assigned to the real and 
imaginary parts of Zxy : 

                     Zxy = (Zxyl • {Opal2pa + 00}/2. 

   The supplied response estimates refer to the locally observed horizontal magnetic field By 
and thus involve two anomalies: one for the electric field Ex (or the vertical magnetic field B") 
and one for By. The method to be used requires a separate treatment and presumes that the 
fields are referenced to the same normal fields Enx and B,,,y at all sites. This implies induction by 
a quasi-uniform source with the same normal structure u, (z) extending on either side to infinity. 
For simplicity the normalisation will not be expressed explicitly, i.e. Ex stands from now on for 
the dimensionless ratio ExlEnx, By for BylBny, and B,z for BzlBny. 
   Let Zn denote the impedance En,x/B,.zy of the normal structure. Then the normalised electric 
field in terms of the locally referenced impedance is Ex = ZxylZn . By. The input data for the 2D 
modelling process are not, however, these total fields, but only the differences Eax = Ex - Enx 
and Bay = By - B,zx with the identity Ba,z = Bz. Obviously, they are direct expressions of the 
anomalous conductivity Qa = a - a'n to be found, when an represent only the depth-dependent 
normal conductivity of the surrounding area. 
   Hence, for a given site and period the input datum and its error are 

                 EX = Zxy • (1 + Bay) - 1, DEax = Zxy (1 + Bay)                                                 (1)                      Z
n Zn 

for the anomalous electric field and 

                   Baz = Tzy . (1 + Bay), AB,, = ATzy . (1 + Bay) (2) 

for the anomalous vertical magnetic field with Tzy = Bz/By. Again, Eax stands for Eax/Enx, 
Bay and Baz for Bay /Bny and Baz /Bny . 
   The COPROD2 data set provides estimates for Zxy and Tzy, but has no information on Bay 
or at least on the variable horizontal field with respect to some fixed reference station. In principle 
Bay could be derived from Baz (and thereby from Tzy) by a Hilbert transformation (as they are 
components of a 2D potential field of internal origin). The large uncertainties in the estimates 
of Tzy, and the fact that the COPROD2 profile ends where Tzy has its peak value, make such 
a determination unrealistic. Therefore theoretical model values Bay will be used to define the 
input data in terms of observables as follows: 
   The iterative process is started with zero anomalous conductivity, i.e. with Bay = 0. The 
model found in the first iterative step supplies a first approximation for Bay which yields, when 
inserted into Eqs. (1) and (2), modified data for the second iteration and so on. In this way the 
set of input data and their errors depend not only on the adopted 1D model (in the case of Eax ), 
but also on changing 2D models which evolve during the iterative process. 
   Under the given circumstances this problematic reshaping of the input data by models derived 
from them is unavoidable. It may be responsible for certain peculiarities which were observed 
in the iterative process and which were not encountered when the original data were already 
properly normalized. Besides the mere necessity to recast the supplied data in the described 
form, this has also definite benefits: Firstly, dimensionless quantities are interpreted which are of 
comparable size for all three components and all periods, provided that the top layers are without 
sharp conductivity contacts. (Otherwise, at sufficiently short periods the anomalous magnetic 
fields disappear while the anomalous electric fields become large, when the impedances merge into 
their locally determined and thus greatly variable 1D responses.) In this respect the COPROD2 
data were taken under most favourable conditions. At short periods below 10 s the pa values 
almost uniformly lie between 2 f2m and 4 S2m.
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Fig. 1. Penetration depths z* of E-polarisation along the COPROD2 profile at 35 sites and for the four periods 
   of interpretation. Their deviation from the 1D normal level indicates zones of anomalous conductivity, here a 

   well conducting zone in the centre and a transition to low conductivities at the eastern end beyond 200 km. 
   1D modelling is carried out at the encircled sites, 2D modelling within the shown anomalous domain. 

   In the reduced COPROD2 data set the rms anomalous field amplitudes are indeed of com-
parable size, namely 

                          0.18 for Ea,x and 0.13 for B,,,,. 

The quoted values are the squareroots of (J E,,,' 12) and (IBa,z 12) , averaged over all twenty sites and 
all four periods. Their dependence on the adopted model of reduction is negligible. 

 2. The 1D Normal Model 

   The search for a suitable normal model a ,,(z) is guided by a visual inspection of the supplied 
data: Fig. 1 shows the depths z* = Im{Zxy}/w for four selected periods along the entire CO-
PROD2 profile. This depth of a perfect substitute conductor (to explain the out-of-phase part of 
the impedance) images the variable depth of penetration from site to site and period to period. 
Note that no cross-overs occur, i.e. z* increases at all sites with increasing period. This applies 
also for most periods not shown and gives a good testimony for the quality of the supplied data. 

