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ABSTRACT 

The inversion of electromagnetic sounding data does 
not yield a unique solution, but inevitably a single 
model to interpret the observations is sought. We re- 
commend that this model be as simple, or smooth, as 
possible, in order to reduce the temptation to overinter- 
pret the data and to eliminate arbitrary discontinuities 
in simple layered models. 

To obtain smooth models, the nonlinear forward 
problem is linearized about a starting model in the 
usual way, but it is then solved explicitly for the desired 
model rather than for a model correction. By parame- 
terizing the model in terms of its first or second deriva- 
tive with depth, the minimum norm solution yields the 
smoothest possible model. 

Rather than fitting the experimental data as well as 
possible (which maximizes the roughness of the model), 
the smoothest model which fits the data to within an 
expected tolerance is sought. A practical scheme is de- 
veloped which optimizes the step size at each iteration 
and retains the computational efficiency of layered 
models, resulting in a stable and rapidly convergent al- 
gorithm. The inversion of both magnetotelluric and 
Schlumberger sounding field data, and a joint 
magnetotelluric-resistivity inversion, demonstrate the 
method and show it to have practical application. 

INTRODUCTION 

The inversion of actual field data from a geoelectrical 
sounding experiment (that is, magnetotelluric, dc resistivity or 
controlled-source electromagnetic) cannot yield a unique solu- 
tion even though it has been proven (e.g., Langer, 1933) that 
ideal observations can yield such a solution. It would be 
unfair to say that geophysicists are unaware of this fact, but 
they usually shield themselves from its implications by im- 
posing constraints on the models they seek, to stabilize the 

solution and give it the illusion of uniqueness. A very common 
example is restriction of the solution to the class of models 
consisting of a small number of layers (often less than five). 
We call these “simple layered models.” However, this ap- 
proach produces solutions that are dependent upon the class 
of models chosen. For example, selecting a small number of 
layers tempts one to believe there really are large dis- 
continuities between the layers at the depths discovered by the 
computer program. Even if the modeler exercises proper cau- 
tion, readers of his work may not. 

It may be argued that in some circumstances it is reason- 
able to represent the earth by a simple layered model, for 
example when trying to establish depth to a water table or the 
basement of a sedimentary sequence. This does not alter the 
dependence of solutions on the parameterization, and so 
before the solution reflects the true structure of the earth, the 
parameterization and starting model must be close to being 
correct. Furthermore, if more than four or five layers are sug- 
gested by a priori information (by a well log, say), a least- 
squares inversion is unlikely to constrain such a highly param- 
eterized model. 

There has been no great success in overcoming the unique- 
ness problem associated with practical (that is uncertain, in- 
complete) data. The Monte Carlo method, in which a huge 
number of randomly generated models are tested against the 
data, has been used for resistivity (Sternberg, 1979) and mag- 
netotelluric (MT) (Jones and Hutton, 1979b) soundings in an 
attempt to characterize all models which agree with the obser- 
vations. Such computations can never be exhaustive, and even 
calculations ranging over the class of simple layered models 
are computationally extravagant in the light of the insight 
obtained from them. In the absence of a universally valid 
description of the set of models consistent with a given geo- 
electric data set, the best policy may be to seek a model whose 
features are in some way essential characteristics of any of the 
possible solutions, one of which presumably is the true struc- 
ture. 

We propose finding the smoothest model in a special sense 
so that its features depart from the simplest case only as far as 
is necessary to fit the data. Other, more exciting models will 
be able to satisfy observations, but many of them will be far 
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more provocative and attractive than reality; our approach 
guarantees that the real profile must be at least as rich in 
structure as the profile found but never less complex in struc- 
ture. It appears that earlier iterative techniques for finding 
even simple models still suffer from accidental discovery of 
unnecessarily complex solutions. 

The quest for simple solutions is well founded. In the early 
fourteenth century William of Occam wrote that “it is vain to 
do with more what can be done with fewer” (see Russell, 1946, 
ch. 14). What has become known as Occam’s razor has also 
become a fundamental tenet of modern science; hypotheses 
should be neither unnecessarily complicated nor unnecessarily 
numerous. 

The basic motivation for seeking smooth models is that we 
do not wish to be misled by features that appear in the model 
but are not essential in matching the observations. Figure 1 
shows two models which fit a set of Schlumberger data 
equally well: a slowly varying model obtained by the methods 
described here, and a model obtained by the popular Mar- 
quardt method (Marquardt, 1963). The Marquardt technique. 
also called ridge regression, is stable and efficient for parame- 
ter fitting and has been used extensively to interpret geoelec- 
trical data (e.g., Inman, 197.5; Petrick et al., 1977). However, 
by allowing 27 layers the normal restrictions of a simple lay- 
ered model have been lost, resulting in spurious high- 
conductivity zones 1 and 10 km deep and a general fine struc- 
ture which is completely meaningless, Clearly, to attach any 
importance to the low-conductivity zones would be a mistake, 
because even though we cannot preclude their existence, they 
are not demanded by the data. The other model fits the data 
equally well without them. 

On the other hand, we do have some justification for think- 
ing that a feature appearing in the most featureless solution 
has some significance. Thus, we hope that the low-resistivity 
and high-resistivity regions of the smooth model are a sim- 
plified but reasonable representation of the real earth. Another 
way to consider the situation is to realize that electromagnetic 
(EM) sounding experiments cannot resolve sharp boundaries 
or thin layers; the diffusive nature of the energy propagation 
“smears out” the real earth structure. We believe it is appro- 
priate to construct models that reflect this limitation of the 
experiment. We stress, however, that on the basis of the Sch- 
lumberger data alone there is no reason to believe the smooth 
model in Figure 1 to be any closer to the real earth than the 
Marquardt model. If the measurements are to be our sole 
guide, there is nothing to choose between the two profiles 
because they do an equally good job of predicting the data. 

An advantage of inverting for maximally smooth models is 
that we obtain a specific model whose characteristics we have 
chosen; the solution does not depend upon some arbitrary 
starting guess or some accident of the computer program. 

LAYERED MODELS AND SMOOTH MODELS 

Conventional least-squares inversion for a simple layered 
model derives its stability from the essential smoothness of the 
conductivity function within the layers. Thus, a four-layer 
model requires the conductivity function to be piecewise per- 
fectly smooth with three discontinuities. This restriction is re- 
laxed as the number of layers increases, and at some point the 
layer thickness will be below the resolving capabilities of the 
data. This is the point at which the model will begin to exhibit 
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oscillations not required by the sounding data. Fitting simple 
layered models is therefore a delicate balance between sup- 
pressing significant structure by including too few parameters 
in the model and introducing spurious structure by including 
too many parameters. 

We assert that it is more satisfactory to allow the model to 
be as flexible as possible. but to suppress complexity explicitly. 
We can do this for continuous profiles by defining roughness, 
the converse of smoothness, as the integrated square of the 
first or second derivative with respect to depth: 

R , = (dm/dz)’ dr 

or (1) 

R, = (d2mld~2)2 dz, 1 
where m(z) could be resistivity or log resistivity. The strategy is 
to find the solution agreeing with measurement that has the 
smallest possible roughness. This idea is familiar from the 
modern methods of data interpolation, because, for example, 
cubic spline interpolation is just the curve passing through a 
given series of measurement points with the smallest possible 
R, (see de Boor, 197X). Exact fitting is often assumed, but 
splines allowing misfit are also employed for data smoothing. 
The original idea of a penalty for complexity seems to be due 
to Tikhonov, who named the general procedure “regu- 
larization,” Introducing it in order to overcome mathematical 
difficulties in the theory of ill-posed problems (see Tikhonov 
and Arsenin, 1977). It is our contention that regularization has 
enormous practical benetits in the interpretation of experi- 
mental data. 

