
                                                          J. Geomag. Geoelectr., 49, 817-825, 1997 

             On the Resolution of the Darai Limestones by 
               Two-Dimensional MT Forward Modeling 

              Jaume Pous, Juanjo LEDO, Alex MARCUELLO, and Pilar QUERALT 

         Departament de Geologia Dinamica, Geofisica i Paleontologia, Universitat de Barcelona, 
                          Marti Franques s/n, 08028 Barcelona, Spain 

         (Received December 13, 1994; Revised December 28, 1995; Accepted January 30, 1996) 

       The PNG data have been analysed to determine the presence of the lower Darai lime-
    stones. As a first step, Groom and Bailey decomposition method was applied, which indicated 
    that the electrical structure was approximately two-dimensional and striking N120°. Accord-
    ingly, two-dimensional forward modeling of the rotated data was performed. The final model 

    showed the resistivity distribution with alternating resistive Darai limestones and conductive 
    Ieru stratigraphic units. In particular, the model exhibited the resistive lower Darai lime-

    stones along the whole profile, which was the question posed at the MT-DIW2. A sensitivity 
     test was performed to ensure the presence of the lower Darai limestones was resolvable. 

 1. Introduction 

   The PNG data set, provided by Chevron Niugini Pty. Ltd. to the participants at the MT-
DIW2, consists of 10 magnetotelluric sites from Papua, New Guinea and a geological cross-section 
as additional information. The MT data were recorded over a section of Daxai limestones, below 
which there are conductive sediments. This structure consists of an imbricated system of SW-
directed thrusts in such a manner that the anticipated sequence, from top to bottom, is as 
follows: Darai limestones, Ieru sediments, Darai limestones, Ieru sediments, and basement. As 
the Darai limestones were expected to be of higher resistivity than the conductive Ieru sediments, 
the magnetotelluric method was proposed as a good geophysical technique to resolve such a 
subsurface structure. However, previous inversions of these MT data yielded a thickness of the 
Darai limestones which was always thinner than that expected from geological data. In particular, 
it was thought that the lower Darai limestones were not detected by the MT data. The resolving 
power of MT data to detect the presence of the lower Darai was the question posed at the MT-
DIW2. In this paper, we present our interpretation of the PNG data, which is summarized in a 
two-dimensional resistivity model along the profile. As evidenced by the model, our answer to 
the question posed at the MT-DIW2 is that MT data can detect the presence of the resistive 
lower Darai limestone. 

 2. MT Data Analysis 

   The MT sites were aligned along a 6 km NE-SW profile. The measurement axes for the 
horizontal components were NS and EW. The period range of acquisition was from 384 Hz to 
approximately 1800 s. Prior to interpretation, an analysis of the data was undertaken in order 
to determine the dimensionality of the underlying regional electrical structure. The Groom and 
Bailey decomposition method (Groom and Bailey, 1989) was applied following the scheme of 
Groom et al. (1993). The impedance tensor was rotated every 5° from 0° to 90 A regional 
strike of N120° gave the minimum chi-squared error of misfit, and the minimum variation of the 
twist and shear angles versus the period, this behaviour failing only at short periods. Accordingly, 
the electrical structure was considered to be two-dimensional striking N120° (from the geology 
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the 90° ambiguity was eliminated). Furthermore, the geomagnetic transfer functions showed a 
behaviour from which a two-dimensional structure could also be roughly inferred. Thus, modeling 
was carried out from the impedance tensor components rotated 30°. Scattering in the apparent 
resistivities caused by static shift distortion was less than a decade. A correction for static shifts 
was made by fixing the depth of the basement, which was provided as additional data. 