   In detail: The z* curve for 683 s ascends smoothly from a mean depth of 40 km in the far 
west to a minimum of 15 km in the center, indicating here a presumably deep-seated body of low 
resistivity. At shorter periods the z* minimum is less pronounced and shifted eastwards. At the 
eastern end a second sharp z*-minimum occurs in all periods, followed by a steep descent. Hence, 
a narrow low resistivity zone lies here next to a high resistivity region of unknown extent' toward 
east. 
   The transfer functions Txy in Fig. 2 support this interpretation: westward of the center a 
minimum of their real parts and eastward a maximum with a reversed trend in the imaginary 
parts. The proposed transition to an extended high resistivity region beyond the most eastern 
station could explain equally well the strong positive anomaly of the real part at the last three 
sites. It will be difficult, however, to develop from the available data a conclusive model for the
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Fig. 2. Magnetic variation anomalies at 683 s period along the COPROD2 profile. In the center and at the 
   eastern end they are consistent with indications by z* in Fig. 1 for zones of anomalous conductivity. 
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Fig. 3. 3-layer models derived from Zxy impedances at the encircled sites of Fig. 1, using four periods. The 
   residuals c refer to the fit of the squared logarithmic impedance. Hence, E represents the mean relative misfit 

   of apparent resistivity or alternatively the mean phase misfit, multiplied by two, in angular measure. 

eastern section of the profile. The exclusion of all stations beyond station PC5007 by using the 
reduced data set is therefore well founded and focuses the interpretation on the well documented 
structure in the center. 
   Figure 1 shows at either end of the reduced profile two specially marked stations. Their 
Zxy impedances have been used to develop a 1D model as normal reference for the subsequent 
.2D interpretation. Even though only estimates of four periods are involved, the T-algorithm 
of interpreting 1D data allows a subdivision into three layers as shown in Fig. 3 (for a short 
description of this algorithm see LARSEN, 1975, p. 33). 

   The selected sites yield essentially similar models: A conducting top layer of about 5 km
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Fig. 4. p* (z*)-curve for the shown 3-layer model of the chosen normal structure. Filled circles on this curve refer 
  to the four periods of interpretation, open circles to empirical estimates of the impedance Zxy at these periods 

   and the four sites used for 1D interpretation. 

thickness with 5 S2m-6 S2m and a conducting lower halfspace of 10 SZm-30 Pin, separated by a 

poorly conducting second layer of 20 km-40 km thickness. These models have been combined 
into the following 3-layer model: 

      5.5 f2m to 5 km depth, then 300 S2m to 40 km depth and 25 52m below 40 km. 
   Figure 4 shows the theoretical p* (z*)-curve for this model together with empirical estimates 
from the four sites and the four periods. 

 3. The Method of 2D Interpretation 

   Its basis are integral equations which utilize Green's functions to connect the anomalous field 
at a field point r to the total field at source points r', both position vectors lying in the (y, z) plane. 
This plane is perpendicular to the strike directions of a 2D structure o(y, z) = a. (Z) + Ua(y, z). 
In the case of E-polarisation the integral equation for the anomalous electric field is 

                 Eate(r) _ -iWµo f G(r, r')E.(r')dA (3) 

A
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with G(r, r') as Green's function for the adopted normal structure. Differentiation with respect 
to the fieldpoint coordinates leads to integral equations for the anomalous magnetic field: 

                Baz(r) = ILO f A aa(r') • aG(r, r')/az • E.(r')dA,                                                (4)                 Baz(r) = -/10 ] aa(r') • aG(r, r')/ay . E.(r')dA. 
A The integrations are over the anomalous domains of non-zero ua (r'), which must be bounded. 

   Let the field points be the surface points of observation and any of the anomalous fields at 
these points be the data. Green's function and the normal field E,,y (z') = Ex (r') - E.. (r') at 
the source point depth are derivable from o',z and thus known. Unknown, and to be determined 
from the data, is 5a. Because Eax depends on the total conductivity, it depends also on °a and 
the stated inverse problem is non-linear. 

   Suppose this non-linearity is weak in the sense that Ex is not too far from its normal value 
En_,. Then an iterative process can be started by substitution of E,,., for E__ in Eqs. (3) and (4) 
which linearizes the functional connecting data and model. Solving the resulting system of linear 
equations yields a first approximation Qal) for Ua, from which follows by forward modelling a first 
approximation Eax) for the anomalous field. The linear system is solved again with Enx + Eax) 
for Ex, which generates second approximations aa2' and Eax . The process is repeated until it 
converges towards a stable solution in the following sense: 

   Let E be the mean residual of the least-squares solution oaW as defined in Eq. (8) for the j-th 
iteration, i.e. with the approximation Ex + Eax l) for Ex in data kernel. Let E* be the same 
mean residual, but now as model misfit residual with the correct internal field Ex + E(j) for 

the model jai). Provided that the process converges, the difference between these two residuals 
should gradually decrease, when the change in the internal field from iteration to iteration and 
thereby the change of the data kernel abate. 