Although equation (I) requires a smoothly varying function 
as the model, a realizable computer algorithm is more readily 
based upon a set of piecewise constant layers to perform the 
calculations of the forward problem more efficiently. We use 
the notation 

where z0 = 0 and in practice N typically falls in the range 20 
to 100. Because of the inevitable loss of resolution with depth, 
it is sensible to arrange z,_ ,/z~ to be some constant less than 
unity. A uniform half-space terminates the system. At this 
point we may think of ;ni as a~ resistivity or a conductivity. A-n 
equivalent roughness in the discrete representation is based 
upon difference rather than differential operators. Let us say 
that 

R, = ;(mi - mi-,)’ 
i-2 

and (2) 
N-1 

R, = c (m, _ , - 2rn, + m, ,)‘. 
i=* 

Suppose now there are M data, d,, d,, , d,. These may be 
apparent resistivities and phases at various frequencies, or ap- 
parent resistivities at different electrode spacings, or any com- 
bination of these in a joint inversion. It will be assumed that 
an error estimate oj is associated with each datum. Forward 
modeling allows prediction of the values of these measure- 

ments from our discrete model via the functionals Fj[m]. We 
assess the goodness of fit of the model predictions to the 
actual values with the usual weighted least-squares criterion 

X2 = g (cIj - Fj [m])‘/crj, (3) 
J_ 1 

where oj is the uncertainty in thejth datum (assuming statis- 
tical independence in the error). 

We are now ready to state the mathematical problem to be 
solved: for given data dj and the associated uncertainties, we 
must find the model ,rzi that makes R, or R, as small as 
possible, while X2 achieves an acceptable value. This is a non- 
linear optimization problem (in contrast to spline smoothing, 
for example, which is linear). Because of the nonlinearity, there 
is no guarantee any nri will be able to make X2 small enough, 
and it is virtually certain that in every practical case exact 
fitting (X’ = 0) is impossible. However, we assume that the 
approximations of one-dimensionality, large-scale- source 
fields, etc., are all good enough that a reasonable fit to the 
observations is possible. The problem of finding the smallest 
achievable X2 associated with an arbitrary 1-D profile for MT 
or dc resistivity data has been completely solved (Parker, 
1980; Parker and Whaler, 1981; Parker, 1984), so in these 
cases we can begin by calculating a lower limit on the values 
considered. 

To explain how we find the smoothest model in the nonlin- 
CUT case, it is convenient to consider first the much easier 
question of a lineur forward problem. Notational compactness 
is gained by adoption of vector notation: our model is written 
as m E E”, a vector in the Euclidean space of dimension N. 
Similarly, the measurements which comprise M real values 
will be denoted by d E EM. In general, the solution to the 
forward problem can always be expressed 

d, = Fi [ml. ,j= 1,2, . . . . M, 

where F, is the (usually nonlinear) forward functional associ- 
ated with thc,jth datum; in vector notation, 

d = F[m]. 

When the forward problem is linear, this may be replaced by 

d=Gm 

where G is an M x A’ matrix whose elements may be calcu- 
lated from the theory of the forward problem. For this simple 
linear case, the misfit X2 defined in equation (3) can be written 

X2 = )/ Wd - WGrn /I*, 

where W is the diagonal M x M matrix 

(4) 

\Iv = diag {l/a,, l/o,, . . . . l/o,) 

and 11 - 11 denotes the usual Euclidean norm. Continuing in 
this vein, we can write the roughness in terms of simple matrix 
operations; for example, R, given in equation (2) is 

R, = Ilam II* (5) 
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where $ is an N x N matrix given by 
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mize R, of equation (5) subject to the condition that the misfit 
X2 in equation (3) is equal to Xi (a value deemed acceptable 
in view of the uncertainties). If the uncertainties are due to a 
zero-mean, Gaussian process that is independent in each of 
the observations, and oj are the associated standard devi- 
ations, then X” is well known to be distributed as x2. This is a 
great deal to assume about the noise, but often the uncer- 
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mathematical minimization problem is this: We must mini- 

tainties are rather poorly known and more refined statistical 
models may not be worth the considerable additional labor. 
With the Gaussian model, the expected value of X2 is just M, 

the number of data, and is equivalent to an rms misfit of 1. It 
is unlikely that any other kind of distribution function would 
yield a value for the expected X2 that is widely different. M is 
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where ~ is an N x N matrix given by mize Rl of equation (5) subject to the condition that the misfit 
X 2 in equation (3) is equal to X~ (a value deemed acceptable 
in view of the uncertainties). If the uncertainties are due to a 
zero-mean, Gaussian process that is independent in each of 
the observations, and crj are the associated standard devi­
ations, then X 2 is well known to be distributed as Xl. This is a 
great deal to assume about the noise, but often the uncer­
tainties are rather poorly known and more refined statistical 
models may not be worth the considerable additional labor. 
With the Gaussian model, the expe~ted value of X2 is just M, 
the number of data, and is equivalent to an rms misfit of 1. It 
is unlikely that any other kind of distribution function would 
yield a value for the expected Xl that is widely different. M is 

1 
-I 

o 

o 

-I 

Notice that Rl in the discrete case is just 

J 
For the linear discrete case now under consideration, the 
mathematical minimization problem is this: We must mini-
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FIG. 2. Three maximally smooth models (below), in a first derivative sense, and their responses (above) for three 
different rms misfits. A marginal improvement in fit to the data requires a substantial increase in model structure. The 
data are the same as for Figure 1. Also shown is the best-fitting I-D (bilayer) model, which produces a misfit of 0.75. 
The resistivities of the bilayer model exceed the range used for this plot. 
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the number we usually adopt for X2. ln any case, Xi should 
not be chosen to be too close to the smallest achievable value. 
Models corresponding to the smallest possible Xi are rough 
to the point of being physically unreasonable; they are delta 
functions in the case of MT (Parker, 1980) and arbitrarily thin 
layers in the case of resistivity sounding (Parker, 1984). As one 
approaches small values of X2, a substantial increase in 
roughness is required to achieve only marginal improvement 
in fit. The degree of increase is clear in Figure 2, which shows 
the smoothest models and response functions for three levels 
of desired misfit, as well as the best-fitting I-D model. 

The optimization is performed as follows. To minimize a 
functional subject to a constraint, we use the method of La- 
grange multipliers (see Smith, 1974): the constraint equation is 
rearranged to form an expression equal to zero; that ex- 
pression is multiplied by a parameter, the Lagrange multiplier, 
and added to the functional to be minimized; the original 
functional is minimum where the new one, varying with its 
original parameters and the Lagrange multiplier, is stationary 
without constraint. It is convenient to call the Lagrange multi- 
plier p’-I. Then the unconstrained functional is 

U=//(2m~~Z+~~1{~~~d~??/~m~~2-X~), 

where the first term on the right is the roughness and the 
second the misfit, weighted by the Lagrange multiplier. For 
any value of p this functional of m is stationary when V, II, 
the gradient of U with respect to m, vanishes. After a little 
algebra, we find 

Rearrangement gives 

[ 1 
-1 

m = p$‘$ + (WG)‘WG I- II (WG)?‘Wd. (7) 

Variation with respect to p yields the original constraint con- 
dition. Because ~1 is not known, equation (7) does not com- 
pletely solve the problem; p must be selected so that when 
equation (7) is substituted into equation (4), the desired X2, 
namely X,, ’ is obtained. An almost identical problem arises in 
construction of optimally smooth magnetic fields after down- 
ward continuation (Shure et al., 1982), but we defer discussion 
of this search because the question deserves special attention 
in the actual nonlinear problem which we discuss later. It is 
useful to interpret p as a kind of smoothing parameter: when 
p is large, we see from the definition of U that the solution to 
equation (7) is not influenced much by the data misfit; it is a 
very smooth function. Alternatively, as lo tends to zero, the 
roughness term is of little significance in the minimization 
problem, and m will satisfy the data constraints at whatever 
cost in roughness. 

THE NONLINEAR PROBLEM 

When the full nonlinear problem is considered, the function- 
al to be minimized is still R, given by equation (5), but the 
expression for the data misfit, equation (4), becomes 

X2 = // Wd - WF[m] 11’. 

