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1 INTRODUCTION 

SUMMARY 
This paper presents a simple non-linear method of magneto telluric inversion that 
accounts for the computation of depth averages of the electrical conductivity profile of 
the Earth. The method is not exact but it still preserves the non-linear character of the 
magnetotelluric inverse problem. The basic formula for the averages is derived from 
the well-known conductance equation, but instead of following the tradition of solving 
directly for conductivity, a solution is sought in terms of spatial averages of the 
conductivity distribution. Formulas for the variance and the resolution are then readily 
derived. In terms of Backus-Gilbert theory for linear appraisal, it is possible to inspect 
the classical trade-off curves between variance and resolution, but instead of resorting 
to linearized iterative methods the curves can be computed analytically. The stability 
of the averages naturally depends on their variance but this can be controlled at will. 
In general, the better the resolution the worse the variance. For the case of optimal 
resolution and worst variance, the formula for the averages reduces to the well-known 
Niblett-Bostick transformation. This explains why the transformation is unstable for 
noisy data. In this respect, the computation of averages leads naturally to a stable 
version of the Niblett-Bostick transformation. The performance of the method is 
illustrated with numerical experiments and applications to field data. These validate 
the formula as an approximate but useful tool for making inferences about the deep 
conductivity profile of the Earth, using no information or assumption other than the 
surface geophysical measurements. 

Key words: electrical conductivity, electromagnetic induction, inversion, 
magnetotellurics. 

In the past three decades a number of methods have been 
developed for interpreting magnetotelluric (MT) sounding data 
in terms of conductivity distributions that vary only with 
depth. Perhaps because of the rather large number of papers 
on the subject, or possibly due to the apparent simplicity of 
the problem, it is often stated that research on one-dimensional 
(I-D) inverse methods is little needed, and that all efforts must 
be directed towards the multidimensional cases. In this respect 
it must be recognized that we are still to address a most 
fundamental question in the I-D situation, namely the con­
struction of a rigorous theory for making mathematically 
defensible inferences from the data without relying on assump­
tions external to the observations. The problem was highlighted 
by Parker (1983) in his review paper prepared for the Sixth 
IAGA Workshop on Electromagnetic Induction in the Earth 
as the most important challenge remaining in I-D at that time. 
Since then, very little has been reported in the literature in the 

way of attempts at its solution. The implications of the problem 
go far beyond those of academic interest, considering that I-D 
interpretations are still widely used in shallow exploration 
problems and in the study of the deep structure of the Earth. 
The problem is perhaps most relevant in the analysis of very 
long-period MT soundings; there are some unique 1-D data 
sets that seem to indicate the existence of conductivity dis­
continuities in the upper mantle (e.g. Schultz et al. 1993; Bahr, 
Olsen & Shankland 1993). The defence of important results 
such as these calls for rigorous methods to investigate the 
degree of non-uniqueness inherent in the 1-D MT inverse 
problem. It is very likely that these data will be revisited in 
the light of future developments in this direction. 

In mathematical terms the inference problem can be stated 
as the search for the common properties shared by all models 
fitting the observations. Most of our efforts in I-D inversion 
have been directed towards the goal of fitting the observations 
with the response of a conductivity distribution a(z), where z 
represents depth. This problem is known to be ill-posed in the 
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sense that it allows the construction of a whole set of satis­
factory conductivity models from a given set of field data. It 
has also been recognized that it is impossible to establish 
bounds on the conductivity at any given depth. For this reason, 
the inversion is stabilized by incorporating known or assumed 
properties of the conductivity structure. Examples of a priori 
constraints are the common assumption of a small number of 
homogeneous layers to represent the earth (e.g. Weaver & 
Agarwal 1993), and constraints on the depth derivative of the 
conductivity distribution (e.g. Constable, Parker & Constable 
1987; Smith & Booker 1988). These methods usually address 
the problem of non-uniqueness, but only within the restricted 
set of models allowed by the particular constraints. For this 
reason they are not considered rigorous inference methods 
from a mathematical point of view. 

General mathematical methods for solving the problem of 
inference have' been applied to the I-D MT problem. These 
include Backus-Gilbert theory for linear appraisal (Backus 
& Gilbert 1970), which has been applied by Parker (1970) 
and Oldenburg (1979) by linearizing the problem; funnel 
functions as described by Oldenburg (1983), also applied after 
linearization; and Monte Carlo methods that do not require 
linearization (e.g. Iones & Hutton 1979). The methods were 
reviewed by Parker ( 1983) who found that linearization is an 
unreliable approximation and that the Monte Carlo approach 
is very limited at best. The failure of these general methods 
called for more specific techniques designed for the particular 
problem at hand. 