    This convergence has been observed with no exception, when interpreting the reduced CO-
PROD2 data set. Here the iterative process was terminated as soon as E* deviated less than 10-4 
from E, which mostly required five to six iterations, but never more than nine iterations. 

   Stability and convergence of the described method will depend on how well Enx approximates 
the total field within the anomalous domain. In the models of this study Ex deviates in amplitude 
in general less than 25 percent from Enx, even though at critical points and periods the ratio 
Eax /Enx I may reach 0.8. Table 1 illustrates in the case of model M8 in Fig. 5, how in a sequence 

of eight iterations the residuals c and c* approach each other and how the solutions converge 
toward stable anomalous conductivities. The selected subdomains are those with the greatest 
deviations from the normal structure. The entries, which begin for completeness with those for 
no anomaly, show that the quoted threshold is reached after six iterations and that the model 
parameters are stable afterwards. These results are representative for all other calculations. 
   Since each iteration generates a new model from the original data, the here described methods 

differs substantially from those in which, as in the gradient method, models are gradually improved 
to fit the data. Here the data kernel is improved in its adaption to the models which it produces 
when applied to the data. In Electrical Engineering, I was informed, this procedure is known 
as "Perturbed Born-approximation". In the context of EM induction it has been introduced by 
WEIDELT (1978) to interpret a Baz-anomaly of geomagnetic variations in Northern Germany by 
2D structures. 
   For discretisation of the problem the anomalous domain is divided into M uniform subdo-
mains A,,,. Their anomalous conductivities define an equal number of discrete model parameters 
x,,,,. Let the datum yn be the real or imaginary part of an anomalous field at a certain site and 
period, yielding N data for N/2 complex response estimates of Eax, Bay, Baz or any combination
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Fig. 5. 2D models derived from Z,;y impedances at twenty sites and four periods. The same 1D normal model 
   as shown for model MI applies to all other models. Numbers are subdomain resistivities with errors, in SIm. 

   Residuals E in parenthesis. Cf. Table 2.
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    Table 1. Iterative process of MT data interpretation with N = 148 data and M = 8 model parameter. 

               E least squares mean residual; 
               E* model misfit mean residual; 

               7a (i, j) anomalous conductivity of subdomain 
                        in i-th row and j-th column of (2 x 4) model, in S/m; 

              p(i, j) subdomain resistivities, in Slm. 
            Iteration E E* 0a(1, 1) va(2, 3) p(l, 1) p(2, 3) 
                    0.18880 0.00000 0.00000 0.00000 300 300 

            1 0.12830 0.11924 -0.00240 0.09191 1071 10.50 
            2 0.10336 0.10315 111 9215 450 10.47 
           3 0.09758 0.09854 81 8493 396 11.33 
            4 0.09688 0.09717 59 8272 364 11.62 
            5 0.09684 0.09691 62 8220 368 11.69 

            61) 0.09683 0.09684 62 8209 368 11.71 
           7 0.09683 0.09683 62 8208 368 11.71 
            8 0.09683 0.09683 62 8208 368 11.71 

                      ')last iteration in deriving model M8. 

of them. Then the data kernel in the linear system 

                      yn = E gnmxm + 6yn (n = 1, 2,... , N) (5) 

M for the j-th iteration and the real part of Ea,x as datum is, as seen from Eq. (3), 

                gnm = Re -iwpo I G(r, r')Exj) (r')dAm ; 
r is the position vector of the fieldpoint, where the datum has been taken. In the case of Ba,y or 
Ba,z the respective derivative of the Green's function is to be used according to Eqs. (4). For the 
imaginary part of the anomalous field, the data kernel will be the negative real part of the integral 
expression. No weights are used for the data yn and thereby the residuals by,, are unnormalized 
with respect to the empirical data errors I Eax or OBaz. 

    The least-squares solution which minimizes the sum 

                       S=~sK 

n may require some stabilisation in case of oscillating models xm. It is achieved by adding Mar-

quardt's a2 to the diagonal elements of the normal equations matrix. Let hmn be an element of 
the resulting generalized inverse matrix 

                         H = (GT G + a2I)-1GT (6) 

of the data kernel matrix G = (gnm). Then the anomalous conductivity of the k-th subdomain 
and its errors are found from 

                 x _ hknyn and oxk = hkn0yn~ (7) 
                              n n 

the thus defined mean squared residual from 

        E2 = S/(N - M) _ yn - Xm E gnmyn - a2 xm I (N - M). (8) 
                             n m n m
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In deriving the model parameter errors OYk it has been assumed that the data errors are uncor-
related. 
   For a > 0 the resulting model is a smoothed model, in which a resolution matrix A = HG = 

