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       The MTDIW2-PNG magnetotelluric data are examined as Mohr circles. Within their 
   error bounds, of the ten sites five may be classified as 1-D immediately. Another four sites are 
   2-D; the only strongly 3-D data-set is from site PNG121. Visual examination of this simple 

   presentation of the data gives much of the information that comes from more sophisticated 
   analyses and decompositions, and can be used to check the latter. For example, from these 

   basic figures it is possible to give principal directions for the 2-D cases, and observe (where 
    it is present) the characteristics of frequency-independent "static shift". Other characteristics 

    also become evident from examining the data in real and quadrature pairs, notably that the 
   real data are noisier than the quadrature data (a phenomenon attributed to lightning strikes, 

   which would put noise predominantly into the real data). There is a suggestion of a systematic 
    effect in the two-dimensionality of the data as recorded, as the sites were operated as pairs, 
    and generally odd-numbered sites are two-dimensional in character, while even-numbered sites 

    are one-dimensional. 

 1. Introduction 

   Estimates of magnetotelluric (MT) impedance tensors are the bridge between observed mag-
netotelluric data, as time-series, and conductivity models for Earth, arrived at by data inversion 
and interpretation. It is almost always necessary to perform some operation on the tensors, as first 
estimated, before their modelling and inversion. Rotation of a tensor has long been recognised as 
necessary, and other "de-distorting" processes are now becoming established as routine. 

   While it is straight-forward to visualise a quantity which is a vector, it is difficult to visualise 
a tensor, and especially the changes to a tensor as it is rotated, and when it is subjected to other 
de-distorting processes. For this reason tensors depicted as circles, by the technique first used by 
Mohr for the mechanical stress tensor, are a valuable adjunct for an interpreter who is making 
judgements on tensor interpretation. The use of Mohr circles to display other tensor quantities is 
reviewed by Means (1990, 1992), and examples for structural geology in particular are given by 
Lister and Williams (1983), DePaor and Means (1984), Treagus (1987) and Passchier (1993). 

   Mohr circles of a magnetotelluric impedance tensor, taking real and quadrature parts sep-
arately, show all the information known about a tensor, and also therefore many of the major 
characteristics commonly sought. These latter include skew (often now referred to as twist), 
anisotropy, degree of one-, two- or three-dimensionality (1-D, 2-D or 3-D), and angles of rotation 
to the principal axes. 
   The MTDIW2-PNG data are from a sedimentary basin, and show (as might be expected) 
relatively simple MT tensor characteristics. This simplicity is evident in the circles presented 
in this paper. The circles provide a good set of examples for which the parameters of skew (or 
twist), anisotropy, and principal MT directions, can be determined by inspection. To emphasize 
the simplicity of this point, the angles given in Sections 5, 6 and 7 below have been first read 
from the figures by protractor. Where a number of circles indicate the same parameter a mean 
is taken, with the standard deviation from the mean giving an error estimate. 
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 2. The PNG Data Set 

   The PNG data set are from a petroleum prospect over a sedimentary basin in the southern 
highlands of Papua-New Guinea. They are part of the 1991 Kube Kabe (PPL-100) Magne-
totelluric Survey, being the Wara line of that survey. The ten observing sites were spaced at 
approximately 500 m intervals along a line striking approximately S30° W, and circles for the 
magnetotelluric tensors determined for the ten sites are presented in this paper. They would, 
from the outset, be expected to be 1-D or perhaps 2-D (and not complicated 3-D), and this 
situation is demonstrated to pertain. The main purpose of this paper, intended as a companion 
to the others in the MTDIW2 volume, is to present the tensor data as Mohr circles, and to list 
the characteristics which are then immediately evident. 
   For the MTDIW2 Workshop, the PNG MT data were supplied referred to axes directed 
geographic north (X) and east (Y). In the text below, rotations "of the measuring axes" thus 
refer to (clockwise) rotations from axes oriented north and east. 