Weidelt (1985) considered the inference problem in terms of 
conductance bounds for an arbitrary depth z. A conductance 
function S(z) is defined as the integral of (J from the surface of 
the Earth down to a depth z, and the goal is to establish 
bounds on S(z) for all possible models that fit the data. In this 
case it is known that the I-D magnetotelluric inverse problem 
is well posed for S(z), as demonstrated by Dmitriev (1983). 
The formulation of Weidelt (1985) is rigorous, and the solution 
has the sufficient generality for the method to be considered 
as a good approximation to the general inference problem. 
However, as mentioned by Weidelt (1985), the more general 
and useful solution would be to establish bounds on the 
average conductivity a(Zl, Z2) in an arbitrary depth interval 
(Z1> Z2)· 

The idea of extremizing a(Zl, Z2) was initially proposed by 
Parker (1983) as a possible way of approaching the general 
problem in a rigorous manner. Apart from the work of 
Oldenburg (1983), who applied the concept of funnel functions 
via linearization, the problem has not been examined in 
the literature for a decade. Recently, the problem was con­
sidered in two presentations given at the XI Workshop on 
Electromagnetic Induction in the Earth (Weidelt 1992; Gomez­
Trevifio 1992). The first was a rigorous attempt to solve the 
problem using non-linear programming, and the second was 
an analytical solution using a very simple non-linear approxi­
mation. The present work is an account of the second pre­
sentation. It is hoped that the treatment given here could 
increase awareness of the inference problem within a much 
wider circle in the electromagnetic community. 

2 THE CONDUCTANCE EQUATION 

Dmitriev (1983) presented the formal proof that the I-D MT 
inverse problem is well posed for the conductance. Although 
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this proof is very recent, it had long been recognized that 
magnetotelluric measurements are more directly related to 
conductance than to conductivity. This was expressed math­
ematically by Niblett & Sayn-Wittgenstein (1960) by means 
of an approximate relationship between the measurements 
and an arbitrary conductivity distribution. They considered 
apparent conductivity measurements defined as 

(1) 

where (Ja represents the apparent conductivity, J.lo the per­
meability of free space, and Z the electrical impedance on the 
surface of the Earth measured at a period T. 

The relation between (Ja and the vertical conductivity profile 
was obtained by Niblett & Sayn-Wittgenstein (1960) by assuming 
a finite-difference approximation in Maxwell's equations. Their 
result can be written as 

where 

( 
T )112 

h- --
27tJ.lo(Ja 

and 
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Figure 1. Trade-off curve of variance and resolution for a homo­
geneous earth. Note the steep behaviour of the curve for s < 1. This 
means that it is possible to lower the variance of the averages 
significantly without a great loss in resolution. The rule of diminishing 
returns begins at s = 1 for which T2 = 7.56T1 • This implies that we can 
take two data points almost one decade apart in period and still 
obtain reasonable resolution. The Niblett-Bostick transformation 
corresponds to s = 0.0, for which case the variance is unbounded. This 
explains why the transformation is unstable for noisy data. 
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Eq. (2) shows that Ua represents the average of u(z) from the 
surface of the Earth down to a maximum depth h. It also 
shows that the product uah, which can be computed directly 
from the data, represents the conductance for the region z :-::; h. 
This means that magneto telluric measurements on the surface 
of the Earth are essentially conductance measurements. The 
conductivity profile u(h) may then be recovered simply by 
taking the derivative of uah with respect to h. 
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Figure 2. Test model and corresponding apparent conductivity and 
phase curves. The values of the response are noise-free but they are 
assigned 5 per cent error bars. In this we follow Whittall & Oldenburg 
(1992) who used the same model and curves to illustrate the per­
formance of a variety of inverse methods. We use this model here to 
evaluate the performance of eqs (12) and (A9). The results are shown 
in Figs (3) and (A1). 

The recovery of u(h) through derivation represents an exact 
inversion method, in the sense that u(h) is an exact solution of 
the non-linear integral eq. (2). This solution is known as the 
Niblett-Bostick transformation and is given as 

l+m 
u(h) = ua(T) 1 _ m' 

where 

o log Ua m=---. o log T 

(5) 

(6) 

The details of the derivation can be found in Bostick (1977) 
Jones (1983). An alternative proof is provided in a later section 
of this paper on the basis of the general formula for the average 
of conductivity. What is important here is simply to note that 
eq. (5) is not a solution of the inference problem posed in the 
Introduction. The inference problem needs to be formulated 
in its own terms in order to address the question of non­
uniqueness. This is considered in the next section, after the 
following brief discussion about the approximate nature of 
eq. (2). 