(ak,n) connects the derived smoothed model parameter to those of the linear system: 

                                     xk = akmxm. (9) 

M 

   The integral equation for Bx in case of B-polarisation differs in two aspects: It is quasi-linear 
in respect to the anomalous resistivity 

                                          Pa = -Q'a ' Pun, 

rather than the anomalous conductivity, and it is more complicated because additional integra-
tions along the boundaries of uniform subdomains are required. In fact, the anomalous fields 
Bax and Eay are mainly determined by these line integrals, when the impedance Zyx is not too 
close to its locally determined 1D value and the effect of electric charges on domain boundaries 
predominant. In any case, the integral equation can be linearized in the same way. Details can 
be found in SCHMUCKER (1992). 
   Tests with synthetic data have shown that the iterative process to derive pa from Eay is less 
stable than the process to derive 7a from Eax in case of E-polarisation. Furthermore, because pa 
and as are not linearly related, B-polarisation and E-polarisation data cannot be combined into a 
single data set. For these two reasons the COPROD2 data for B-polarisation are not considered, 
even though forward calculations will be performed to see, whether the derived models for E-
polarisation generate acceptable B-polarisation responses. 

 4. 2D Modelling Results 

   It should be observed that these results are subject to two major a priori decisions (i) on 
the shape and position of the anomalous domain and (ii) on the 1D normal model outside that 
domain. It has been stated already that z* does not exceed anywhere 40 km and that this may be 
regarded as the maximum depth reached by the downward diffusing fields at the longest period. 
Therefore the anomalous domain has been bounded at 40 km depth and laterally at -105 km 
and +95 km as indicated in Fig. 1. 
   The choice of a suitable 1D normal model has been discussed in Section 2. The programs 
also permit varying the 1D normal model as part of the iterative 2D modelling process. Suppose 
a 2D model has been found, then 2D corrections are applied to the impedances at those sites, 
which were used to establish the 1D model. The 1D modelling is repeated with 2D-corrected 
impedances, yielding a new and better adapted normal model. This option has not been used, 
however, and all models refer here to the same normal model as given at the end of Section 2 and 
shown in Fig. 4. 
   The anomalous domain of 40 x 200 km2 is now subdivided into an increasing number of 
subdomains up to M = 64 as shown in Fig. 5. Input data are 74 complex-valued anomalous field 
estimates Eax with their errors as discussed in Section 1. The resulting subdomain anomalous 
conductivities ua and their errors are converted for convenience into subdomain resistivities and 
their errors as displayed also in Fig. 5. It should be noted that this conversion involves the adopted 
normal conductivity a,, which changes at 5 km depth. Therefore, even when ua is identical above 
and below that depth, p will be different. 
   Table 2 lists for each model in the first column the mean data residuals of Eq. (8) to express 
the overall misfit between input and model data. Then follow the rms residuals of the impedance,



1054 U. SCHMUCKER 

                    Table 2. Residuals for 2D models from MT data (N = 148). 

           Model M E(y) E(Z.y) E(pa) E(Cb) a 
             M 0 0 0.1888 0.1167 km/s 9.2 S2m 8.8 degrees 0 
             M 1 1 0.1439 0.0907 6.0 8.8 0 

              M 2 2 0.1189 0.0762 5.4 6.1 0 
             M 4 4 0.1187 0.0741 5.5 5.9 0 
             M 8 8 0.0966 0.0566 3.8 6.4 6 

             M16 16 0.1117 0.0620 4.3 6.9 6 
             M32 32 0.1179 0.0609 4.3 6.8 4 
             M64 64 0.1407 0.0616 4.4 6.9 3 

the apparent resistivity and phase, dividing the respective sums of squared individual residuals 
by (N - 1), not by (N - M). The last column lists the stabilizing constant a of Eq. (6). 
   The entries begin with model MO which has no anomalous domain at all and E is simply 
the rms amplitude of the input data. The other residuals express the differences between the 
observed and the calculated response data for the adopted normal 1D model. Figure 1 shows how 
the empirical z* estimates deviate from their indicated normal levels. 