The theory of constrained minimization, however, instructs us 
to proceed in the same way: an unconstrained functional U is 
formed by means of a Lagrangian multiplier: 

U = ild_m /I2 -t pm’{11 Wd - wF[m] II2 - Xi). (8) 

The extremal values of R, will be found at the stationary 
points of li as before: taking the gradient, we find the vectors 
m that cause U to be stationary obey 

p ‘(v.J)‘WJ_m - p ‘(w.J)7’Wd + (2’4m = 0, (9) 

where the M x N matrix d is the Jacobian or gradient matrix: 

J = V,F. 

Expressed as components 

(See the Appendix for details of the computations.) The rows 
of d are the discrete equivalents of the FrCchet derivatives in 
the continuous profile problem (Parker, 1977). In the linear 
problem, G = J; what makes the solution of equation (9) 
much more difficult than equation (6) is that, while $j is a 
constant matrix, ,! depends upon m. Thus, instead of a simple 
set of linear equations similar to equation (7), we must solve a 
simultaneous nonlinear system for m. One way to proceed is 
to attack equation (9) directly and solve the system by 
Newton’s method; unfortunately, this requires differentiation 
of J to find the second derivative of F, a very tedious piece of 
algebra. 

A simple alternative is to return to equation (8) and exam- 
ine the minimization problem created by linearization about a 
particular model. Most sdlutions of nonlinear systems require 
an initial guess for the answer, i.e., a starting model, from 
which an iterative process begins a refinement procedure; here 
we posit an initial model m,. Elementary calculus says that if 
F is differentiable at m, (as we shall always assume it is) for 
sufficiently small vectors A 

F[m, + A] = F[m,] +&A + E, 

where E is a vector whose magnitude is o II A II and d1 is :! 
Cm,], the Jacobian matrix evaluated at the vector m,. Sup- 
pose we approximate F by dropping the remainder term E ant’ 
write 

A = m2 -ml. 

If this approximate expression is substituted into equation (S), 
we have returned to a problem linear in m2: 

U = II i!m, II’ 

+ pm1 
1 

II W(d - FCm,l + ,!,mA - WJ,m, II2 - Xi 
I 

I 

where the expression in parentheses in the second term is a 
kind of data vector which we will call a,. Now we define m, as 
the model that minimizes U under this approximation; then 
we find from the linear theory that 
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the number we usually adopt for X2. In any case, X; should 
not be chosen to be too close to the smallest achievable value. 
Models corresponding to the smallest possible X2 are rougft 
to the point of being physically unreasonable; they are delta 
functions in the case of MT (Parker, (980) and arbitrarily thin 
layers in the case of resistivity sounding (Parker, 1984). As one 
approaches small values of X 2

, a substantial increase in 
roughness is required to achieve only marginal improvement 
in fit. The degree of increase is clear in Figure 2, which shows 
the smoothest models and response functions for three levels 
of desired misfit, as well as the best-fitting l-D model. 

The optimization is performed as follows. To minimize a 
functional subject to a constraint, we use the method of La­
grange multipliers (see Smith, 1974): the constraint equation is 
rearranged to form an expression equal to zero; that ex­
pression is multiplied by a parameter, the Lagrange multiplier, 
and added to the functional to be minimized; the original 
functional is minimum where the new one, varying with its 
original parameters and the Lagrange multiplier, is stationary 
without constraint. It is convenient to call the Lagrange multi­
plier Il- l. Then the unconstrained functional is 

u = lI~m 112 + ll- l {1I Wd - WGm f - X;}, 

where the first term on the right is the roughness and the 
second the misfit, weighted by the Lagrange multiplier. For 
any value of Il this functional of m is stationary when V m U, 
the gradient of U with respect to m, vanishes. After a little 
algebra, we find 

Rearrangement gives 

Variation with respect to Il yields the original constraint con­
dition. Because Il is not known, equation (7) does not com­
pletely solve the problem; Il must be selected so that when 
equation (7) is substituted into equation (4), the desired XZ, 
namely X;, is obtained. An almost identical problem arises in 
construction of optimally smooth magnetic fields- after down­
ward continuation (Shure et aI., 1982), but we defer discussion 
of this search because the question deserves special attention 
in the actual nonlinear problem which we discuss later. It is 
useful to interpret Il as a kind of smoothing parameter: when 
Il is large, we see from the definition of U that the solution to 
equation (7) is not inlluenced much by the data misfit; it is a 
very smooth function. Alternatively, as Il tends to zero, the 
roughness term is of little significance in the minimization 
problem, and m will satisfy the data constraints at whatever 
cost in roughness. 

THE NONLINEAR PROBLEM 

When the full nonlinear problem is considered, the function­
al to be minimized is still Rl given by equation (5), but the 
expression for the data misfit, equation (4), becomes 

The theory of constrained minimization, however, instructs us 
to proceed in the same way: an unconstrained functional U is 
formed by means of a Lagrangian multiplier: 

U = Ilelm 112 + ll- l{11 Wd - WF[m] liZ - X;}. (8) 

The extremal values of R t will be found at the stationary 
points of U as before; taking the gradient, we find the vectors 
m that cause U to be stationary obey 

where the M x N matrix J is the Jacobian or gradient matrix: 

Expressed as components 

tF, [m] 
J =--

IJ Dm
j 

(See the Appendix for details of the computations.) The rows 
of J are the discrete equivalents of the Frechet derivatives in 
the continuous profile problem (Parker, 1977). In the linear 
problem, G = J; what makes the solution of equation (9) 

much more difficult than equation (6) is that, while G is a 
constant matrix, J depends upon m. Thus, instead of a simple 
set of linear equations similar to equation (7), we must solve a 
simultaneous nonlinear system for m. One way to proceed is 
to attack equation (9) directly and solve the system by 
Newton's method; unfortunately, this requires differentiation 
of J to find the second derivative of F, a very tedious piece of 
algebra, 

A simple alternative is to return to equation (8) and exam­
ine the minimization problem created by linearization about a 
particular model. Most solutions of nonlinear systems require 
an initial guess for the answer, i.e., a starting model, from 
which an iterative process begins a refinement procedure; here 
we posit an initial model m t . Elementary calculus says that if 
F is differentiable at m t (as we shall always assume it is) for 
sufficiently small vectors A 

where E is a vector whose magnitude is 0 II A II and ,It is J 
[m t ], the Jacobian matrix evaluated at the vector m t . Sup­
pose we approximate F by dropping the remainder term E ane 
write 

If this approximate expression is substituted into equation (8), 
we have returned to a problem linear in m z: 

U = II~mz112 

+ ll- l{11 W(d - F[m l ] + ,!tml) - W,ltmz ll 2 
- X;}, 

where the expression in parentheses in the second term is a 
kind of data vector which we will call al . Now we define mz as 
the model that minimizes U under this approximation; then 
we find from the linear theory that 
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If we select u to yield the desired data misfit as computed by 
the linear approximation, we have an obvious basis for an 
iterative scheme: m, is used as the next member of a sequence 

m,, m,, m3, ..., in which each preceding vector is used as the 
starting approximation for the next. 

It may be shown that this scheme, if it converges, solves the 
minimization ‘of the original nonlinear functional, and there- 
fore the final answer should be independent of the starting 
guess (provided the minimum is unique). The result will be the 
model of smallest roughness with the specified misfit. This 
minimization scheme is in contrast with the approach usually 
adopted in the geophysical literature, in which the functional 
to be minimized is simply the misfit itself. Because of the 

Misfit(p) for 5 Iterations 
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FE. 3. The rms misfit as a function of the Lagrange multiplier 
p at five iterations of an inversion. The values of u and misfit 
chosen for each iteration are marked by symbols and also 
given in Table 1. The corresponding intermediate models are 
shown in Figure 4. 
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FIG. 4. The intermediate models produced during inversion of 
the Schlumberger data (Figure 2) for a smooth model (first 
derivative sense) fitting the data to rms misfit of 1.0. The 
starting model was a haIFspace of lo5 0. m. 

nonlinearity of the problem, a straightforward minimization 
scheme is most likely to diverge, and this tendency must be 
counteracted by damping the process in some way. Damping 
consists of systematically reducing the size of the change in the 
model from one iteration to the next. The Marquardt method 
modifies the matrix Jr?! by adding a constant value to the 
diagonal. thus decreasing the size of the computed pertur- 
bation; the constant is chosen to decrease the misfit at each 
iteration, for a fixed Jacobian. Iteration continues until the 
misfit has been brought down to some acceptable level, not to 
the minimum possible value. The final solution lies close to 
the initial guess, because the modified Jacobian keeps the 
changes small at each step of the process; thus the resultant 

Table 1. Parameters for the iteration shown in Figures 3 and 4. 
The values of p are those chosen to give the intermediate 
models. 