It is possible to get an idea of the type of approximations 
behind eq. (2) by comparing its kernel with the kernel of the 
exact conductance equation. The exact equation is derived in 
G6mez-Trevino (1987), and is given as: 

ua(T) = f' ke(fJ, T, z)u(z) dz, 

where 

1 
ke(u, T, z) = -1 -F(fJ, T, z)G(u, T, z), 

-m 

with 

[ 
T J1/2

1 E(z, T) 12 
F(fJ, T, z) = 2 2nJ1ofJ

a 
E(O, T) 

and 

G(fJ, T, z) = cos [21jJ(z, T) -1jJ(0, T)]. 

(7) 

(8) 

(9) 

(10) 

E(z, T) is the electric field at depth z, ljJ(z, T) is the phase of 
E(z, T) with respect to B(O, T), the magnetic field on the 
surface of the Earth, and m is as in eq. (6). 

Comparing eqs (2) and (7), it turns out that the exact kernel 
ke(fJ, T, z) is approximated by the box-car function ka(fJa, T, z). 
Notice that the approximation is intended to hold for all 
periods and for all conductivity distributions u(z), and that a 
rather simple function accommodates all situations. This is 
because the box-car function has an amplitude and depth extent 
adaptable for different periods and apparent conductivity 
values. This suffices as a first-order approximation to the exact 
kernel of eq. (7) because despite its complicated appearance, 
the exact kernel has some simple properties that follow from 
the well-known constraints on m, 1jJ(0, T) and E(z, T). G6mez­
Trevino (1987) used this constraint and a string of arguments 
to reduce eq. (7) to eq. (2). The box-car function represents a 
compromise to accommodate the exact kernel for m < 0 and 
m > O. Considering that the electric field decreases with depth, 
an inclined straight line could be a better choice for the 
approximation of the exact kernels, but this would certainly 
complicate the derivations aimed at recovering information 
about the conductivity profile. 
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Figure 3. Depth averages of electrical conductivity derived from the apparent conductivity curve shown in Fig. 2. The estimated averages were 
computed using eq. (12). The true averages were obtained by running the corresponding windows through the original model of Fig. 2. Note that 
the approximation improves for the averages derived from the wider windows. Note also that in all cases the approximate averages are able to 
recover the five layers of the original model. 

3 CONDUCTIVITY AVERAGES 

The inference problem can be stated as the search for the 
common properties shared by all models fitting the obser­
vations. This means that in our case we should look for the 
common properties of all solutions of eq. (2) for a given set of 
data. The Niblett-Bostick transformation represented by 
eq. (5) gives one of these solutions, and other solutions can be 
obtained by applying different numerical methods to eq. (2). 
The inference problem would then consist of finding and 
computing the common properties of all these solutions. 
However, since we can never compute all possible solutions, it 
is clear that any valid approach must begin by defining the 
inference problem in its own terms. This implies that we must 
first select a relevant property of the models, and then find a 
way to compute it without going to the trouble of inspecting 
all possibilities. In the present work we consider the depth 
average of electrical conductivity between two given depths as 
the relevant property. This follows the general approach sug­
gested by Parker (1983) for the exact problem. On the other 
hand, the computation of the averages is based on eq. (2) as 
originally derived by Niblett & Sayn-Wittgenstein (1960). This 
section shows how formulas for the average if(zl> zz), for Zl 
and zz, and for the variance of a(zl' zz) are easily constructed. 
All the relevant parameters of the inference problem can be 
evaluated directly from the data, without any assumption 
about the conductivity profile of the Earth. 

Let us consider the problem of computing spatial averages 
of O'(z) from a given set of observations O'aC1;), i = 1, n. The 
quantity of interest is 

1 1Z2 

if(zl> zz) = -- O'(z) dz. 
Zz -Zl z, 

(11) 

Using eq. (2) for O'aC1-;') and ITa(Tz), with Tz > Tb it is a simple 
matter to show that if(ZI, Z2) can be computed directly from 
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the data as 

(12) 

where X = (Td~)l/Z and Y = [O'aCll)/lTa(Tz)]l/z. The depths Zl 
and Zz are given as 

(13) 

and 

(14) 

It is important to emphasize that the object of computing 
if(Zl, Z2) is not to obtain a solution of eq. (2). This goal is 
accomplished by using the Niblett-Bostick transformation. 
Rather, the object is to compute a property that is common 
to all possible solutions of eq. (2). This property is if(Zl' zz). 
Notice that the formula for the averages represents a non­
linear combination of the data. This is a most important 
feature of eq. (12), whose origin can be traced back to the 
integral eqs (2) and (7). 