   It follows model Ml with an undivided anomalous domain. The residual for Ea,x is clearly 
reduced. More progress is made, when this domain is subdivided in model M2 into an upper and 
lower half. The residual is now 2/3 of its initial value for no anomaly. An additional vertical 
boundary in model M4 has virtually no effect. 
   Obviously a finer structuring is needed in the horizontal direction. Two more vertical bound-
aries and thus a subdivision into eight domains brings in model M8 the residual further down. It 
appears that this is the best achievable fit since further subdivisions into 16, 32, and 64 domains 

yield no improvements. The increase of c from M = 16 onwards reflects mostly the decreasing 
number (N - M) of "degrees of freedom", while the sum S of squared data residuals is nearly 
unchanged. All these models are shown in Fig. 5 except M64. Hence, a subdivision into domains 
of 20 x 50 km 2 cross-section seems to reflect the spatial resolving power of the data. 
   The failure to improve the fit, at least marginally, beyond M = 8 may reflect to some extent 
the uncontrolled use of a stabilising constant a simply to avoid negative conductivities, discussed 
below. On the other hand, the statement about the resolving power will be strengthened also by 
considering the spread of the resolution kernel. Supporting evidence comes also from the spread 
of eigenvalues ) of the GT G matrix, which justifies the performed stabilisation regardless of 
other considerations. In fact, for M > 8, a2 corresponds in size to the fourth eigenvalue and thus 

yields A4/(a2 + )) ti 0.5 as weight of A~ 1 for j = 4, i.e. the smoothed model xk is determined 
essentially by the first eight eigenvalues regardless of the chosen number of subdomains. Model 
accuracy in correspondence to data errors should be also indicative for model resolution. The 
derived errors of subdomain resistivities are so small, however, as to justify all models including 
M64. 
   Turning now to the residuals of the original data (Zxy, pa, 0), similar improvements of the 
fit are observed by 2D modelling. It should be remembered, however, that impedances at four 
out of twenty sites have been used to define the adopted 1D model. It has for Zxy the quoted 
residual of 0.1167 km/s, while the rms amplitude of Zxy is 0.45 km/s. The best fitting 2D models 
have residuals of about 0.06 km/s. 
   Disturbing is the fact that the best possible fit is inadequate, if it were limited by random 
data errors, i.e. the minimum mean residual of 0.0966 is in excess of the mean data error DEax 
of Eq. (1), which is 0.04. The discrepancy implies (apart from the possibility of systematic 
data errors) that the models have an inherent deficiency to explain the data. For instance, the
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adopted 1D model could be an inadequate representation for the surrounding deep structure, or 

the anomalous domain could be not large enough, or simply 3D effects. Various tests have shown 
that neither an enlarged anomalous domain nor different 1D normal models can bring E nearer 

to AE,,. The real cause of the discrepancy remains therefore unresolved. 

   This limits the actual meaning of the model parameter errors as displayed in Fig. 5. Their 

derivation presumes random and independent data errors. The true uncertainties should be 

greater. It is interesting to note that the quoted errors do not increase markedly for models with 
more subdivisions, indicating that the linear problems involved remain well overdetermined, even 

when M is increased up to 64. The reason for dampening the solutions by Marquardt's a is not 

instability, but the fact that negative resistivities appear during the 2D modelling process. 

   Even though there may be better ways to ensure solutions with as > -an, I have decided 

to use in such cases a generalized inverse of the data kernel as described in Section 3 (Eq. (6)). 
The smallest possible a to produce positive resistivities in all subdomains is used; it is found by 
trial and error. A preferable orientation on data error (to produce a mean residual E of the same 
size as the mean data error) is not possible for reasons given above. It is also uncertain to which 
degree the linearisation of a non-linear inverse problem is involved, when at the shortest periods 
Eax is not too far from unity, or the reformulation of the input data during the iteration process 
(cf. Section 1). 
   After considering model fit and model accuracy the third quantity to be studied is model 
resolution. Up to M = 4 no dampening of the solution is necessary and the resolution is "perfect". 
To demonstrate the degree of averaging from M = 8 onwards, Fig. 6 displays the elements of 
the resolution matrix (akm) of Eq. (9) for one specific row, referring to a subdomain near the 
center of the anomalous domain. For M = 8 the resolution is still nearly perfect, supporting the 

supposition from above that this number agrees to the resolving power of the input data. 
   For M = 16, 32, 64 the derived model parameters are averages over an increasing number 

of domains, but basically of those which are above and below the target domain. The resolution 

with regard to depth appears in this way as poorer than the resolution in horizontal distance. But 

here the aspect ratio of height to width of the domains should be noted, which is 1:5 for M = 4, 

16, 64. The cross-section of the anomalous domain to the right illustrates for one specific model 

the changing resolution with position of the target domain. The displayed diagonal elements of 

the resolution matrix clearly demonstrate the vanishing resolution with depth. 
   Partially successful have been attempts to include the magnetic variation anomaly Baz into 

the modelling process. Table 3 lists the obtained residuals for models of the same design as 

model M8, interpreting now 146 complex data. (The strongly deviating Tzy estimates at stations 
PCS004 and PC5011 are omitted.) The first quoted residual is that for the combined data, then 
follow the rms residuals for the anomalous electric and the anomalous vertical magnetic fields. 
The resulting models are not shown. They are similar to the M8 model in Fig. 5. 
   By combining in this way MT and GDS input data, the fit for Eax is clearly downgraded 

          Table 3. Residuals for 2D models from combined MT and GDS data (M=8 and 64). 