 3. The Circles 

   The essence of the Mohr circle method is to take the real and quadrature parts of an MT 
impedance tensor separately, and for each part to plot the variation of Zxx against Zxy as the 
observing axes rotate through 180°. In this way two circles are generated, which display all the 
information known about the impedance tensor. 
   For an observed magnetotelluric impedance tensor with real parts 

                                 Zxxr Zxyr 
                             Zyxr Zyyr 

which changes to 
                             Zxxr Zxyr 

                              Zyxr Z'YYr 

upon rotation of the measuring axes 8' clockwise, a circle may be drawn on a plot of Z'XXr against 
Zxyr, as shown in Lilley (1976, 1993a). The circle is of radius R given by 

                                                 1/2 
               R = 2 [(Zxxr - Zyyr)2 + (Zxyr + Zyxr)2 

and is centred on the Zxyr, Z'XXr co-ordinate axes at point 

                      Zxyr = 1 2 (Zxr y- Zyxr 

1 

                      Z'XXr = 2 (zxxr + Zyyr 
where the subscript r denotes the real part of the appropriate tensor element. 
   For one-dimensional data, the circle is simply a point on the horizontal axis. For two-
dimensional data there is a circle of finite radius, with its centre on the horizontal axis. For 
three-dimensional data there is again a circle, the centre of which is offset from the horizontal 
axis; the offset is a measure of the degree of three-dimensionality. When the tensor at a site is 
known for a range of frequencies, all the circles for that site may be plotted together. 

   If a radial arm is drawn from the centre of a circle to the observed pair of values at the point 
(Zxyr, ZXXr), then rotation of that arm by angle 20' anticlockwise takes its outer end to the
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Fig. 1. Mohr circles for the members of the PNG data set classified as two-dimensional: PNG101, PNG103, 
   PNG105 and PNG107. Circles for the real (or in-phase) parts of the MT tensors are plotted to the left, and 
    for the quadrature (or out-of-phase) parts are plotted to the right. Scale is given by the fact that in each case, 
    the origin of the axes for the quadrature circles is displaced 62.5 normalised impedance units from the origin 

    of the axes for the real circles. A group of circles may contain up to 40 different members, one for each of 
   the different frequencies (in the range 384 Hz-1820s) for which the MT impedance tensor is given in the PNG 

    data set.
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point on the circle corresponding to (Z'xy,., Z'xxr). It is this property which is used in section 
5 below to obtain strike angles. Thus where, as will be seen in Fig. 1, rotation of a radial arm 
anticlockwise by some angle (say 20) takes its end point to the horizontal axis, then rotation 
by 0 clockwise of the measuring axes will bring about their alignment with the principal MT 
directions. 
   Thus the 2-D strike is at bearing 0 (with a 90° ambiguity). The underlying reason is that 
a circle will cut the horizontal axis at points where Z'xxr is zero. For 2-D, these are the points 
where Z'xyT takes its two principal impedance values. 
   To demonstrate the determination of strike direction by inspection, angle 20 can be read 
from diagrams like Fig. 1 by protractor. 

 4. Errors 

   The PNG data set include standard errors for the impedance tensor elements. In computing 
the parameters for a particular circle, these errors may be carried through to give standard errors 
for the coordinates of the circle centre, and for the radius of the circle. In the present paper the 
procedure described by Lilley (1993b) is followed. 
   Generally in this paper, a plot is omitted if the error in a centre coordinate, or radial arm, 
falls above a certain discriminant level (taken here to be 2.5 normalised impedance units). This 
discrimination procedure has been adopted so that scattered and often large circles from poorly-
determined data will not confuse the better-defined pattern of a data-set, as shown by its well-
determined members. 

 5. The PNG Magnetotelluric Circles 

   Full sets of Mohr circles for the PNG sites are presented in Figs. 1, 2 and 3. In the simplest 
case of magnetotelluric data recorded above a uniform half-space, the tensor elements are pro-
portional to (period)-1/2, and so decrease with increasing period. It is therefore helpful when 
drawing circles to first normalize the impedance tensor data by multiplying each element value by 
T1/2, where T denotes period in seconds. All the tensor element data for Figs. 1, 2, 3 and 4 have 
been normalised in this way. With this normalisation, and because of an increase of conductivity 
with depth in the ground, the progression from high to low frequency generally corresponds to 
the circle centres moving from right to left in each diagram. 
   Figures 1, 2 and 3 show characteristics for the PNG sites which will now be described. In 
the figures, sites with major characteristics in common have been grouped together. 

Set 1. PNG101 (Fig. 1) 
   For both real and quadrature sets of circles, the circle centres, imagined joined together, 
make lines which are rotated no more than 6° from the horizontal axes. Thus the skew or twist 
is at most 6°, and the data are basically two-dimensional. 
   The angles for the principal MT directions for the PNG101 site are given clearly and consis-
tently by the parallel nature of the radial arms of the plotted circles. The directions of these radial 
arms indicate that the reference or "measuring" axes should be rotated clockwise 23° and 113° 
from north (with error 7'), for the axes to then be aligned with, and so indicate, the principal 
MT directions. 