It is clear that if(zl> zz) will have uncertainties depending on 
the uncertainties on ITa' The situation can be controlled simply 
by computing the largest and the smallest values of if(ZI' zz) 
that are allowed by the observations. This can be accomplished 
by using the extreme values of ITa Cl;,} and O'a(~) in eq. (12), 
and then choosing the corresponding extreme values of 
if(zl> zz). However, since we are basing our approach on an 
approximate relation, the conductance equation (2), it is 
adequate simply to apply conventional propagation of errors 
to establish statistical bounds on if(Zl' zz). Assuming that the 
statistical errors of O'a(,l1) and O'a(~) are not correlated, it 
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Figure 4. Test model and corresponding responses. The noisy values 
were obtained from the exact responses by adding random noise of 10 
per cent to apparent conductivity and 3 degrees to phase. The scattered 
values are used in eqs (12) and (A9) to evaluate the performance of 
the formulas as stable versions of the Niblett-Bostick transformation. 
The results are presented in Fig. 5. 

follows that 

(15) 

The partial derivatives of 6(Z1, zz) can be easily evaluated 
from eq. (12). After some algebra the derivatives are 

06(Zb zz) = ~ y-Z {2XZ - Xy-
1 

- XY} 
oua('I].> 2 (1- XY 1f (16) 

and 

(17) 

With this, we can compute the upper and lower bounds of 
O'(Zb zz) directly from the data. 

Within the limitations imposed by the fact that the con­
ductance equation is only an approximation, eqs (12) and (15) 
represent a formal solution of the general I-D MT inference 
problem. In the Appendix, the solution is modified to include 
phase measurements. The version that uses the phase is not as 
general as eq. (12) because it requires interpolation between 
individual data points. However, it should prove useful in cases 
when the sounding curve is very well sampled. Before con­
sidering the performance of eqs (12) and (15), it is interesting 
to examine the case of a homogeneous earth to see the insight 
provided by the method of averages. 

4 HOMOGENEOUS EARTH 

The expressions for 6(Z1, zz) and its variance reduce signifi­
cantly for the case of a homogeneous earth. It is possible to 
obtain general properties of the averages by inspecting this 
model in detail. All measurements uaCI;) are equal for all 1i 
and their value is the conductivity of the homogeneous half­
space. The variance of uaCI;) is also assumed to be the same 
for all periods. Eq. (12), the formula for the averages, reduces 
to 

(18) 

for all Z1 and Zz. This means that regardless of our choice of 
T1 and Tz we always obtain the same average value UQ, as 
expected. The formula for the variance of 6 reduces to 

Var[6(zb zz)] 1 + (11/Tz) 

Var[uaCI;)] = (1-)(TJrz»z· 
(19) 

The variance of 6 depends on our choice of T1 and Tz. As 
Tz -+ T1 , the variance of 6 increases without bound. Also, as 
Tz -+ 11, Zz -+ Z1 and therefore 6(Z1' zz) -+ u(z). This means that 
with noisy data any estimate of u(z) is extremely inaccurate. 
In general, eq. (19) implies that as one tries to improve the 
space resolution of an average, one simultaneously loses 
precision in the determination of its value. The better the 
resolution, the worse the variance, and vice versa. 

The resolving power of the averages can be characterized 
by 

Zz - Z1 1 - (11/Tz)1fZ 
s------

- ;-- - (T,1/'TZ)1f4 
V ZZ Z 1 

(20) 

As Tz -+ 11, s -+ 0, in which case we have perfect resolution. 
The farther apart 11 and Tz are, the larger s. It is possible to 
eliminate 11 and Tz from eqs (19) and (20) and to express the 
variance of 6(Zb zz) directly in terms of s. The resulting 
equation and its graphical representation are shown in Fig. 1. 

It is observed that the normalized standard deviation of 6 
always remains above unity, regardless of the value of s. In 
practice, this means that we can never obtain averages with 
smaller errors than those of the data themselves. For s = 0 the 
error in 6 is unbounded. However, because of the almost 
vertical behaviour of the curve, the error decreases sharply 
compared to the loss in resolution. Notice that the standard 
deviation of 6 decreases to less than double the standard 
deviation of the data at s = 1. Notice also that for s = 1, Tz 
can be seven times 11, which means that we can take two 
points almost one decade apart in period and still obtain 
averages with reasonable resolution. 
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Figure 5_ (a) and (d) show the results of applying the Niblett-Bostick transformation to the sounding curves of Fig. 4. The first case corresponds 
to eq. (5), which uses slope estimates, and the second to eq. (A19), which uses phase values. (b) and (c) illustrate the performance of eq. (12) for 
two different steps in period. (e) and (f) show the results of applying eq. (A9). The best results are obtained with eq. (12) for the step indicated in (c). 

5 THE NIBLETT-BOSTICK 
TRANSFORMATION 

The definition of U(Zb Z2) given by eq. (11) and the formula to 
compute it from the data, eq. (12), are general expressions in 
the sense that they are valid for arbitrary depths ZI and Z2' In 
the limit as Z2 -+ Zl the formula for U(ZI' Z2) should reduce 
to the Niblett-Bostick transformation given by eq. (5). 

