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Decomposition of Magnetotelluric Impedance Tensors in the Presence 
of Local Three-Dimensional Galvanic Distortion 

Ross W. GROOM 1 AND RICHARD C. BAILEY 2 

Department of Physics, University of Toronto, Ontario 

There are many occasions on which the magnetotelluric impedance tensor is affected by local 
galvanic distortion (channelling) of electric currents arising from induction in a conductive struc- 
ture which is approximately two-dimensional (2-D) on a regional scale. Even though the inductive 
behavior is 2-D, the resulting impedance tensor can be shown to have three-dimensional (3-D) be- 
havior. Conventional procedures for rotating the impedance tensor such as minimizing the mean 
square modulus of the diagonal elements do not in general recover the principal axes of induction 
and thus do not recover the correct principal impedances but rather linear combinations of them. 
This paper presents a decomposition of the impedance tensor which separates the effects of 3-D 
channeling from those of 2-D induction. Where the impedance tensor is actually the result of 
regional 1-D or 2-D induction coupled with local frequency independent telluric distortion, the 
method correctly recovers the principal axes of induction and, except for a static shift (multiplica- 
tion by a frequency independent real constant), the two principal impedances. Also obtained are 
two parameters (twist and shear), which partially describe the effects of telluric distortion. It is 
shown that the tensor operator which describes the telluric distortions can always be factored into 
the product of three tensor sub-operators (twist, shear, local anisotropy) and a scalar. This prod- 
uct factorlzation allows assimilation of local anisotropy, if present, into the regional anisotropy. 
The method of decomposition is given in the paper along with a discussion of the improvements 
obtained over the conventional method and an example with real data. 

INTRODUCTION 

Interpretation of experimental magnetotelluric results is 
easiest in those cases where the surveyed structure is one- 
dimensional (l-D) or 2-D. However, experimentally deter- 
mined magnetotelluric impedance tensors rarely conform to 
the ideal 2-D impedance tensor. That is, there is no rotation 
of the coordinate axes such that the diagonal elements of the 
tensor are both exactly zero. This may occur either (1) ]•e- 
cause of data errors in the case of 1-D or 2-D induction, 
(2) because of 3-D induction, or (3) because of 1-D or 2-D 
induction coupled with the effects of galvanic (frequency- 
independent) telluric distortion. For historical reasons con- 
nected with the ease of calculating inductive responses for 
2-D structures and the difficulty of doing the same for 3-D 
structures, it has been customary to assume the first of the 
above possibilities in presenting data and to rotate the co- 
ordinate axes so as to make the measured tensor as close 

as possible to an ideal 2-D tensor (one with zero diagonal 
elements) in some sense (usually a least squares sense [ e.g. 
Swift, 1967]). 

Improvements in data quality in recent years have made 
it obvious that the third possibility (1-D or 2-D induction 
coupled with 3-D telluric distortion) is important in prac- 
tice. The measured impedance tensor, if such distortion is 
present, need not be close to a true 2-D impedance ten- 
sor, and rotation or decomposition methods based on this 
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assumption make no sense in this situation. A number of al- 
ternative decomposition methods have been proposed [e.g. 
Eggers, 1982; Spitz, 1985; LaTorraca et al, 1986; Yee and 
Paulson, 1987] which do not make any simplifying assump- 
tions about the physical model and use as many parame- 
ters to represent the tensor as there are data (eight real 
parameters in contrast to the five kept by rotation to an 
idealized 2-D tensor). In the case of induction in one or 
two-dimensions coupled with 3-D galvanic scattering, then 
these general decompositions may not be optimal since they 
fail to take advantage of the simplicities of the underlying 
model. 

Recent work by Bahr [1988] has indicated galvanic dis- 
tortion or current channelling does not destroy most of the 
information present about an underlying 2-D inductive pro- 
cess. Bahr demonstrates possible ways in which this infor- 
mation can be recovered and shows an application to a field 
situation. Therefore the physical approach we take to the 
decomposition problem is to make the specific assumption 
that a measured impedance tensor is produced by local gal- 
vanic distortion, by arbitrary 3-D structures, of the electric 
currents induced on the large scale in a regionally 1-D or 
2-D structure. Even when this model is not true for all fre- 

quencies of the data set, it may still be true over limited 
frequency ranges since the definition of a "regional" scale 
can be different for different frequency ranges. We present a 
decomposition appropriate to this particular physical model 
which, although not the most general model, has consid- 
erably wider application than the strictly two-dimensional 
model which implicitly underlies the Swift decomposition. 