No. X* 

0 I1 250 
I 1 062 
2 138.5 
3 56.0 
4 34.4 
5 29.4 
6 28.9 

rms P II R, 11’ II A II2 

63.0 0.0 
6.16 571 0.75 309 
2.22 273 1.04 5.01 
1.404 106 1.31 0.921 
1.11 I 55.2 1.48 0.660 
1.007 46.1 1.50 0.07 1 
1.001 52.6 1.50 0.005 

Table 2. Data used for the Schlumberger sounding example, 
from Constable et al. (1984). 

AB/2 
(m) 

5.0 2.923 
7.0 2.539 

10.0 2.017 
14.0 1.546 
20.0 1.354 
28.0 !.235 
40.0 1.170 
55.0 1.184 
80.0 1.281 

100.0 1.326 
150.0 1.413 
200.0 1.505 
500.0 1.873 

1 000.0 2.158 
1 500.0 2.345 
2 000.0 2.476 
3 000.0 2.661 
4 000.0 2.804 
5 733.0 3.01 I 
6 000.0 2.997 
7 705.0 3.126 
8 000.0 3.116 

10 000.0 3.231 
I 1 660.0 3.317 
32 979.9 3.479 
47 780.0 3.601 
67 369.9 3.538 
95 360.0 3.521 

(;;1’$ 

0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.110 
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If we select 11 to yield the desired data misfit as computed by 
the linear approximation, we have an obvious basis for an 
iterative scheme: m 1 is used as the next member of a sequence 
m!, m 2 , m 3 , .. " in which each preceding vector is used as the 
starting approximation for the next. 

It may be spown that this scheme, if it converges, solves the 
minimization 'of the original nonlinear functional, and there­
fore the final answer should be independent of the starting 
guess (provided the minimum is unique). The result will be the 
model of smallest roughness with the specified misfit. This 
minimization scheme is in contrast with the approach usually 
adopted in the geophysical literature, in which the functional 
to be minimized is simply the misfit itself. Because of the 
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FIG. 3. The rms misfit as a function of the Lagrange multiplier 
11 at five iterations of an inversion, The values of 11 and misfit 
chosen for each iteration are marked by symbols and also 
given in Table 1. The corresponding intermediate models are 
shown in Figure 4. 
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FIG. 4. The intermediate models produced during inversion of 
the Schlumberger data (Figure 2) for a smooth model (first 
derivative sense) fitting the data to rms misfit of 1.0. The 
starting model was a half-space of 105 0 . m, 

nonlinearity of the problem, a straightforward minimization 
scheme is most likely to diverge, and this tendency must be 
counteracted by damping the process in some way. Damping 
consists of systematically reducing the size of the change in the 
model from one iteration to the next. The Marquardt method 
modifies the matrix :!T:! by adding a constant value to the 
diagonal, thus decreasing the size of the computed pertur­
bation; the constant is chosen to decrease the misfit at each 
iteration, for a fixed Jacobian. Iteration continues until the 
misfit has been brought down to some acceptable level, not to 
the minimum possible value. Thc final solution lies close to 
the initial guess, because the modified Jacobian keeps the 
changes small at each step of the process; thus the resultant 

Table I. Parameters for the iteration shown in Figures 3 and 4. 
The values of Jl are those chosen to give the intermediate 
models. 

No, X2 rms 11 II RII12 II~f 

0 II 250 63.0 0.0 
I 1 062 6.16 571 0.75 309 
2 138.5 2.22 273 1.04 5.01 
3 56.0 1.404 106 1.31 0.921 
4 34.4 1.111 55.2 1.48 0.660 
5 29.4 1.007 46.1 1.50 0.071 
6 28.9 1.001 52.6 1.50 0.005 

Table 2. Data used for the Schlumberger sounding example, 
from Constable et al. (1984). 

AB/2 
(m) 

5.0 
7.0 

10.0 
14.0 
20,0 
28,0 
40,0 
55.0 
80.0 

100.0 
150.0 
200.0 
500.0 

1000.0 
1 500.0 
2000.0 
3000.0 
4000.0 
5 733.0 
6000.0 
7705.0 
8000.0 

10000,0 
11660.0 
32979.9 
47780.0 
67369.9 
95360.0 

loglo Pa 
(O'm) 

2.923 
2.539 
2.017 
1.546 
1.354 
1.235 
1.170 
1.184 
1.281 
1.326 
1.413 
1.505 
1.873 
2.158 
2.345 
2.476 
2.661 
2.804 
3.011 
2.997 
3.126 
3.116 
3.231 
3.317 
3.479 
3.601 
3.538 
3.521 

O'log p 

(O'm) 

0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.043 
0.110 
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model is strongly influenced by the initial choice. This is clear- 
ly seen in Figure 1 where the large discontinuity at 80 m depth 
is a relic of the original m,. When a small number of parame- 
ters is employed, for example in the simple layered model, the 
best-fitting solution in the limited class is sought and sim- 
plicity is forced by the small number of free parameters. Some- 
times the misfit cannot be reduced sufficiently, so more param- 
eters may have to be introduced. Large-amplitude oscillations 
may develop, and there is no ready means of controlling them 
in the Marquardt scheme. 

We have suggested that the successive i&ales of our 
scheme, mk + 1, are to be found by choosing p in such a way 
that the linear approximation to the misfit would be arranged 
to match the desired tolerance. Unless one is close to a solu- 
tion, the linear approximation is unlikely to be an accurate 
reflection of the true misfit, and, since deriving a solution 
using linear approximations itself requires a number of itera- 
tive steps, it seems this approach is unnecessarily time- 
consuming. In fact, experience with this direct approach sug- 
gests that it rarely converges in its unmodified form because 
the starting approximations are not sufficiently near a solu- 
tion. 

WC propose an alternative scheme which has proven very 
elrcctive in practice. Suppose the kth iterate has been com- 
puted: define the vector 

I 
-1 

mk + 1(p) = w!!“‘!? + (wJk)“w$!k (?lYdk)TWdk. (lo) 

We sweep through values of p computing the true misfit of the 

model mk , 1W 

xk+l(d = 11 Wd - WE‘ m,+,(P) 11. L 1 
In the initial phase of the calculation, the main task is to 
reduce the misfit, because the initial guess usually lies far from 
any model which has adequate agreement with the observa- 
tions, and whatever value of p is selected, X,(p) is larger than 

Table 3. The COPROD data set used for the MT example, 
from Jones and Hutton (1979a). 

Period 
(s) 

28.5 
38.5 
52.0 
70.5 
95.5 

129.0 
174.6 
236.2 
319.6 
432.5 
585.1 
791.7 

1 071.1 
1 449.2 
I 960.7 

‘w,, P” 

2.315 
2.254 
2.229 
2.188 
2.180 
2.162 
2.151 
2.208 
2.194 
2.299 
2.338 
2.420 
2.405 
2.308 
2.397 

Olog P 

Phase 
(degrees) 

0 phase 

(degrees) 

0.072 1 57.19 22.95 
0.042 5 58.19 22.95 
0.024 4 61.39 4.96 
0.021 0 59.09 4.46 
0.016 4 59.89 5.96 
0.017 3 51.19 22.95 
0.028 7 46.89 22.95 
0.032 8 42.79 2.46 
0.019 3 36.89 1.65 
0.027 0 32.00 22.95 
0.059 I 44.00 6.37 
0.050 6 32.00 2.46 
0.082 5 37.59 22.95 
0.123 3 45.29 4.15 
0.092 7 50.09 22.95 

X,. An obvious way to proceed is to choose p to minimize 
X,(p). which is readily accomplished with a 1-D line search. 
Although there is no guarantee that the X,-minimizing model 
fits better than mk, we have found the scheme to be very 
satisfactory. After a number of iterations, p can be selected to 
make X, match X, exactly. In fact, there probably will be 
more than one such value; if there is more than one value the 
largest successful IJ is correct because it causes the roughness 
to be least. 