Let us write Zl = hand Z2 = h + A.h. It is clear from eq. (11) 
that 

1 ih+Ll.h 
lim u(h, h + A.h) = lim -h u(z) dz = u(h). 
t.h~O t.h~O A. h 

(21) 

This simply means that u(h) = u(h). Let us now consider 
eq. (12) for u(h, h + A.h) expressed in terms of the data. In this 
case consider that a small A. T corresponds to a small A.h 
because T and h are related by eq. (3). Writing Tl = T and 
T2 = T + A. T it follows that 

X = (_T_)1/2 ~ 1-.!:. A.T 
T+A.T 2 T 

and 

For small increments A. T it also follows that 

or 

After substitution in eq. (12) the result is 

u(h, h + A.h) 
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(22) 

(23) 

(24) 

(25) 

= [ua(T + A. T)Ua (T)] 1/2 

(A. T /T) + (A. T/ua)(aua(T)/aT) - (A. T2/2ua T)(aua/T) 

x (A.T/T) _ (A.T/ua)(aua(T)/aT) 

(26) 

Rearranging terms and taking the limit in eq. (26) according 
to eq. (21), the result is 

(27) 

which is equivalent to the Niblett-Bostick transformation 
given by eq. (5). 

In the previous section we considered the special case 
of a homogeneous earth and showed that the variance of 
U(Zb Z2) increases without bound as Z2 -+ ZI' The same is true 
in general because expressions (16) and (17), or equivalently 
eq. (15), indicate that as 72 -+ 11, the variance of U(Z2' zd 
increases without bound. We conclude that the Niblett-Bostick 
transformation corresponds to spatial averages with the best 
resolution and worst variance. This explains why the trans­
formation tends to be unstable for noisy data. The version of 
eq. (27) that uses phase measurements is derived in the 
Appendix from the corresponding formula for the averages. 

6 APPLICATIONS 

This section describes three applications of the formulas 
derived above. The first is designed to address the accuracy of 
eq. (12) by comparing exact averages of a hypothetical model 
with estimations derived from the corresponding surface 
response. The model and the apparent conductivity and phase 
curves are shown in Fig. 2. The values of the responses are 
noise-free but they were assigned 5 per cent error bars for 
computing statistics. In this we follow WhittalI & Oldenburg 
(1992), who used the same data for testing a variety of inversion 



768 E. Gomez-Trevifio 

COP ROD DATA 
10.'.--------------------------------------, 

90 

80 

en 70 
Q) 

~ 60 
Cl 
Q) 50 
~ 
Q) 40 
~ 30 

.s::. 
c.. 20 

10 
o 

(a) 

(b) 

(c) 

Data 
Model response 

10' 10' 
Period (s) 

Data 
Model response 

10' 10' 
Period (s) 

Model 

10·'~----~~--~~~~L-----~~--~~~~ 

10' 10' 10' 
Depth (m) 

Figure 6. The COPROD data set after Jones & Hutton (1979). The 
model in (c) was obtained by inverting the data with an iterative 
method described in Esparza & G6mez-Trevifio (1996). The depth 
averages derived from these data are shown in Fig. 7. 

methods. They present different I-D models that fit the data 
set of Fig. 2. Although the present computation of averages is 
not intended to produce models whose responses fit the data, 
it may be interesting to contrast the results with models offered 
by existing construction methods. We use here the same data 
as Whittall & Oldenburg (1992) to make the comparison easy 
to the reader. The first test of the present method is shown in 
Fig. 4. The computations are made for three different sets of 

depth windows that correspond to different choices of steps in 
period. Given any two periods 11 and T2(Tz > 11), and two 
apparent conductivity values O"a(11) and O"a(1;), the estimated 
averages a'(Zb Z2) were computed using eq. (12). The depths Zj 

and Z2 were obtained from eqs (13) and (14) respectively. The 
averages are plotted at the mean depth Z=(ZlZ2)1/2. Fig. 3 (a) 
was obtained using contiguous data points. This corresponds 
to the best possible resolution as indicated by the narrow 
depth windows of Fig. 3(b). Figs 3(c) to 3(f) were obtained by 
considering larger steps, as indicated in each case. The true 
averages are obtained by running the corresponding depth 
windows through the hypothetical model of Fig. 2(a). It is 
observed that the approximate values follow the true averages 
reasonably well in the three cases. All of the five layers of the 
original model are clearly preserved in the variations of the true 
averages, and all five layers are also recovered by the approxi­
mation. Notice how the variance of the averages decreases as 
the width of the windows increases. Consider now the results 
included in the Appendix that were obtained from amplitude 
and phase data. It can be observed in Fig. Al that the estimated 
averages are not as good as those shown in Fig. 3. One must 
conclude that the averages computed from apparent con­
ductivity data alone are more accurate than those that include 
phase. It is also worth noting that in all cases the width of the 
depth windows decreases around layers of high conductivity, 
and vice versa. This simply means that good conductors are 
better resolved than resistive layers. 