 3. Two-Dimensional Modeling 

   The behaviour of the apparent resistivities and phases is similar at all the sites. The minimum 
at 60 s in both polarizations of the apparent resistivity curves is associated with the bottom of 
the thick lower Ieru conductive unit, below which there is basement. At periods longer than 
1 s, there is a divergence between the two polarizations. The apparent resistivity curves are not 
parallel. Also, the phases diverge in such a manner that the minimum of the B-polarization 
apparent resistivity is, in general, lower than the one in the E-polarization. This suggests a 
lateral increase in resistivity at depth. For periods longer than 60 s, the apparent resistivity 
curves are again parallel, and the phases coincide. The model we constructed was obtained by 
trial-and-error fitting of the apparent resistivities and phases using the finite element algorithm 
of Wannamaker et al. (1987). A one-dimensional inversion of the E-polarization data from each 
site was undertaken, using Fischer and Le Quang's (1981) program, to provide an initial model. 
After several attempts, we obtained the final model shown in Fig. 1. 
   The model delineates five distinct units which correlate with the geological sequence. Below 
the surficial resistive blocks, associated with the upper Darai limestones, there is a dipping con-
ductive zone, which corresponds to the upper Ieru unit, attaining a depth of 2 km under site 122. 
The resistivity contrast between the upper boundary of this dipping conductor and the upper 
resistive unit is the reason for the marked divergence between both polarization. As a conse-
quence, the minimum (at 60 s) for the B-polarization apparent resistivity is lower than that for 
the E-polarization curve. Between the upper Ieru conductive unit and the lower Ieru unit there 
is a resistive zone (500 1l.m) which should correspond to the lower Darai limestones. The lower 
Ieru unit has an uniform resistivity of 2.5 Sl.m and is floored by the basement with a resistivity 
of 200 11•m. 
   Figure 2 shows the data and model responses for six regularly spaced sites along the profile. 
The RMS misfit has been calculated for all the sites and for periods ranging from 0.1 s to 100 s. 
The RMS misfit between the decimal logarithm of the data and model responses of the apparent 
resistivities is 0.056 for the E-polarization responses, and 0.086 for the B-polarization ones. 
The RMS phase misfit is 6.7 ° for the E-polarization phases and 9.7° for the B-polarization ones. 
These misfits show that the data are reasonably well-described by the model. The most significant 
disagreement occurs in the phases around 1 s (Fig. 2), where there seems to be a contradiction 
between phases and apparent resistivities, especially for the E-polarization responses. It should 
be pointed out that, in this particular model, one-dimensional modeling under every site fits the 
E-polarization data, whereas the B-polarization data are the most sensitive to two-dimensional 
structures. Moreover, the model fits well the inflection appearing in the E-polarization apparent 
resistivity curve between 1 s and 10 s, which is caused by the lower Darai limestones. 

   In order to see the influence of the lower Darai limestone, the responses from an alternative 
model, without this unit from site 106 to the NNE, have been calculated. This alternative model 
is in agreement with previous MT interpretations provided to the participants of the MT-DIW2. 
Considering all the sites and periods between 0.1 s and 100 s, the RMS misfit between the data 
and model responses of the apparent resistivities is 0.091 for E-polarization and 0.091 for B-
polarization. The RMS phase misfit is 5.1° for E-polarization and 9.2° for B-polarization. This 
model not only gives a higher misfit for the apparent resistivities, but it does not display the 
inflection, between 1 s and 10 s, in the E-polarization seen in the observed data. Figure 3 shows
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                      Fig 1 Two-dimensional resistivity model of PNG data 

the E-polarization response of this alternative model for site 104, which is representative of the 
misfit behaviour at all the sites. 
   Given the aforementioned contradiction between the apparent resistivities and phases, there 
is no two-dimensional model that fits both simultaneously. Nor do one-dimensional inversions 
of the E-polarization responses fit simultaneously the apparent resistivities and phases. The 
Hilbert transform relation between the apparent resistivities and phases (Kaufman and Keller, 
1981) appears not to be fulfilled in the period band between 1 s and 10 s, which could indicate
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Fig. 2. Data and model reponses (solid lines) of six representative sites from the two-dimensional model of Fig. 1. 
   Plus: E-polarization, cross: B-polarization.
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Fig. 3. E-polarization data and model response for site 104 when the lower Darai limestones have been removed 
  from site 106 towards the NNE. 

errors in either the apparent resistivities or in the phases in this period range. Thus, it appears 
that the presence of the lower Darai limestones depends on which data (apparent resistivities or 
phases) are considered. The inflection in the E-polarization apparent resistivity curves appears 
clearly in all the sites of the profile, with a good correlation between them, and becomes smoother 
towards the NNE part of the profile. In contrast, the phases are more irregular from one site to 
other. Moreover, 1-D inversions of the E-polarization apparent resistivities always resulted in a 
lower misfit than the phases. These features would lend support to having more confidence in 
the apparent resistivities and, consequently, we think that, in this case, the apparent resistivities 
are more reliable than the phases. Accordingly, the conclusions in this paper are based on this 
assumption. 