        1. MT data from 20 and GDS data from 18 sites 
        2. only GDS data from 18 sites 
        3. MT data from 20 and GDS data from 12 sites 

        Model N E(y) E(Eax) E(Ba=) E(Z.y) E(Pa) EW 
          M8-1 292 0.1259 0.1272 0.1210 0.0789 km/s 5.6 Slm 7.3 degrees 
          M8-2 144 0.1249 7.0 8.8 
          M8-3 244 0.0979 0.0909 0.1041 0.0543 3.5 6.6 

         M64-3 244 0.1273 0.1079 0.1115 0.0625 4.3 7.3
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Fig. 6. Resolution of models M8 to M64, Table 2 and Fig. 5. Shown are for each model the elements akm, of 
   the resolution matrix Eq. (9) for target domain number k as indicated by shading in the schematic model 
   cross-sections. Numbering of domains is from left to right, starting in the top row. The vertical bars in the 
   four diagrams are the resolution elements for m = 1, 2, ... , M. For m k they indicate the degree of averaging 

   over adjoining domains. With increasing number of subdivisions this averaging increases so as to give all 
   models about the same spatial resolution. Bottom right: Diagonal elements of the resolution matrix for each 

   subdomain in case of model M16, demonstrating the deC.rease in resolution with depth. 

when compared to the fit which can be achieved with MT data alone. If only GDS data are 
used, then the misfit for Baz remains nearly as large as when no 2D modelling is performed and 
the residual is 0.1297 (model M8-2). A more satisfactory interpretation of combined MT/GDS 
data is possible, however, when sites with erratic and most badly determined Tzy estimates are 
omitted. 
   Thus, a new set of input data is formed with the MT data from all 20 sites as before, but 
with GDS data from only 12 sites, i.e., from station PC503 at -65 km to PC5009 at 80 km 
without station PC5011. In this way that GDS data section is retained, which appears to be 
most consistent with MT data as outlined in Section 2. 
   The resulting model M8-3 (shown in Fig. 9) provides not only the expected better fit for 
Ba,z7 but has also slightly smaller residuals for Ea,x and Zxy than model M8 from MT data alone. 
The same applies to model M64-3 with 64 subdivisions. Hence, this data combination yields 
models which explain the COPROD2 data better than any other so far derived model. 
   Further calculations concern the question, whether the data could be explained equally well 

by a reduced anomalous domain, comprising either (sedimentary) top layers or alternatively the 
(crystalline) crust below them. The reduced domains are subdivided into M = 8 subdomains, 
their vertical extent is from 0 to 5 km for the top model M8-T and from 5 to 35 km for the deep 

model M8-D. Again only the anomalous electric fields Ea,x are used as input data.
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   Both alternatives lead to acceptable model solutions, as is seen from Table 4, but the fit to 
these identical data is clearly worse for the top model. In fact, the deep model, with E = 0.0910, 

produces one of the smallest residuals. It is not shown because its subdomain resistivities are 
essentially the same as those of model M8 from 5 km on downward. The conclusion is therefore 
that an optimum interpretation of the COPROD2 impedances in E-polarisation requires a deep 
structure of variable conductivity, at least for the considered sites and periods. 

   In two additional models of the same design, named M8-T* and M8-D*, the excluded spaces 
below and above 5 km depth are filled with previously derived variable resistivities. They are 
kept unchanged during the subsequent modelling process. For the top model the deep structure 
is from model M8, for the deep model the top structure is from the resulting new top model 
M8-T*. With this modification, as to be expected, the top model also yields an almost optimum 
fit, while the deep model M8-D* has the best fit of all models. This model is the one reproduced 
in the introductory paper by JONES (1993). 

   A final series of calculations studies the influence that the period selection might have. Two 
new data sets are formed of six periods each. The first set comprises all available periods from 
341 s to 909 s, of which three have been used before. (The two longest periods beyond 909 s 
are virtually without reliable impedance estimates.) This long period set generates, with M = 8, 
subdivisions model M8-L which reproduces model M8 within error limits. Only the central 
low resistivity anomaly has, in model M8-L, even more reduced resistivities, namely in the two 
central subdomains at the bottom 10.5 ± 0.2 Slm and 9.9 ± 0.2 SZm in place of 13.7 ± 0.3 Slm and 
11.7 ± 0.4 1 m for model M8. The residual of model M8-L is greater than that for model M8, but 
in relation to the increased residual of no anomaly, which is now 0.2093, indicates a comparable 
reduction in variance by 2D modelling. 