The second example illustrates that the formula for the 
averages represents a stable alternative to the Niblett-Bostick 
transformation in the case of noisy data. The model and the 
apparent conductivity and phase curves are shown in Fig. 4. 
The scattered values were obtained from the exact response of 
the model by adding 10 per cent and 3 degrees random noise 
to the apparent conductivity and phase curves respectively. In 
this case the test model was taken from Oldenburg (1979), 
who used linearization and Backus-Gilbert theory for estimating 
spatial averages of the conductivity distribution. The model is 
very complicated and the diffusive nature of MT could not 
hope to resolve all the details, regardless of the inverse method. 
The reader is referred to the paper by Oldenburg (1979) for a 
comparison of the present results with linearized Backus­
Gilbert theory. The results of the present method are shown 
in Fig. 5. Those corresponding to the Niblett-Bostick trans­
formation are shown in Figs 5(a) and (d). It is observed that 
the formula that uses amplitude and phase data (eq. A19) is 
more stable than eq. (5), which requires values of the slope of 
the sounding curve. In Fig. 5(a) the slope was estimated using 
contiguous data points, which explains the widely scattered 
values. The smoothing effect of the phase as an independent 
estimate of the slope is a well-known feature of the transform­
ation. Consider now the average values obtained from apparent 
conductivity data alone using eq. (12). These are shown in 
Figs 5(b) and (c). It is observed that the best estimates are 
those shown in Fig. 5(c), which corresponds to averages com­
puted from widely spaced data. There is a lot less scattering 
than in Fig. 5(a) and the estimated conductivity profile is of 
better quality than that of Fig. 5(d). This means that using 
widely spaced apparent conductivity data in eq. (12) surpasses 
the use of phase data in the Niblett-Bostick transformation. 

The third example corresponds to the application of the 
formulas to the well-known COPROD data set described by 

© 1996 RAS, GJI 127, 762-772 



Conductivity averages from MT data 769 

COPROD AVERAGES 

E 10~' 

~ 
~ 
V 

1O~3 

10' 

12 

i» 
10 

.c 
E 8 :::> 
c: 
)( 

'" 
6 

"0 
4 .= 

2 

0 
10' 

(a) From (fa data alone 

I From data 

- From model 

(b) From (fa and phase data 

T-T 3 I 
~ -:::::: .. 

10' 

(c) Depth windows 

10' 
Depth (rn) 

- Fromdata 

10' 

10' 

~ 
V 

~ 
V 

i» 
.c 
E 
:::> 
c: 
)( 

co 
"0 .= 

(d) From (fa data alone 

Ti-Ti• S I From data 

- From model 

(e) From (fa and phase data 

Ti-Ti•S I From data 

- Frommodel 

1O~3 L...-_____ ~ ......... __ ~~~~_ ..... 

12 

10 

8 

6 

4 

2 

0 

10' 10' 10' 

10' 

(t) Depth windows 

Ti-Ti• S 

10' 
Depth (rn) 

- Fromdata 

10' 

Figure 7. Depth averages for the COPROD data set. The continuous lines represent the average profiles derived from the response of the model 
shown in Fig.6(c). It is clear, particularly in (a) and (d), that there is a trend of the scattered values to increase with depth. However, the 
uncertainties are too large to fully support the existence of the deep conductive layer of the model. 

lones and Hutton (1979). The apparent conductivity and 
phase curves are shown in Fig. 6. The model presented in 
Fig. 6(c) was obtained using an iterative technique described 
by Esparza & G6mez-Trevifio (1996). The method uses linear 
programming to obtain a conductivity distribution whose 
response satisfies the exact conductance equation (7) to a 
required level for a given data set. There is nothing special 
about this model. It shows an increase in conductivity around 
300 m similar to that in alternative models derived by other 
workers (e.g. lones & Hutton 1979; Constable et al. 1987). In 
this application the idea is to compute averages at depth 
directly from the data and to see whether the results support 
this increase in conductivity around 300 km. The results are 
shown in Fig. 7. The averages computed from the data are 
compared with the averages computed from the response of 
the model of Fig. 6(c). The values computed from the response 
of the model (continuous line) are not strictly necessary for the 
analysis of the averages computed from the data. They are 
included here simply as a reference for the real averages. In 
this sense the continuous line represents the results that one 
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would obtain with perfect data, provided the model of Fig. 6(c) 
resembles the real Earth. It is observed in Fig. 7 that the 
continuous line shows very clearly the effect of the deep 
increase in conductivity. This is particularly true of the averages 
derived from the amplitude response. On the other hand, it is 
observed that the values computed from the data follow the 
continuous line, but it is also evident that the error bars are 
far too large. The conductivity averages clearly tend to increase 
with depth, but the size of the uncertainties do not fully 
support this increase. This means that from the point of view 
of the present analysis, the COPROD data set does not 
necessarily imply an increase in conductivity around 300 km. 
This example illustrates the type of practical issues that can 
be formally approached with a solution of the inference 
problem. 

