
where is the model from the previous iteration, is the data for that
model, , and is the Jacobian matrix of sensitivities comput-
ed for the model from the previous iteration.

i.e.

where and

Introducing the diagonal matrix

The inverse problem is non-linear, both because of the non-linear relationship
between data and model, and because of the non-l2 measures. So use iterative
procedure, with linearized approximation of the relationship between data and
model. At the nth iteration, minimize

with

and

Differentiate with respect to , and equate resulting derivatives to zero.
Differentiating the general form of the measures gives:

is . For Ekblom’s measure, the elements of are:

gives

For the measure of misfit, is . For the measure of model structure,

The linear system of equations to be solved at each iteration is therefore:

The matrices and the Jacobian matrix are updated at each iteration. This is
know as iteratively reweighted least squares (IRLS).

For 2D MT example presented here, forward modelling done using finite differ-
ence procedure (Farquharson et al., 2002), operation of Jacobian matrix, or its
transpose, on a vector done using the forward solver (e.g., Mackie and Madden,
1993, Rodi and Mackie, 2001), linear system of equations solved using direct LU
decomposition or conjugate gradients.

Appendix: Iterative solution procedure

Blocky models in minimum-structure inversions

Colin G. Farquharson
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Summary
The inclusion of diagonal spatial differences in an l1-type measure of model
structure enables piecewise-constant, blocky models with dipping interfaces to
be constructed by minimum-structure inversion procedures. Examples are
given for 2D MT inversion.
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Figure 1: A sub-section of the 2D model mesh showing the possible
directions of the finite differences.

Measure of model structure

In typical 2D minimum-structure inversions, the measure of model structure com-
prises a term involving finite differences in the x-direction and a term involving
finite differences in the z-direction (and a diagonal weighting matrix). When l2
measures are used, these two terms constitute the norm of the gradient of the
model. When l1 measures are used, the terms work independently to generate
vertical and horizontal interfaces. To generate dipping interfaces, it is suggested
here that terms involving finite differences in the diagonal directions be included
(see Figure 1).

The measure of model structure therefore comprises five terms, with W1 a
diagonal weighting matrix, W2 and W3 the usual x and z finite-difference matri-
ces, and W4 and W5 finite-difference operators for diagonally up to the right and
diagonally down to the right.
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where is the vector of observations, is the vector of data computed for
the model, and is a diagonal matrix of the reciprocals of the measurement
uncertainties.

where is the vector of model parameters, are finite-difference matrices,
and are possible reference models.

Theory
General minimum-structure inversion strategy

Typical minimum-structure, under-determined inversion: (i) the subsurface is
discretized using a mesh with many cells, (ii) mesh kept fixed during inversion,
(iii) values of the physical property in the cells are the model parameters to be
found via the inversion, (iv) seek the model which minimizes a combination of
data misfit and model complexity.

The composite function to be minimized:

Measure of data misfit:

Measure of structure in the model:

The general form of the measures and is:

There are numerous possibilities: (i) the classic norm with

(ii) the norm with

General measures

(iii) the M-measure of Huber for which

and (iv) the perturbed norm-like measure of Ekblom for which

Because of the squaring, minimizing the norm of a vector suppresses ele-
ments which are much larger than their neighbours. Variation of the sizes of the
elements gets smeared out as much as possible.

Minimizing an -type measure of a vector does not penalize against isolated
large elements.

Hence, minimizing an measure of spatial differences of a model allows for large,
localized differences. This produces models with sharp interfaces between rela-
tively uniform zones.

Theory (continued)

(See appendix below for the iterative solution procedure.)

Introduction

Minimum-structure inversion procedures (that is, ones in which a measure of
the amount of structure in the model is minimized in conjunction with a measure
of data misfit, and in which the parameters being sought are the physical prop-
erties in the cells in an otherwise fixed mesh) are generally robust and reliable.
However, the features in the models which are produced are typically smeared-
out and fuzzy. The aim of the work presented here is to develop a minimum-
structure inversion procedure that retains the robustness and reliability of exist-
ing implementations, but which can generate models comprising relatively uni-
form regions separated by sharp, distinct interfaces.

Motivation

A number of authors have successfully modified the traditional minimum-
structure inversion procedure to use non-l2-norm, non-sum-of-squares mea-
sures and thus produce models with sharp interfaces: Farquharson & Olden-
burg (1998) for 1D EM; Portniaguine & Zhdanov (1999) for 3D gravity; Loke et
al. (2003) and Farquharson & Oldenburg (2003) for 2D DC resistivity. However,
it was found that the interfaces in the constructed models were predominantly
horizontal or vertical − the method did not want to generate dipping interfaces
(Auken & Christiansen, 2004). The inclusion of diagonal spatial differences pre-
sented here attempts to remedy this problem.

Previous work

Smith et al. (1999) and de Groot-Hedlin & Constable (2004) for MT, and Auken &
Christiansen (2004) for DC resistivity, have developed 2D inversion procedures
which generate blocky, pseudo-layered models. In their approaches, the depths
of the horizontal cell boundaries are parameters in the inversion, as well as the
conductivities in the cells. Constraints are placed on the lateral variability of the
conductivities and the cell boundary depths. This is different from the approach
taken here, which is to extend the classic minimum-structure, under-determined
inversion algorithm.
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Figure 2: The conductivity model from which the synthetic data-set
was generated. The triangles indicate the observation locations.
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Figure 3: The model produced using l2 measure of model structure.
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Figure 4: The model generated using an l1-type measure of model
structure with the usual x and z finite-difference terms (i.e., no explicit
diagonal differences).
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Figure 5: The model generated using an l1-type measure of model
structure and diagonal finite differences.

Example
A synthetic MT data-set was generated from the conductivity model shown in
Figure 2 − real and imaginary parts of the E-polarization impedances at 17 loca-
tions at three frequencies (3, 10 and 30 Hz). Gaussian random noise of standard
deviation equal to 1% of a datum was added.

Three inversion results are shown below. In each inversion, the trade-off parame-
ter was started at a relatively large value (100), and then halved at each iteration
until a value was reached which resulted in a misfit sufficiently close to the target
value. The trade-off parameter was then kept constant until the model and the
objective function were no longer changing.

Figure 3 shows the model produced using the usual l2 measures, and the usual x
and z finite-difference terms. Figure 4 shows the model produced using the
Ekblom measure with p=1, and only x and z difference terms. Figure 5 shows the
model produced using the Ekblom measure (p=1) and with all four directions of
finite differences.