 4. Sensitivity Test 

   A sensitivity test of their model parameters has been carried out to determine how well the 
MT data resolve the lower Darai limestones according to the model of Fig. 1. This has been 
made in two steps. First, given that the apparent resistivity of the 1-D model below every site 
coincides with the E-polarization of the 2-D model of Fig. 1, the 1-D analysis of the equivalence 
for the 1-D model below every site has been carried out. The equivalent 1-D models, giving the 
lower boundaries of the Darai limestone parameters (resistivity and thickness) have been obtained 
from the proper eigenvector combinations (Johanssen, 1977; Pous et al., 1985, 1988; Pedersen 
and Rasmussen, 1989). Such an approach is expected to provide an approximate estimation of 
which parameter combinations are resolvable. 
   Second, 2-D models, according to the 1-D equivalence analysis, were constructed, and possible 

2-D equivalences were investigated taking into account both polarizations. We considered two 
models being equivalent when they satisfy the following two conditions: 1- the RMS misfit between 
their model responses is less than a maximum value; 2- the responses maintain the inflection in 
the E-polarization of the apparent resistivity between is and 10 s, associated with the presence 
of the lower Darai limestones. The criterium for the maximum RMS misfit was set at 0.070 for 
both polarizations of the apparent resistivities, which is the order of the RMS misfit between the 
data and responses of the Fig. 1 model. 
   Figure 4 shows the typical behaviour of the eigenvector associated with the smallest eigenval-
ues involving the parameters of the lower Darai limestones. The first one shows a high amplitude 
for the component associated with p4, which is the resistivity of the lower Darai limestone. The 
resistivity lower boundary from the 1-D equivalence analysis is 20 Q -m. However, even though
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Fig. 5. B-polarization apparent resistivity responses for different resistivities of the lower Darai limestones. The 
  E-polarization response is the same for all the models (upper solid line). 

this low resistivity fits the E-polarization, it does not fit the B-polarization of the corresponding 
2-D model. Figure 5 shows the 2-D response of the B-polarization apparent resistivities for site 
106. The lower resistivity value, giving a 2-D RMS misfit less than 0.070 and maintaining the 
inflection, is 200 P.m. 
   The average thickness of the lower Darai in the model of Fig. 1 is 950 m. In accordance with 
the second eigenvector in Fig. 4, a combination of the parameters of the lower Ieru unit should 
be considered in order to obtain an equivalent model with the minimum thickness of the lower 
Daxai unit. The lower boundary of the thickness from the 1-D equivalence analysis is, on average, 
650 m, the parameters of the lower Ieru unit being 3.7 SZ-m and 5.6 km. After several attempts, 
the final 2-D model (with a RMS misfit less than 0.070 and the inflection in the E-polarization 
remaining between 1 s and 10 s) was obtained. However, this model gives a basement depth 
deeper than 8 km, which is not in agreement with the additional information provided (basement 
at about 6 km). Accordingly, the leveling due to the static shift was changed appropriately in 
order to obtain again a depth of 6 km for the basement. The resulted 2-D model is presented in 
Fig. 6. The RMS misfit is less than 0.070 and the E-polarization apparent resistivity response 
maintains the inflection. This model shows a resistivity of the lower Darai limestones of 280 P.m,
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                         Fig 6 Equivalent two-dimensional resistivity model 

which is similar to the lower boundary obtained from the first eigenvector. The average thickness 

in the central part of the profile is less than 500 m and is located closer to the surface: beneath 

site 106, its top is at 1.2 km and beneath site 122 at 1.5 km. Now, the parameters of the lower 
Ieru unit are 2.3 1.m and about 4.3 km in thickness.
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 5. Conclusions 

   The E-polarization apparent resistivity data are the most sensitive data for detecting the 
lower Darai limestones, which are characterized by the inflection appearing between 1 s and 10 s. 
This inflection becomes smoother towards the NNE part of the profile, and at periods longer than 
1 s the B-polarization apparent resistivity is lower than the E-polarization. These two features 
are a consequence of the NNE dipping of the embedded resistive unit, which corresponds to the 
lower Darai limestones. 
   Thus, we conclude that the lower Darai limestone is present along the whole profile. From 
the model of Fig. 1, in which the parameters of the lower Darai limestones are 500 S2•m and about 
950 m, a sensitivity test was carried out in order to obtain lower boundaries for these parameters. 
The equivalence analysis showed that the resistivity may vary independently, but the thickness 
depends on other parameters. After recalculation of the static shift correction, this thickness 
results mainly in a dependence with the depth of the lower Darai limestone. In accordance with 
the criterium used in the sensitivity test, the lower boundaries are 200 S2•m for the resistivity 
(for the Fig. 1 model) and a thickness of 500 m when the lower Darai limestones are shallower 
(Fig. 6). 
   There seems to be a contradiction between the phases and apparent resistivities in the interval 
from 1 s to 10 s. Our conclusions are based on the assumption that the resistivities are more 
reliable than the phases. However, a new revision of the data and further data would be necessary 
to shed light on this contradiction and the possible distortion effects. 
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