Tabiit 4: Scbiilmberger data used-in joint inversion, from 
Constable (1985). 

ABi2 
(m) log,, P, olog P 

3.0 1.528 0.043 
5.0 1.093 0.043 
7.0 0.944 0.043 

10.0 0.919 0.043 
14.0 0.903 0.043 
20.0 0.869 0.043 
28.0 0.826 0.043 
40.0 0.819 0.043 
55.0 0.838 0.043 
80.0 0.857 0.043 

100.0 0.851 0.043 
150.0 0.934 0.043 
200.0 0.959 0.043 
300.0 0.944 0.043 
400.0 0.982 0.043 
500.0 1.049 0.043 

1 000.0 1.356 0.082 
1 500.0 1.502 0.043 
2 000.0 1.622 0.043 
3 000.0 1.761 0.043 
4 000.0 1.902 0.043 
6 000.0 2.089 0.043 
8 000.0 2.192 0.043 

!O oa0.o 2.!?4 0.086 

Table 5. MT data used in joint inversion, from Cull (1985). 

Period 
(s) log,, P, (Jlog P Phase Qase - - 
0.020 0.712 0.043 4 20.50 4.50 
0.050 0.813 0.140 6 22.00 19.98 
0.079 0.964 0.113 8 19.28 16.08 
0. I26 1.148 0.160 9 20.14 11.03 
0.199 1.030 0.304 6 35.65 23.57 
0.316 1.238 0.488~ u 34.44 2ci.66 
0.501 1.503 0.324 4 39.71 16.60 
0.794 1.520 0.477 2 41.90 23.40 
I.258 1.675 0.430 6 47.28 16.60 
1.995 1.944 0.441 2 42.78 16.77 
3.162 I.844 0.408 1 48.50 18.41 
5.01 I 1.737 0.523 6 56.87 18.05 
7.943 1.614 0.199 5 58.80 17.63 

12.580 1.592 0.478 0 58.88 18.10 
19.950 1.336 0.222 8 61.44 18.31 
31.620 1.358 0.447 1 61.90 16.58 
50.1 10 1.345 0.352 4 51.48 25.52 
79.430 0.935 0.104 1 65.50 10.51 

125.800 0.82 1 0.096 1 58.20 23.53 
199.500 0.535 0.400 0 54.00 20.00 
794.299 0.312 0.400 0 86.00 30.00 

1 258.000 -0.107 0.556 1 41.00 32.00 
1 995.000 0.390 0.861 2 58.66 21.63 
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model is strongly influenced by the initial choice. This is clear­
ly seen in Figure 1 where the large discontinuity at 80 m depth 
is a relic of the original mI' When a small number of parame­
ters is employed, for example in the simple layered model, the 
best-fitting solution in the limited class is sought and sim­
plicity is forced by the small number of free parameters. Some­
times the misfit cannot be reduced sufficiently, so more param­
eters may have to be introduced. Large-amplitude oscillations 
may develop, and there is no ready means of controlling them 
in the Marquardt scheme. 

We- have- suggested_ that the- successive- ite-rales of our 
scheme, mk+ I' are to be found by choosing 11 in such a way 
that the linear approximation to the misfit would be arranged 
to match the desired tolerance. Unless one is close to a solu­
tion, the linear approximation is unlikely to be an accurate 
reflection of the true misfit, and, since deriving a solution 
using linear approximations itself requires a number of itera­
tive steps, it seems this approach is unnecessarily time­
consuming. In fact, experience with this direct approach sug­
gests that it rarely converges in its unmodified form because 
the starting approximations are not sufficiently near a solu­
tion. 

We propose an alternative scheme whieh has proven very 
elTective in practice. Suppose the kth iterate has been eom­
pu ted; define the vector 

We sweep through values of 11 computing the true misfit of the 
model mkl 1(11) 

Xk+ 1(11) = !I Wd - WF l mk+ I (Il)J II· 
In the initial phase of the calculation, the main task is to 
reduce the misfit, because the initial guess usually lies far from 
any model which has adequate agreement with the observa­
tions, and whatever value of 11 is selected, Xdll) is larger than 

Table 3. The COPROD data set used for the MT example, 
from Jones and Hutton (1979a). 

Period Phase (J'phase 
(s) loglo Pa O'log p (degrees) (degrees) 

28.5 2.315 0.072 1 57.19 22.95 
38.5 2.254 0.0425 58.19 22.95 
52.0 2.229 0.0244 61.39 4.96 
70.5 2.188 0.021 0 59.09 4.46 
95.5 2.180 0.0164 59.89 5.96 

129.0 2.162 0.017 3 51.19 22.95 
174.6 2.151 0.028 7 46.89 22.95 
236.2 2.208 0.0328 42.79 2.46 
319.6 2.194 0.019 3 36.89 1.65 
432.5 2.299 0.027 0 32.00 22.95 
585.1 2.338 0.059 1 44.00 6.37 
791.7 2.420 0.0506 32.00 2.46 

1 071.1 2.405 0.0825 37.59 22.95 
I 449.2 2.308 0.1233 45.29 4.15 
I 960.7 2.397 0.0927 50.09 22.95 

x *. An obvious way to proceed is to choose 11 to minimize 
X k (11). which is readily accomplished with a I-D line search. 
Although there is no guarantee that the Xk-minimizing model 
fits better than m k , we have found the scheme to be very 
satisfactory. After a number of iterations, 11 can be selected to 
make X k match X * exactly. In fact, there probably will be 
more than one such value; if there is more than one value the 
largest successful 11 is correct because it causes the roughness 
to be least. 

Tabie 4~ ScililJmberger dllta used-in joint inversion, from 
Constable (1985). 

AB/2 
(m) loglo Pa O'log p 

3.0 1.528 0.043 
5.0 1.093 0.043 
7.0 0.944 0.043 

10.0 0.919 0.043 
14.0 0.903 0.043 
20.0 0.869 0.043 
28.0 0.826 0.043 
40.0 0.819 0.043 
55.0 0.838 0.043 
80.0 0.857 0.043 

100.0 0.851 0.043 
150.0 0.934 0.043 
200.0 0.959 0.043 
300.0 0.944 0.043 
400.0 0.982 0.043 
500.0 1.049 0.043 

1 000.0 1.356 0.082 
1 500.0 1.502 0.043 
2000.0 1.622 0.043 
3000.0 1.761 0.043 
4000.0 1.902 0.043 
6000.0 2.089 0.043 
8000.0 2.192 0.043 

10000.0 2.174- 0.086 

Table 5. MT data used in joint inversion, from Cull (1985). 

Period 
(s) 10g lo Pa cr log p Phase (Jphase 

0.020 0.712 0.0434 20.50 4.50 
0.050 0.813 0.1406 22.00 19.98 
0.079 0.964 0.113 8 19.28 16.08 
0.126 1.148 0.1609 20.14 11.03 
0.199 1.030 0.3046 35.65 23.57 
0.3T6 Ln8 (J.4B8 (J J4.44 2U.66 
0.501 1.503 0.3244 39.71 16.60 
0.794 1.520 0.477 2 41.90 23.40 
1.258 1.675 0.4306 47.28 16.60 
1.995 1.944 0.441 2 42.78 16.77 
3.162 1.844 0.408 1 48.50 18.41 
5.011 1.737 0.5236 56.87 18.05 
7.943 1.614 0.1995 58.80 17.63 

12.580 1.592 0.478 0 58.88 18.10 
19.950 1.336 0.2228 61.44 18.31 
31.620 1.358 0.447 I 61.90 16.58 
50.110 1.345 0.3524 51.48 25.52 
79.430 0.935 0.104 1 65.50 10.51 

125.800 0.821 0.096 1 58.20 23.53 
199.500 0.535 0.4000 54.00 20.00 
794.299 0.312 0.4000 86.00 30.00 

1 258.000 -0.107 0.556 I 41.00 32.00 
1 995.000 0.390 0.861 2 58.66 21.63 
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Figure 3 shows rms misfit, which is (Xi/M)‘!*, at successive 
iterations in the inversion of the Schlumberger data. The 
figure also shows the locations of the p chosen at each iter- 
ation; the minima were found using a golden section search, 
and the intercepts were found using the bisection method (see, 
roar example, Gill et al.. 198 I). 