   The second set is composed of the adjoining short periods from 21 s to 114 s, including the 
85 s period of the old set. Noting that the penetration depths z* hardly exceed 7 km anywhere; it 
is therefore not surprising that no stable solution can be found if the anomalous domain extends 
downward to 40 km. Thus, model M8-S derived from the second set is restricted to the upper 

                   Table 4. Residuals for further 2D models from MT data (M=8). 

             T : top anomalous domain (0 to 5 km) 
              T* top anomalous domain and preset resistivities from 5 to 35 km 

            D deep anomalous domain (5 to 35 km) 
             D* deep anomalous domain and preset resistivities from 0 to 5 km 

             L,S : long or short period data 
            LS : long and short period data 

          Model N E(Eax) E(ZZy) E(pa) E(4) a 
            M8-T 148 0.1307 0.0772 km/s 4.3 1 m 11.7 degrees 1.0 

           M8-D 148 0.0910 0.0538 4.8 7.9 6 
            M8-T* 148 0.0860 0.0497 4.2 9.8 0.75 
            M8-D* 148 0.0809 0.0456 3.3 5.3 4 

            M8-L 214 0.1047 0.0553 4.9 6.9 6 
                      (0.2093 0.1200)1) 

            M8-S 240 0.0875 0.0794 1.3 6.7 0 
                       (0.1053 0.0938) 

           MS-LS 454 0.1073 0.0727 4.4 7.0 14 
                       (0.1628 0.1069) 

                          I )residuals of no anomaly.
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5 km (with M = 8 subdomains). The apparently small residual of 0.0875 should be compared, 
however, to the residual 0.1053 for no anomaly, i.e. at short periods the 2D modelling barely 
improves the fit over that obtained already with a 1D model. 
   Combining the two data sets to a single data set of twelve periods (from 21 s to 901 s) gives 
a final model M8-LS. Its fit is reasonably good, i.e. E = 0.1073 vs. 0.1628 for no anomaly. The 
model shows all the characteristics of model M8 except that the resistivity contrasts in the upper 
part are somewhat smaller, and those in the lower part somewhat larger, than in model M8. This 
corresponds to the conclusions from the long-period data. 
   Data from the remaining COPROD2 sites have been examined, but no results are presented. 
The data of the western section (site PC5014 at -174 km to PC5009 at -124 km) reveal a rather 
featureless deep structure. In contrast, those of the eastern section (site PC5006 at 135 km to 

              PC 5008 PC 5007 

              0 -100 km 0 100 km 

                85s 

                              171 s - - --

               10 

                  341s 

            fil 
             20 

               683s 

                      30 -•' 

             km 

Fig. 7. Penetration depths z* for the periods and sites of interpretation, demonstrating the fit of model M8-3 for 
   Im(Z~,:y). The rms residual between empirical estimates (shown with their error bars) and modelling results 

   (from the dashed theoretical curves) is 1.7 km.
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PC5000 at 233 km) reveal a deep structure of extremely variable resistivity. Severe problems are 
encountered here to find stable solutions; the fit is poor in comparison to the central section. 
Forward calculations indicate that the inductive coupling between the deep anomalous structures 
beneath the three sections is weak, which justifies their separate treatment. 

 5. Distribution of Individual Residuals 

   So far the outcome of 2D modelling has been rated on the size of the mean residual e of 
Eq. (8). As a measure for the overall fit of a model it may conceal, however, trends and systematic 
tendencies of individual residuals, i.e., of the unexplained differences between an observed and 
a calculated datum. Assuming random data errors, these differences should also be randomly 
distributed. If not, the model is inadequate to explain certain significant aspects of the data. 
   Starting with the residuals of impedances Zxy, Fig. 7 displays again their imaginary parts in 

the form of z* depth estimates, now with error bars and in comparison to calculated values for a 
specific model. Both are shown only for the twenty sites whose data were used for modelling. The 
selected model is model M8-3 from a combined interpretation of MT and GDS data (cf. Table 3 
and Fig. 9). 
   As seen from Fig. 7,. the model produces smooth z* curves which for the two long periods 
indeed follow closely the empirical estimates, passing often through them within error limits. For 
short periods, however, the estimates deviate in the center systematically from their predicted 
values. In particular, the reversal of the pronounced upward deflection of z* at 683 s into a 
downward deflection at 85 s is not accounted for by the model. Models with more subdivisions do 
not lead to more randomly distributed residuals and similar observations apply to the not shown 
real parts of Z,,,. Hence, it appears that the model setup has an unresolved basic deficiency, as 
concluded already in the previous section from the size of the residual in comparison to the data 
errors. 
   This is exemplified by the distribution of various residuals in Fig. 8, representing the differ-
ences between the observed and calculated quantity after the last iteration. In the case of Eax 
their distribution histograms are clearly non-symmetric with regard to zero deviation and the 
same applies to the phases which are systematically overestimated by the model. On the other 
hand, the residuals of apparent resistivities are distributed as if they were more or less normally 
distributed random variables. Therefore, the fit of the phases seems to be the problem which in 
turn spreads to the non-random behaviour of both the real and imaginary parts of E,,,. 
   Turning to the residuals of GDS data, Fig. 9 shows empirical estimates of Baz together with 
two theoretical curves, one for model M8 from MT data alone and one again for model M8-3-
They demonstrate, how much better the observed magnetic variation anomaly can be explained, 
when GDS data are included in the 2D modelling process. In fact, model M8 yields only a fraction 
of the observed anomaly of Baz, but there remain substantial deviations between the observed 
and calculated Baz anomaly, in particular when the imaginary parts are considered (not shown). 