   In fact, both the real and quadrature sets of circles fall within even envelopes, in the pattern 
predicted for static-shifted 1-D structure in an earlier paper (Lilley, 1993c). Defining a (tensor) 
anisotropy parameter as half the angle which the envelopes subtend at the origin of axes, the 
envelopes for the PNG101 data indicate a frequency-independent anisotropy of 24°. Thus PNG101
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Fig. 2. Mohr circles for the members of the PNG data set classified as one-dimensional: PNG102, PNG104, 

   PNG106, PNG108 and PNG122. The arrangement of the circles is as for Fig. 1.
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Fig. 3. Mohr circles for PNG121, the member of the PNG data set not classifiable directly as 1-D or 2-D. The 
   arrangement of the circles is as for Fig. 1. 

may be an example of data which have been recorded above 1-D geologic structure, and which 
have been affected by static shift. 

Set 2. PNG102 (Fig. 2) 
   This data set has circles which lie closely along the horizontal axes, and (given the small 
size of the circle radii) are closely 1-D. An additional indication of 1-D behaviour is given by 
the observation that the radial arms for the circles are not consistently parallel, so that there are 
no preferred MT principal directions. The non-zero radii, and scattered radius directions, are 
interpreted as 1-D data with noise. 

Set 3. PNG103 (Fig. 1) 
   The PNG103 data set has characteristics similar to the PNG101 set, with a skew of at most 
-3° , and an anisotropy angle of 25° (except at long periods, when the data are more closely 
1-D). The directions to rotate the reference axes clockwise from north, to give the principal MT 
directions, are 37° and 127° (with error 4'). 

Set 4. PNG104 (Fig. 2) 
   These data resemble PNG102, and are closely 1-D with perhaps a skew or twist of -11°. 
The random nature of the directions of the radial arms, especially in the real circle set, indicates 
that the departures from 1-D (albeit twisted 1-D) are a consequence of experimental noise. 

Set 5. PNG105 (Fig. 1) 
   The PNG105 data are very similar in characteristics to PNG103. The PNG105 data show 
nil twist or skew; anisotropy variable around 30°; and rotations of the measuring axes of 31° and 
121° (with error 2°) for alignment with the principal MT directions. 

Set 6. PNG106 (Fig. 2) 
   The PNG106 data are a straight-forward case of 1-D structure (which would be lines of points 
along the horizontal axes), but with noise (to produce the circles seen in the plot). 

Set 7. PNG107 (Fig. 1) 
   The circles indicate rotations of the measuring axes of 26 and 116° (with error 11°) for 
alignment with the principal MT directions. At long periods the data are 1-D, with circles of 
small radii on the horizontal axes. The real circles are noisier than the quadrature circles.
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Fig. 4. Figure showing some of the elements of the circles in Figs. 1, 2 and 3 above, plotted as for Fig. 1. The 
   top line shows the PNG101 circle centres and radial arms only, the latter clearly indicating a well-determined 
   rotation of the axes for alignment with the MT principal directions. The next line shows the PNG101 circle 
   centres, without the radial arms, and the next lines show similar plots for the sites PNG102, PNG121 and 

   PNG122. The 1-D nature of the PNG102 data-set can be clearly seen (lines of points along the horizontal 
   axes), as can the complicated plot of the PNG121 circle centres, and the straight line (of constant skew or 
   twist) for the PNG122 data.
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Set 8. PNG108 (Fig. 2) 
   The PNG108 data are similar to the PNG104 data in characteristics. The PNG108 data are 
1-D, with a slight negative skew or twist (-80). 

Set 9. PNG121 (Fig. 3) 
   The PNG121 data are the most complex of the present set. Site PNG121 is three-dimensional 
in behaviour, and not easily interpreted. Disregarding the noisy data at high frequency, a 
frequency-independent skew of approximately -20° is evident. Anisotropy and strike direction 
are variable. 

Set 10. PNG122 (Fig. 2) 
   The PNG122 data are like PNG108, and so also like PNG104. The PNG122 data are 1-D, 
with a slight negative skew (-7°). 