CONVERGENCE AND STABILITY 

Because we seek a well defined, specific model (i.e., the 
smoothest model possible), our iterative scheme is very stable. 
That is, the models found at each iteration will not contain 
very large or very small conductivities unless they are abso- 
lutely required in order to fit the data. 

The convergence of our scheme is also impressive. Figure 4 
shows the starting model and the models for each of the five 
iterations required to fit the Schlumberger data with a maxi- 
mally smooth model. Table I gives the values of X2, rms 
error. pk, 11 R, 11’ , and 11 A 11’ (the step size) at each iteration. 
The starting model was a half-space of IO5 0. m, and the 
smoothest model (in a first derivative sense) fitting the data to 
a tolerance of an rms error of I was sought. This model was 
found in only f&iterations. A sixth iteration verified that the 
procedure had converged and the algorithm stopped on the 
criteria that 1) A /I* < 0.01 and ) rms error - required rms 
error I < 0.05. 
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EXAMPLES 

We present a few examples of the application of our inver- 
sion technique. In these examples the model was parame- 
terized as log,, (layer resistivities), with the layer thickness 
held constant in the log domain. All the data, except for MT 
phases, were also parameterized in log,, domain, so the rms 
tolerances refer to the misfit in log space. The actual data used 

in these inversions are given in Tables 2 through 5. 
The Schlumberger data already presented are from Con- 

stable et al. (1984). These data arr from a deep sounding con- 
ducted on the central Australian shield which employed over- 
land telephone lines to achieve a maximum electrode spacing 
of 200 km. Constable et al. (1984) presented a six-layer model 
obtained by a Marquardt method which fits the data to an 
rms tolerance of 0.81 when calculated in the manner just de- 
scribed. The best 1-D fit to these data is obtained with a 
bilayer model (Parker, 1984) which predicts the data to within 
an rms misfit of 0.75 (Figure 2). The bilayer model is physi- 
cally unrealistic, being only IO m thick and containing layer 
resistivities from lo- ’ Cl. m to lo9 R. m, but it does highlight 
the nonuniqueness problem of electrical sounding inversion. 
Mlodels which fits the Schlumhergcr data to an rms misfit of 1 
and which are maximally smooth in a second derivative 
(Figure 1) and first derivative (Figure 2) sense are shown. The 
conclusions drawn by Constable et al. (1984) from their Mar- 
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FIG. 5. The COPROD data described by Jones and Hutton (1979a), and the smallest first derivative model fitting these 
data to an rms tolerance of 1.0. The large error bars in phase represent measurements where phase error was 
indeterminate. Also shown is a simple layered model given in Jones and Hutton (1979a) for the same data. The 
terminating half-space of the Jones and Hutton model has a resistivity of 1 Q. m. 
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Figure 3 shows rms misfit, which is (XUM)I/2, at successive 
iterations in the inversion of the Schlumberger data. The 
figure also shows the locations of the ~ chosen at each iter­
ation; the minima were found using a golden section search, 
and the intercepts were found using the bisection method (see, 
ror example, Gill et aL 1981). 

CONVERGENCE AND STABILITY 

Because we seek a well defined, specific model (i.e., the 
smoothest model possible), our iterative scheme is very stable. 
That is, the models found at each iteration will not contain 
very large or very small conductivities unless they are abso­
lutely required in order to fit the data. 

The convergence of our scheme is also impressive. Figure 4 
shows the starting model and the models for each of the five 
iterations required to fit the Schlumberger data with a maxi­
mally smooth model. Table 1 gives the values of X 2

, rms 
error, ~k' II RI 11 2

, and II ~ 112 (the step size) at each iteration. 
The starting model was a half-space of lOS n· m, and the 
smoothest model (in a first derivative sense) fitting the data to 
a tolerance of an rms error of I was sought. This model was 
found in only five-iterations. A :<ixth iteration verified that the 
procedure had converged and the algorithm stopped on the 
criteria that II ~ 112 < 0.01 and I rms error - required rms 
error I < 0.05. 

COPROD M.T., rms 1.0 
3.0 
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EXAMPLES 

We present a few examples of the application of our inver­
sion technique. In these examples the model was parame­
terized as loglo (layer resistivities), with the layer thickness 
held constant in the log domain. All the data, except for MT 
phases, were also parameterized in loglo domain, so the rms 
tolerances refer to the misfit in log space. The actual data used 
in these inversions are given in Tables 2 through 5. 

The Schlumberger data already presented are from Con­
stable et al. (1984). These data an' from a deep sounding con­
ducted on the central Australian shield which employed over­
land telephone lines to achieve a maximum electrode spacing 
of 200 km. Constable et al. (1984) presented a six-layer model 
obtained by a Marquardt method which fits the data to an 
rms tolerance of O.SI when calculated in the manner just de­
scribed. The best 1-0 fit to these data is obtained with a 
bilayer model (Parker, 1984) which predicts the data to within 
an rms misfit of 0.75 (Figure 2). The bilayer model is physi­
cally unrealistic, being only 10 m thick and containing layer 
resistivities from 10- In· m to 109 n . m, but it does highlight 
the nonuniqueness problem of electrical sounding inversion. 
Ml.Jdc!s which fit thc- Schlumherger data to an rms misfit of 1 
and which are maximally smooth in a second derivative 
(Figure 1) and first derivative (Figure 2) sense are shown. The 
conclusions drawn by Constable et al. (1984) from their Mar-
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quardt model would also have been drawn from the smooth 
models. In particular, the drop in resistivity at 2-10 km ap- 
pears in ail but the model with rms misfit of 1.5. If the data 
errors have been well assessed and the earth is truly one- 
dimensional, then the probability of the real earth generating 
such poorly fitting data is only 0.025. We therefore interpret 
the drop in resistivity at depth as being significant. 

As an example of MT inversion, we present the COPROD 
data circulated by Dr. Alan Jones, collected at a site near 
Newcastleton in Britain and described in Jones and Hutton 
(1979a). The model that is smoothest in a first derivative sense 
and that fits the data to an rms misfit of 1.0 is shown in Figure 
5, along with a simple layered model from Jones and Hutton 
(1979a). The smooth model contains all the features of their 
layered model, but has a more conservative resistivity for the 
deep conductive region. Parker (1982) shows that the maxi- 
mum depth to which any model is constrained by these data is 
about 300 km. Our smooth model has little structure below 
400 km and no structure below 700 km, in general agreement 
with Parker’s result. 

As a final example of the versatility of our inversion algo- 
rithm. Figure 6 shows the result of inverting Schlumberger 
and MT data simultaneously. The data are from a site in 
south-central Australia where both a 20 km electrode spacing 
Schlumberger sounding (Constable, 1985) and a wide-band 
MT sounding (Cull, 1985) were conducted. The joint inversion 

of resistivity and MT data is not a new idea (see Vozoff and 
Jupp, 1975); we merely wish to demonstrate the tolerance of 
our inversion routine to the nature of the forward problem 
and the consistent results that can be obtained from data of 
mixed type. Figure 6 shows the joint model and the responses 
fitting the various sounding data to a combined rms error of 1. 
For comparison, the smooth models with rms errors of 1 ob- 
tained when the two data sets are inverted independently are 
also shown (the responses are not given here). The only signifi- 
cant difference between the joint fits and individual fits occurs 
in the MT phase. which has a slightly poorer fit below a 
period of 1 s ror the joint model. However, the errors on the 
MT data are probably too large, resulting in a preferential fit 
to the Schlumberger data. Note that there is no reason to 
believe the structure at this site is one-dimensional; the inver- 
sion was done as an exercise to test the modeling algorithm. 
However. a I-D model fits both data s&+ and &II_ (19R5) 
inferred the presence of the deep conductive layer on the basis 
of several additional MT stations to the east of the site repre- 
sented here. 