   It remains to examine how well the so far ignored MT data for B-polarisation can be ex-

plained. Figure 10 presents the relevant results from forward modelling with model M8-T*, which 
has the most finely subdivided top layer. Even though it cannot be expected that E-polarisation 
data yield the required details on surface resistivities, which largely determine the B-polarisation 
impedance, it is disappointing to note that the model predictions deviate strongly from the ob-
servations. The deep-seated low resistivity zone should depress apparent resistivities from -50 to 
+50 km and move the phases downward from -50 to 0 km and upward from 0 to 50 km. None of 
this is clearly observed and it is difficult to see how observations in E- and B-polarisation could 
be reconciled without involving them jointly into a 2D modelling process.
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Fig. 8. Histograms of the N = 148 residuals of interpretation with model M8-3, revealing non-symmetries in the 
   distribution of residuals for the anomalous electric field and the phase. 
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Fig. 9. In-phase magnetic variation anomaly Ba,z for T = 683 s. Empirical estimates at the twelve selected sites 
   are compared to theoretical values for two models, model M8 as in Fig. 5 and model M8-3 as shown at the 

  top left.
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Fig. 10. B-polarisation apparent resistivities and phases for the periods and sites of interpretation with 
   E-polarisation data. Empirical estimates are compared to theoretical values for model M8-D*, Table 4. The 

   inset at the bottom right shows the resistivities of its top layers. 

 6. Concluding Remarks 

   I see the advantage of the applied method of 2D modelling in the fact that by the use of 
linearized integral equations only the anomalous fields are interpreted. They are direct expres-
sions of any anomalous conductivities within a prescribed anomalous domain. Model fit, model 
accuracy, and model resolution are well defined and can be used for deriving an optimum combi-
nation of them. However, the pragmatic way to avoid negative resistivities, by dampening of the 
solution, should be improved. 
   The drawback is that 1D modelling, which defines the reference normal structure, and 2D 
modelling do not interact. The mentioned possibility to remodel also the 1D reference in the 
course of the iterative 2D modelling process has not been used, but it seems unlikely that it could 
alter the outcome substantially. The problems lie elsewhere. 
   Firstly, it is not possible to find models which have residuals small enough to be comparable 
to the data errors (when only MT data for E-polarisation are used). It implies that even the 
reduced COPROD2 data set has not been exploited to its full possible extent. Secondly, the MT 
and GDS data are of uneven quality. It has been demonstrated, however, that their combined 
interpretation is essential. But in doing so, the residuals go down below the level set by the 
combined data errors, which are totally determined by those of the magnetic data. Hence, these 
combined data are overinterpreted. It should be remembered also that the GDS data could be 
included only after omitting the data of eight sites. 

   Models from a combined interpretation, such as model M8-3 in Fig. 9 or model M8-D* 
reproduced in JONES (1993), are considered as best describing the deep conductivity structure. 
Its main feature is a deep-seated low resistivity zone beneath the central sites where the resistivity
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is reduced to 10 clm in comparison to more than 100 52m in the surrounding layers. 
   Thirdly, the inability to explain the B-polarisation data by these models is unresolved. For-
ward modelling studies show that the deep-seated low resistivity structure could be masked in 
B-polarisation by a highly non-uniform surface layer, but there is no evidence for that in the short 
period data. Even though a linearization of the integral equation for B-polarisation is possible 
and programs are ready to use them for 2D-modelling, not all numerical problems (which have 
to do with the all-important line integrations along subdomain boundaries) have been overcome. 
Future work may also concern the possibility to interpret data from both polarisations jointly, 
even though (for reasons given in Section 3) the approach with linearized integral equations meets 
here a fundamental limit. 

    Thanks are due to Dr. Pete Savage of the PanCanadian Company for making the data available 
for this intercomparative modelling study. I am indebted to Dr. Andreas Junge who critically read the 
manuscript in various versions. I am grateful to Dr. Gregory Neumann for his kind and most complete 
review of the manuscript and his various detailed suggestions, also to an unknown reviewer and his(her) 
more general critical comments. 
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