7 CONCLUSIONS 

This paper addresses by means of a simple non-linear approxi­
mation the often neglected 1-D MT inference problem. It is 
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possible using equation (12) to transform a surface MT 
response into a depth profile of spatial conductivity averages. 
Each average is computed simply by combining any two data 
points of the sounding curve. The same data points also 
determine the variance and the depth range of the averages. 
All these parameters that define the I-D MT inference problem 
can be evaluated directly from the data without any external 
assumption about the conductivity profile of the Earth. The 
main features of the method are its simplicity and its flexibility 
in obtaining averages with different variances and vertical 
profiles with varying degrees of smoothing. These vertical 
profiles represent spatial averages of all possible models whose 
responses fit the data. Any of these models can be tested to 
determine whether or not a particular feature is required by 
the data. The third €xample, summarized in Fig. 7, illustrates 
this practical application of the method using the COPROD 
data set. 

A drawback of the method is that it is based on an 
approximate conductance equation. However, its main asset is 
that this equation retains some of the non-linear character of 
the problem. It is this non-linear feature that makes the 
formula a reasonably accurate approximation for the true 
averages. The first example, summarized in Fig. 3, illustrates 
this point by comparing the true and the approximate averages. 
Perhaps the method could be improved by using the exact 
conductance equation. However, as it stands, the approximate 
formula should prove useful for making inferences about the 
deep conductivity profile of the Earth, using no information 
or assumption other than the surface MT data. This indepen­
dence from external assumptions distinguishes the method 
from existing approaches based on Backus-Gilbert theory, 
which require reference models when applied to the MT 
problem. 

The formula for the averages reduces to the well-known 
Niblett-Bostick transformation for the case of optimal 
resolution and worse variance. This explains why the trans­
formation is unstable for noisy data, and why the version that 
uses phase is more appropriate in such cases. In this respect, 
it is shown that using widely spaced apparent conductivity 
data in the formula for the averages surpasses the use of phase 
in the transformation. The second example, summarized in 
Fig. 5, illustrates this point. On the other hand, considering 
the relative success of the approximation, it would be inter­
esting to consider its possible extension to the multidimensional 
cases. Along this line, so far we know that an imaging technique 
based on a generalized two-dimensional version of the Niblett­
Bostick transformation produces reasonably good models from 
a given data set (Esparza et at. 1993). The problem still remains 
of devising effective algorithms for computing the averages and 
their variances. However, apart from any possible generalizations 
to the multidimensional cases, it is to be hoped that the present 
treatment of the I-D MT inference problem could widen the 
interest for its solution within the electromagnetic community. 
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APPENDIX A: CONDUCTIVITY 
AVERAGES USING PHASE DATA 

Eqs (12) and (IS) use only amplitude measurements. All 
computations are performed by combining the values of any 
two given data points without using the information in 
between. The intermediate data points are not used simply 
because they are not required in the computation of the 
averages. The simplicity of the resulting formulas is of course 
an asset of the method. Unfortunately, when considering phase 
measurements the formulas become more complicated. Not 
only do the intermediate points enter into the picture, but they 
are also required in order to make an assumption about the 
behaviour of the phase curve between adjacent data points. 
That is, in order to compute the averages it is necessary to 
make assumptions external to the observations. The method 
is then less rigorous than the version that uses amplitude data 
alone. Nevertheless, the derivation of the formula has some 
interesting features regarding the variance of the averages 
when using measurements from a single period. The formula 
should also prove useful in practice as a means of comparison 
of eq. (12) with another approximation. 

The formula for the average is given as 

_ ~1-XY 
0'(Z1, zz} = [O'a(T2)O'a(TdJ Y -x ' 

where 

x = (TdT2}1/2 

and 

(AI) 

(A2) 

(A3) 

The averages depend on the product and the ratio of O'aCI;,) 
and O'aCT[}. The ratio of these two quantities can be expressed 
in terms of the phase of the impedance using an approximate 
relationship derived by Weidelt (1972). The original relation­
ship derived by Weidelt (1972) can be written as 

8 log O'a(T} _ ~ J. _ 

8 log T - n'l'(T) 1. (A4) 

Integrating both sides with respect to log T from 'T[ to 0., the 
result is 

O'a(Tz} 'T[ 4 iT2 
10g-(7') = log 7' + - t/J(T) d log T. 