CONCLlJSlONS 

Although the nonuniqueness in inverting electromagnetic 
sounding data is well known, we usually require a preferred 
model to represent and interpret our data. It is most desirable 
to avoid including features in that model which are not actu- 
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FIG. 6. The joint inversion of Schlumberger (Constable, 1985) and MT (Cull, 1985) data. The model responses are all 
for the joint model (smooth in a first derivative sense), but models obtained by fitting the data sets separately are also 
shown. The steps in the models due to layering have been smoothed for clarity. 
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quardt model would also have been drawn from the smooth 
models. In particular, the drop in resistivity at 2~ 10 km ap­
pears in all but the model with rms misfit of 1.5. If the data 
errors have been well assessed and the earth is truly one­
dimensional, then the probability of the real earth generating 
such poorly fitting data is only 0.025. We therefore interpret 
the drop in resistivity at depth as being significant. 

As an example of MT inversion, we present the COPROD 
data circulated by Dr. Alan Jones, collected at a site near 
Newcastleton in Britain and described in Jones and Hutton 
(1979a). The model that is smoothest in a first derivative sense 
and that fits the data to an rms misfit of 1.0 is shown in Figure 
5, along with a simple layered model from Jones and Hutton 
(1979a). The smooth model contains all the features of their 
layered model, but has a more conservative resistivity for the 
deep conductive region. Parker (1982) shows that the maxi­
mum depth to which any model is constrained by these data is 
about 300 km. Our smooth model has little structure below 
400 km and no structure below 700 km, in general agreement 
with Parker's result. 

As a final example of the versatility of our inversion algo­
rithm, Figure 6 shows the result of inverting Schlumberger 
and MT data simultaneously. The data are from a site in 
south-central Australia where both a 20 km electrode spacing 
Schlumberger sounding (Constable, 1985) and a wide-band 
MT sounding (Cull, 1985) were conducted. The joint inversion 
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of resistivity and MT data is not a new idea (see VozolT and 
Jupp, 1975); we merely wish to demonstrate the tolerance of 
our inversion routine to the nature of the forward problem 
and the consistent results that can be obtained from data of 
mixed type. Figure 6 shows the joint model and the responses 
fitting the various sounding data to a combined rms error of 1. 
For comparison, the smooth models with rms errors of 1 ob­
tained when the two data sets are inverted independently are 
also shown (the responses are not given here). The only signifi­
cant difference between the joint fits and individual fits occurs 
in the MT phase, which has a slightly poorer fit below a 
pcriod of 1 s for the joint model. However, the errors on the 
MT data are probably too large, resulting in a preferential fit 
to the Schlumberger data. Note that there is no reason to 
believe the structure at this site is one-dimensional; the inver­
sion was done as an exercise to test the modeling algorithm. 
However. a 1-0 model fits both data sels, and Cull (L98.5.) 
inferred the presence of the deep conductive layer on the basis 
of several additional MT stations to the east of the site repre­
sen ted here. 

CONCLUSIONS 

Although the non uniqueness in inverting electromagnetic 
sounding data is well known, we usually require a preferred 
model to represent and interpret our data. It is most desirable 
to avoid including features in that model which are not actu-
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FIG. 6. The joint inversion of Schlumberger (Constable, 1985) and MT (Cull, 1985) data. The model responses are all 
for the joint model (smooth in a first derivative sense), but models obtained by fitting the data sets separately are also 
shown. The steps in the models due to layering have been smoothed for clarity. 
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ally required by the data, and for the model not to depend on 
the number of layers used or the starting model chosen. We 
have shown how to accomplish these goals by finding the 
smoothest model which fits the data to a prescribed tolerance. 
If the data errors have been well estimated, have zero mean, 
and are at least approximately Gaussian, then the expected 
tolerance is equivalent to an rms misfit of 1.0. Since the model 
found will be, to a large extent, dependent upon the data 
errors as well as the data themselves, every effort should be 
made in the field to collect accurate estimates of error. Of 
course, this is the case for any reasonable method of data 
interpretation. 

Our inversion scheme is stable and typically converges in 
five or six iterations for resistivity or MT problems. We have 
demonstrated its use with resistivity, MT, and combined 
resistivity-MT data. However, our algorithm depends little on 
the nature of the forward function, and could be used for any 
problem where a smooth 1-D solution is required. 
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APPENDIX 

COMPUTATION OF THE JACOBIAN MATRIX 

The inversion scheme developed here, and other inversion 
methods based on the linearization of nonlinear functions, 
depend critically on the ability to compute the Jacobian 
matrix. The most generally applicable way of estimating the 
required partial derivatives is to use a finite-difference tech- 
nique. Gill et al. (1981) present a useful discussion of finite- 
difference methods. In particular, note that the central differ- 
ence 

F(m, + 8) - F(m, - F) 

26 
= E + O(S2) 

?rni 
(A-1) 

is accurate to second order, whereas the forward difference 

i+ni + 6) - F(mJ dF 
6 

= ir, + om (A-2) 

is accurate only to first order. However, since F(m) is required 
anyway and is common to all the i;F,/am, (i = 1, 2, . . . . N), 
computation of the partials matrix using equation (A-l) re- 
quires twice as many evaluations of the forward function as 

the computation using equation (A-2). 
Errors in the estimation of 8F/i;mi lead to instabilities 

during the inversion, and so wherever possible analytical ex- 
pressions should be used instead of finite-difference schemes. 
Analytical derivatives for layered models have the added 
bonus of often being much cheaper to compute, because usu- 
ally ?k-/(7m, can be computed from the intermediate results of 
evaluating aF/c!mi+ ,. We show this computation for the 
Schlumberger and MT problems. As an example of the com- 
putational savings possible, the partials matrices for the 45- 
layer Schlumberger inversions presented here took 3t s to 
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ally required by the data, and for the model not to depend on 

the number of layers used or the starting model chosen. We 
have shown how to accomplish these goals by finding the 

smoothest model which fits the data to a prescribed tolerance. 
If the data errors have been well estimated, have zero mean, 

and are at least approximately Gaussian, then the expected 

tolerance is equivalent to an rms misfit of 1.0. Since the model 

found will be, to a large extent, dependent upon the data 

errors as well as the data themselves, every effort should be 

made in the field to collect accurate estimates of error. Of 

course, this is the case for any reasonable method of data 

interpretation. 
Our inversion scheme is stable and typically converges in 

five or six iterations for resistivity or MT problems. We have 

demonstrated its use with resistivity, MT, and combined 

resistivity-MT data. However, our algorithm depends little on 

the nature of the forward function, and could be used for any 
problem where a smooth l-D solution is required. 
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APPENDIX 

COMPUTATION OF THE JACOBIAN MATRIX 

The inversion scheme developed here, and other inversion 

methods based on the linearization of nonlinear functions, 

depend critically on the ability to compute the Jacobian 

matrix. The most generally applicable way of estimating the 

required partial derivatives is to use a finite-difference tech­

nique. Gill et al. (1981) present a useful discussion of finite­

difterence methods. In particular, note that the central differ­
ence 

F(m j + 8) - F(mj - 8) (IF 2 
----~-- = - + 0(8 ) (A-I) 

28 omj 

is accurate to second order, whereas the forward difference 

F(m. + 8) - F(m) of 
I '=_+ 0(8) 

8 omj 
(A-2) 

is accurate only to first order. However, since F(m) is required 

anyway and is common to all the of/om i (i = 1, 2, ... , N), 
computation of the partials matrix using equation (A-I) re­

quires twice as many evaluations of the forward function as 
the computation using equation (A-2). 

Errors in the estimation of OF/ami lead to instabilities 
during the inversion, and so wherever possible analytical ex­

pressions should be used instead of finite-difference schemes. 