 6. Some Circle Elements Plotted Separately 

   In many cases, some of the information displayed in Figs. 1, 2 and 3 can be seen more clearly 
if elements of the circle diagrams are plotted separately. Examples of such elements plotted 
separately are given in Fig. 4. The top line shows the PNG101 circle centres and radial arms 
plotted without the circle circumferences, and the parallel nature of the radial arms shows well-
determined rotation angles for alignment of the measuring axes with the principal MT directions. 
   The next line of Fig. 4 shows plots of just the circle centres of PNG101 data. A consistent 
skew or twist is shown clearly, as (for both the real and quadrature cases) the circle centres lie 
on a straight line which is rotated some 6° from the horizontal axis. 
   The remaining lines of Fig. 4 show circle-centre plots for PNG102, PNG121 and PNG122 
respectively. These examples form a contrasting set, as the PNG 102 plot shows circle centres 
lying on the horizontal axes in an 1-D (and 2-D) manner, while the PNG121 circle centres have a 
complicated locus, and the PNG122 centres again form straight lines, indicating a skew or twist 
of some -7°. 

 7. Conclusions 

   The PNG data, by the plots of their circles, can be seen to fall into two groups, and have 
been plotted this way in Figs. 1 and 2 (with Fig. 3 showing the exception). The groups have the 
following characteristics: 

   In Fig. 1 the "odd" sites, PNG101, 103, 105 and 107, are 2-D in character, with negligible 
skew or twist. In the case of site PNG101 in particular, the 2-D character may result from 1-D 
data being affected by static shift. 

   In Fig. 2 the "even" sites, PNG102, 104, 106, 108 and 122, are basically 1-D in character, 
with (in three cases) a slight negative skew. 
   The above observation may indicate some systematic effect in the MT field equipment or 
data reduction procedures, as the sites are understood to have recorded in pairs (i.e. site 101 
simultaneous with site 102, site 103 simultaneous with site 104, etc.). The main point to note 
here is that displaying tensor data diagrammatically enables such characteristics to be noticed. 

   A second general observation is that the real circles, in many cases, can be seen to be 
noisier than the quadrature circles, in that the pattern formed by the latter is more even. This 
phenomenon is attributed to the effects of lightning strikes, which are sharp in time and so will 
affect the magnetic and electric time series in phase, (and thus also the real, rather than the 
quadrature, tensor elements). Once alerted to such a phenomenon, reduced vulnerability to it 
may be possible by particular remote referencing procedures, and by special time-series analysis
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techniques. Also a weighting of the quadrature data, relative to the real data, may be feasible in 
data inversion routines. 

   A third observation is that the similarity of the real and quadrature sets of circles means 
that generally the magnetotelluric phase will reside in the first quadrant, for all rotations of the 
measuring axes. There are some instances where circles go to the left-hand side of the vertical 
axis (the characteristic which shows a phase out of the first quadrant) but, with the exception 
of PNG 121, all these circles can be seen to be noise effects associated with circles with centres 
already close to the origin. It is likely the same is true of PNG121, but this data set is more 
distinctly 3-D, and skew can directly cause phases to go out of quadrant by moving circles so that 
they cut to the left of the vertical axis. 
   Finally, some information accompanying the PNG data advises that the prevailing geologic 
structures in the area trend approximately 120°. This bearing can now be compared with the 
directions found for the principal MT directions in Section 5 above. Taking the usual 90° am-
biguity favorably, sites 101, 103, 105 and 107 indicate strike directions of 113° ± 7°, 1270 ± 4°, 
121° ± 2° and 116° ± 11°, respectively, in good agreement with the stated 120°. 

   In summary, portraying the data as Mohr circles has shown that it is straightforward to 
recognise the data as 1-D and 2-D, with strike angles immediately evident in the case of the 
latter. Also, before other interpretation procedures are invoked, a familiarity is gained with 
aspects of data quality. 

   The PNG data were made available by Chevron (Australia) and Chevron Niugini Pty Ltd through 
C. T. Swift, and distributed by A. G. Jones of the Geological Survey of Canada. The present paper 
was prepared for the "Magnetotelluric Data Interpretation Workshop-2" convened at the Institute of 
Theoretical Geophysics, Cambridge University, England. Adam Schultz and committee are thanked for 
hospitality at the workshop, which preceded and was run in conjunction with the Twelfth Workshop on 
Electromagnetic Induction in the Earth held at Brest, France. W. D. Means is thanked for discussion on 
Mohr circles, and for hospitality at the State University of New York at Albany. 
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