In summary, the purpose of our decomposition is to sepa- 
rate local and regional parameters as much as possible under 
the assumption that the regional structure is at most 2-D 
and the local structure causes only galvanic scattering of 
the electric fields, and to do so in the form of a product 
factorization. 

1913 
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THE DISTORTION MODEL 

We now review, in more detail, the idealized physical 
model which underlies the decomposition. Assume that the 
Earth has a 2-D regional conductivity structure and that 
any superimposed 3-D structures are inductively small. In 
the principal axes of the 2-D structure, the regionally av- 
eraged electric field er and magnetic field hr are related 
by 

er= Z2hr=( 0 b a)hr (1) - 0 

where a and b are the impedance elements for the region- 
ally averaged 2-D structure.The measured fields e and h at 
any point may be perturbed by local variations from their 
regional values. The electric field e can be very strongly 
perturbed by local charges that accumulate on conductivity 
gradients or boundaries. The magnetic field h is not per- 
turbed nearly as strongly, as it is determined by a weighted 
spatial average of the telluric current density. Thus we make 
the simplifying assumption that h = hr. For a more com- 
plete discussion of this assumption and the nature and mag- 
nitudes of the errors involved, see Dmitriev and Berdichevsky 
[1979], Wannamaker et al [1984b] and Groom [1988]. On the 
other hand, e must be related to er by a distortion tensor 
C, which in the absence of galvanic distortions reduces to 

the identity tensor. 
Following Bahr [1988], 

e= Cer= Cs C4 er (2) 
Because the distortion structures are here assumed to be 

inductively weak, all the elements of C can be assumed 
real. Thus four real parameters are required to represent 
distortion. This physical model corresponds to fundamental 
model II of Berdichevsky and Drnitriev [1976] for a 3-D sur- 
face inhomogeneity, in which C is defined in their notation 
as 

C = (F?)F? ) F? F?)) (3) 
The conditions of validity of such inductively weak 

(phase-free) distortions has been discussed by a large num- 
ber of authors [ e.g. Berdichevsky a•d Dmitriev, 1976; Cox 
et al., 1980; Larsen, 1975, 1977; Dmitriev a•d Berdichevsky, 
1979; Herma•ce, 1982; LeMouel a•d Me•vielle, 1982; Jo•es, 
1983; Park et al., 1983; Ra•ga•ayaki, 1984; Wa•amaker et 
al., 1984a,b; Park, 1985; West a•d Edwards, 1985; Bahr, 
1988], to which the reader is referred for details. 

That four independent parameters are required to repre- 
sent the most generM distortion tensor may not be obvious. 
Fig. I shows a contrived example which demonstrates this 
requirement. A moderately conductive region of overbur- 

(dotted) is shown on •n insulating substratum (white). 
Inside the circular centrM region of overburden, an ellipti- 
cal and highly conducting surface region (e.g., swamp) e•sts 
(bl•ck). Measurements are made at the centre of the swamp. 
The regionM telluric currents are first twisted through an 
gle 0t. The elongation of the swamp then leads to anisotropy 
with principal axes parMlel and perpendicular to the direc- 
tion a. Applying the transformations implied by each of 
these distortion operations in turn to the regionM electric 
field yields a finM relation of the measured electric field to 
the regionM which can be represented • 

Fig. 1. A contrived example of distortion. See text for details 

e= Cer= QAQT Ter (4) 

where, in full, 

(cos0a -sin0a) (A1 0) C = sin0a cos0a 0 A2 

x -sin0a cos0a \sin0t -sin 0t ) (5) cos 0• 

The matrix T performs the initial twist, Q and its trans- 
pose QT rotate to the principal axes of the swamp, and A 
imposes the anisotropy caused by the elongation and con- 
ductivity contrast of the swamp. As can be seen, four real 
parameters Oa, Or, A1 and A2 are required. 

Although this factorization (5) of C is instructive, it is 
not useful in the representation of real data because none of 
its four parameters can be recovered uniquely from a mea- 
sured impedance tensor. As Bahr [1988] has shown in the 
case of general galvanic telluric distortion and Zhang et al. 
[1987] in the case of 2-D galvanic distortion, it is not nec- 
essary to explicitly solve for the elements of C in order to 
recover information about the underlying 2-D impedances. 
However, since we are here seeking an explicit decomposition 
(parametrization) of the impedance tensor in which the de- 
terminate and indeterminate parts are clearly distinguished, 
it is necessary first to describe quantitatively the exact way 
in which C is indeterminate. 