Analytical derivatives for layered models have the added 

bonus of often being much cheaper to compute, because usu­

ally (IF/i1mi can be computed from the intermediate results of 
evaluating 8F/tJm i + 1 . We show this computation for the 

Schlumberger and MT problems. As an example of the com­

putational savings possible, the partials matrices for the 45-

layer Schlumberger inversions presented here took 3t s to 
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complete, where t is the time taken to do the forward calcula- 
tion F(m). If a finite-difference algorithm were used, the par- 
tials matrix would take at least 451 s. 

Derivatives for the schlumberger problem 

The forward calculation for Schlumberger apparent re- 
resistivitiesover a layered model may be written 

where J, is the first-order Bessel function of the first kind, 
A8/2 is the half-electrode spacing, and T,(h) is the Koefoed 
resistivity transform (Koefoed, 1970). T,(I) may be calculated 
from the recurrence relation 

T= 
T+1 + pi tanh (hr,) 

f+T+1 tanh (ht,)/p,’ 
(A-4) 

where the pi and the fi are the layer resistivities and thick- 
nesses and T is the transform evaluated at the top of the ith 
layer. Starting with T,, = p, at the top of the terminating half- 
space, equation (A-4) may be evaluated repeatedly to get T,(h). 
It is common to evaluate equation (A-3) using the filter 
nethod (Ghosh, 1971) rewriting the equation as 

(A-5) 

where thef, are coefficients of a moving average filter. There 
have been at least a dozen sets of filter coefficients published, 
and many of them perform very poorly. The 141-point filter of 
Johansen (1975) and the shorter filters of Guptasarma (1982) 
are recommended. 

The derivatives i;p,/?p, may be obtained by differentiating 
equation (A-5) to get 

r?p,_ 
+, 

-;f&+ 
I 

(‘4-6) 

TO evaiuate ZiT, /?pj, we write 

?T, aT, ?T, (‘TX 
-= 

"Tj-l a?; 

‘Pj - T- T- CT2 oT3 oT4 “7; Epj’ 
(A-7) 

Differentiating equation (A-4) gives expressions for 6q/a7;+ 1 
and “7;/“pj: 

ST. 
I= 

(;?I+, 
1 - tanh’ (rib,) 

I 
“c / ” 

L, 
and 

i?7 
-L = tanh (tih,) 1 + 7;t,/pf + 27;+, tanh (tih,)/p, 
c?Pi L 

c,, 

where 

1 
2 

1 + tanh (tr h,)Tr+ ,/pi . 
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The recursion may be started by noting that 

Clearly, when evaluating ?T,/Zp, using equation (A-7), the 
intermediate results ST,/2T2, c~T,/ST,, , 6T,_ ,/ZT, may be 
used to compute ?T,iip,+ ,, c?T,/?p,_, , .., aT,/ap, with 
little extra computational effort. This results in great efhciency 
when entire rows of the partials matrix are computed at once. 

Derivatives for the MT problem 

The forward problem for the MT case is given by another 
recurrence relation: 

(A-8) 

where kj = (i2~r&/p~)r~~ and f is the frequency of interest. The 
quantity c is given the unimaginative name of “complex c 
value” and is a natural way to present MT data. However, 
most workers in this field prefer to use apparent resistivity and 
phase, which are given by 

P, = 277&j c2> 
Re (4 Q = tan ’ ~ 

[ I -1m (c) ’ 

where Re (c) and Im (c) are the real and imaginary parts of c. 
Before differentiating equation (A-S), we simplify the notation 
by defining 

where ,f(k,, x) = l/k, coth [kit, + coth ‘(kix)]. Now we may 
let c -cr and write equation (A8)~as 

I%- & r:C I% 
l=--L--3...__ 

o^cjpl 2cj 

c:kj (!c, c!c, dc, dcj Zkj’ (A-9) 

Now 

dC- 
L = coth’ “i+l ki ti + coth-r(kici,r) 1 arccoth’ (kici+ 1) 

and 

JC. 
A=_ 
dk, 

$ coth kjtj + coth-’ (kjcj+J 
I I 

+; coth’ 
J [ 

kjtj + coth-’ (kjcj+J 1 
x tj + arccoth’ (kjcj+ ,) cj+ 1 1 , 
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complete, where t is the time taken to do the forward calcula­
tion F(m). If a finite-difference algorithm were used, the par­
tials matrix would take at least 451 s. 

Derivatives for the Schlumberger problem 

The forward calculation for Schlumberger apparent re­
sistivities over a layered model may be written 

(A-3) 

where J I is the first-order Bessel function of the first kind, 
AB/2 is the half-electrode spacing, and TI(A) is the Koefoed 
resistivity transform (Koefoed, 1970). TI (A) may be calculated 
from the recurrence relation 

(A-4) 

where the P; and the I; are the layer resistivities and thick­
nesses and T; is the transform evaluated at the top of the ith 
layer. Starting with T,y = Pn at the top of the terminating half­
space, equation (A-4) may be evaluated repeatedly to get TI(A). 
It is common to evaluate equation (A-3) using the filter 
net hod (Ghosh, 1971), rewriting the equation as 

kmall 

Pa= I T1(Ak)Ik' (A-5) 

where the.h are coefficients of a moving average filter. There 
have been at least a dozen sets of filter coefficients published, 
and many of them perform very poorly. The 141-point filter of 
Johansen (1975) and the shorter filters of Guptasarma (1982) 
are recommended. 

The derivatives oPajePj may be obtained by differentiating 
equation (A-5) to get 

(A-6) 

(A-7) 

Differentiating equation (A-4) gives expressions for oTjoT;+ 1 

and eT)epj: 

and 

where 

The recursion may be started by noting that 

eT,y 
-= I. 
ePN 

Clearly, when evaluating 8T1jcPN using equation (A-7), the 
intermediate results iiTdj)T2, cT2/oT3 , ... , oTN_l/oTN may be 
used to compute cTI/cPN-I' aTdePN_2' ... , oTdePl with 
little extra computational effort. This results in great efficiency 
when entire rows of the partials matrix are computed at once. 

Derivatives for the MT problem 

The forward problem for the MT case is given by another 
recurrence relation: 

where k j = (i21tfllo/P//2 andIis the frequency of interest. The 
quantity c is given the unimaginative name of "complex e 
value" and is a natural way to present MT data. However, 
most workers in this field prefer to use apparent resistivity and 
phase. which are given by 

<D = tan , 1 [ Re (e) ] 
-1m (e) 

where Re (e) and 1m (c) are the real and imaginary parts of c. 
Before differentiating equation (A-8), we simplify the notation 
by defining 

where I(k;. x) == l/k; coth [kJi + coth I(k;x)]. Now we may 
lete =('1 and write equation (A-8j as-

eC I DC I (Jc 2 DC 3 ... oCj _ l eCj 

i:kj iJc z iJc 3 DC4 flc] Dk] 

Now 

and 

-....l. = - - coth k.t. + coth- l (k.c.+ l ) &. 1 [ ] 
ck

j 
kJ ] ] ] ] 

+ k coth' [kjt j + coth- I (kjCj+ll] 

x [t j + arccoth' (kje j+l) Cj+l } 

(A-9) 
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where As in the Schlumberger case, the intermediate values used to 

acothz f 2 \’ 
compute &J8pN may be used to compute ~cJ+~_ ,, 

cam=-----=- ___ 
dz \Cz_e-z/ ’ zf@ d~Jt?p,~,~~~~. etc. If apparent resistivity and phase data are being 

inverted, one will need to know that 

and 

arccoth’ = a coth - ’ = 
t3Z 

= (1 - q-1, z # 1. 

Note also that &,/Gk, = - l/k:. The derivatives with respect 
to layer resistivity are simply 

and 
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where 

cuth' = 0 coth z = _ (_2_V 
oZ \ez _ e- z) , 

z =f- 0, 

and 

z#l. 

Note also that ecN/okN = - l/k~. The derivatives with respect 
to layer resistivity are simply 

oc 1 OC okj 1 (i27rj I-lO) 1/2 oe 
OPj = ok} op} = -:2 -;;r- ek

j
' 

As in the Schlumberger case, the intermediate values used to 
compute eel/epN may be used to compute ec l /oPN-l' 
ec)epN z, etc. If apparent resistivity and phase data are being 
inverted, one will need to know that 

and 