O'a '1 '2 n Tt 
(AS) 

From this it follows that 

(A6) 

where 

2 fT

2 P = - t/J(T) d log T. 
n Tt 

(A7) 

It is clear from eq. (A 7) that we require all the available phase 
values between 'T[ and 0.. 

Furthermore, we need to make some assumption about the 
behaviour of t/J(T) between adjacent points in order to evaluate 
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the integral. In the present context, the reasonable thing to do 
is to consider the simplest assumption by evaluating the 
integral using rectangular boxes defined by the intervals in 
period and of height equal to the mean value of the two 
phases. That is, 

2 n~1 (t/J(TJ + t/J(t i +1») I t i + 1 
p=- L..., og-, 

n i=1 2 ti 
(A8) 

where there are m data points between T1 and 0. including the 
extreme points, so that tl = 11 and tm = 0.. The formula for 
the averages then reduces to 

_ 1/2 1- e- P 

0'(Z1' Z2) = [O'a(Tz)O'a(TtlJ X 1 e P _ X' (A9) 

where p is as in eq. (A8). It can be easily shown that eq. (A9) 
reduces to the conductivity of a homogeneous half-space when 
the phase is uniform and equal to n/4, since in this case e - P = X. 

To obtain the formula for the variance of iT(Z1, Z2), consider 
that in this case iT depends on both apparent conductivity and 
phase data. The corresponding formula can be written as 

Var[iT(zlo zz)] = A 2 Var[O'a(1"i)] + B2 Var[O'a(0.)] 

m 

+ I Cr Var[t/J(tJJ, 
i=l 

where 

8a(Z1, Z2) 1 [O'a(0.)J1 /2 l-e- P 

A= 80'a(Ttl =2" O'a(Ttl X- 1 e- p -X' 

8a(Zl,Z2) 1 [O'a('T[)J1
/
2 l-e- P 

B= 80'a(Tz) =2" O'a(Tz) X-1e-p-X' 

Cl = D log(tz/tl), 

Cm = D log(tm /tm - 1 ), 

and for intermediate data points 

Ci = D log(ti+dti-tl, 

where 

(AW) 

(All) 

(AI2) 

(A13) 

(AI4) 

(AI5) 

(A16) 

It is of interest to consider the case of measurements at a 
single period. The formula for the variance of the averages can 
be obtained by taking the appropriate limit in eq. (AW), and 
then doubling the result. A factor of two is required because 
the formula assumes at least two independent measurements, 
and as T2 ...... 'T[ the two become one and the same. The variance 
is then too small by a factor of two compared to the case of a 
single measurement. Consider that as Tz ...... T1 , 

2 T+IlT 2 IlT 
p = -t/J(T) log-- ;::; -t/J(T)-, 

n t n T 
(A17) 

where 'T[ = T and Tz = T + Il T. Substituting in (AW) and 
considering first-order expansions in X, the formula for the 
variance reduces to 

( 
2t/J )Z z [ 2n JZ 

Var[O'(h)]= n-2t/J Var(O'a)+O'a (n-2t/J)Z Var(t/J). 

(AI8) 

The most important consideration regarding the use of 
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Figure At. Depth averages of electrical conductivity derived from the apparent conductivity and phase curves shown in Fig. 2. The estimated 
averages were computed using eq. (A9). The true averages were obtained by running the corresponding windows through the original model of 
Fig. 2. Notice that the approximation is not as good as that shown in Fig. 3. 

phase is that as T2 -+ T1 , the variances of the averages remain 
bounded, as opposed to the case when using only amplitude 
data. The reason for this difference is that phase measurements 
represent independent estimations of the slope of the amplitude 
curve at a point. This is obviously a major difference, because 
the slope of a curve cannot be determined accurately from two 
nearby inaccurate data points. However, it is important to 
notice that eq. (AlS) is far too optimistic because it bounds 
the conductivity at depth. This contradicts what we know, that 
conductivity cannot be bounded at depth using magnetotelluric 
data. In this respect eqs (12) and (15) are more appropriate. 

The corresponding formula for the conductivity can be 
obtained by substituting eq. (AI7) in eq. (A9) and by taking 

the appropriate limits. The result is 

(A19) 

As expected, the formula for the averages reduces to the 
Niblett-Bostick transformation as 12 -+ Tr, in the version 
that uses phase measurements (Bostick 1977; Goldberg & 
Rotstein 1982). 

The results of applying eqs (A9) and (AlO) to the data 
shown in Fig. 2 are illustrated in Fig. Al. It is observed that 
the profiles are too smooth and that they are not as good 
estimates of the true averages as those shown in Fig. 3. 
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