It is given that 
e = Zm h (6) 

where Zm is the measured impedance tensor. In the re- 
gional or principal axes system, we can express the measured 
impedance tensor using (1) and (2) as 

= c (7) 

or in the measurement axis system, as 
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= x c xz (s) 

where C is the distortion tensor, again expressed in the 
regional inductive principal axis system, and 1t. is a rota- 
tion matrix which rotates vectors through an angle 0 to the 
measurement axis system from the regional measurement 
axis system. 

Although the factorization (8) of the measured impedance 
tensor expresses the underlying physical model, it is clear 
that any extraction of parameters from this factorization 
cannot be performed uniquely for measured data. This 
is because there are nine real parameters required' a ro- 
tation angle 0 in R., four distortion tensor elements, and 
the two complex principal impedances. The nature of the 
nonuniqueness of any decomposition is best illustrated by 
the following argument. Consider the transformations 

0 ) Z• -- W Z2 = 0 w2 
and 

C'= C W -• (•0) 
where Wl and w2 are arbitrary non-zero real numbers. The 
new factorization 

= x c' xz 

is also valid, in that it fits Zm just as well as (8), since C t 
is still real and Z• still has the ideal 2-D form. In fact, it 
can be shown that a diagonal matrix like W produces the 
most general form of nonuniqueness that can be introduced. 
Thus although (8) is a physically based decomposition of 
the impedance tensor, (11) shows that it is not yet a useful 
one. 

A USEFUL FACTORIZATION 

OF THE DISTORTION TENSOR 

The previous section discussed the physical model 
and a rather general decomposition of the corresponding 
impedance tensor. In this section we will develop a fac- 
torization of the distortion tensor C which is the basis for 

our decomposition of the impedance tensor. 
For representation of matrices it is convenient at this 

point to follow the example of Spitz [1985] and introduce 
a modified form of the Pauli spin matrices as 

(1 0) o 1 (12) 

(01) (12b) •1 = I 0 

I O 1 Els= (0-) (12d) 
Although any rank 2 tensor M can be represented as a 

sum of these matrices (12) as 

(]3) 

we suggest that a useful factorization of C is as the product 

C=gXSn 

g is a scalar and the tensor factors T, S, and A are defined 
by 

T = N2 (I + t•2) (15a) 
S = N• (I + e•) (15b) 
A = N3 (I + s•3) (15c) 

It should be noted that this factorization is not a singular- 
value decomposition (SVD). Physical interpretations of each 
of T, S, and A will be discussed below. The normalizing 
factors Ni are defined for convenience in such a way that T, 
S and A individually preserve power (but not isotropy) 

when applied to an isotropically polarized random electric 
field, i.e. 

= + 
N2 = 1[V/1 + t 2 (16b) 
N3 = 1/V/1 + s 2 (16c) 

The matrix T is in fact made into an ordinary rotation 
matrix by this normalization. The practical purpose of this 
normalization is to ensure that the elements of T, S, and 
A remain bounded during any computations. 

Some physical insight into this factorization can be ob- 
tained by examining the effects of each factor in turn on 
the regional electric field (i.e., the regional electric field in 
the natural coordinate system of the regional 2D structure). 
The "anisotropy" or "splitting" tensor 

A=N3(I+s•3)=N3 (l+s 0 ) (17) 0 1-s 

simply stretches the two field components by different fac- 
tors, generating an anisotropy due to the distortions which 
is simply added to the anisotropy already existing in the 
regional induction impedance tensor Z•, as it is developed 
along the same axes. Note that any rank two diagonal ma- 
trix and thus any anisotropy operator can be expressed in 
this form. This distortion anisotropy is indistinguishable 
experimentally from the inductive anisotropy except in cir- 
cumstances when the anisotropy of Z• is known indepen- 
dently. (Berdichevsky and Dmitriev [1976] in their example 
have implicitly used this form for the distortion operator by 
the selection of their measurement location and the symme- 
tries of their inhomogeneity.) Fig. 2 shows the effects of A 
on a family of unit vectors for positive s. Note that electric 
fields lying along either of the principal axes are not changed 
in direction. 

The "shear" tensor (here so named by analogy to the 
theory of deformation) 

S=N•(I+eII•)=N• e I 

develops anisotropy on axes which bisect the regional induc- 
tive principal axes. The effect of S on a family of unit vec- 
tors is shown in Fig. 3 for positive shear e. Note that the 
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sot (i.e., has zero diagonal elements). We therefore adopt 
the convention of trying only to determine Z• rather than 
Z2, knowing that the two principal impedances we deter- 

mine in Z• will have been separately scaled by unknown 
but frequency-independent factors. A clear advantage of 
the above factorization of the distortion tensor C is that 

it a•lows the unknown parts of C to be absorbed into 
the determined impedance tensor without destroying the 
ideal 2-D form of that tensor. Neither Larsen [1975] nor 
Berdichevsky and Dmitriev [1976] required this absorption 
of local anisotropy into the regional anisotropy since they 
assumed the regional structure to be one-dimensional (l-D), 
in which case all anisotropy is due to the local distortions 
and can be so attributed. The decomposition presented here 
can be similarly adapted in the 1-D case. 

If the telluric distortion is truly frequency-independent, 
the absorption of g A into Z2 will not change the principal 
apparent resistivity curve shapes or the phases. Thus we can 
determine them correctly except for "static shifts." This 
is not the case with the conventional method, as will be 
illustrated later. In addition to implicitly absorbing g A 

(b) 
Fig. 2. A family of unit vectors (a) before and (b) after the 
application of the splitting tensor A. The x axis is up, the y axis 
to the right. 

maximum angular changes occur for vectors aligned with 
the principal axes. A vector on the z axis in the figure 
is deflected clockwise by an angle tan -1 e, and a vector 
along the y axis counter-clockwise by the same angle. It is 
therefore useful to characterize the shear e by a shear angle 
•be -- tan -1 e. 

The effect of the "twist" tensor 

T = N•. (I + •X]•.) = N•. ( 1 
is simply to rotate the electric field vectors through a clock- 
wise angle tan-1 t. The twist t is usefully characterized by 
the twist angle •bs = tan-1 t. 

Finally, g performs an overall scaling of the electric fields. 
This is necessary because A, S, and T have been normal- 
ized in such a way that their product will differ from the 
true distortion tensor C by some scalar factor g. We will 
refer to this scalar as the "site gain". 

The advantage of this factorization of the distortion ten- 
sor C will now be made apparent. Neither g nor A can be 
determined separately from Z•., since Z• = g A Z2 looks 
like an equally v•lid ideal two-dimensional impedance ten- 

(a) 

(b) 
Fig. 3. A family of unit vectors (a) before and (b) after the 
application of the shear tensor S. The x axis is up, the y axis to 
the right. 
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into Z2, the conventional method also implicitly absorbs 
T and S into Z2 as well, thus radically distorting it from 

an ideal 2-D tensor. 

That the factorization of C using real values of g, t, e 
and s exists and is unique is not obvious for arbitrary C. 
For example, the classic eigenvalue-eigenvector decomposi- 
tion of a square matrix will not yield real eigenvalues and 
eigenvectors unless the matrix has certain properties. Sim- 
ilarly, there is no a priori guarantee that the product fac- 
torization proposed in (14) even exists if s,t,e, and g are 
required to be real. 

The remainder of this section is devoted to proving that 
for all reasonable distortion tensors a unique product fac- 
torization (14) exists. If the factorization is multiplied out 
explicitly, then 

C= g 
V/(1 + e2)(1 + t2)(1 + s 2) 

((l+s)(1--te)(1--s)(e--t)) x (1 + s)(e + •) (1 - s)(1 + re) (20) 
For the case of "weak" distortions (t, e, and s much less than 
unity), the factorization can easily be done approximately. 
If all second and third order terms in e, s and t are neglected, 
this becomes 

C3 C4 • g e + t 1- s ' 

From this, the factorization parameters can easily be derived 

g • 2 (22a) 
+ Ca 

e • C1 -I- C4 (22b) 
C1 -C4 

s • C1 + C4 (22c) 
C3 - 

t • C1 -[- C4 (22d) 
This is the form of the operator utilized by Larsen [1975]. 
In this situation of weak distortion, if the required regional 
model were 1-D one could (as Larsen [1975, 1977] has done 
with somewhat differently defined parameters) very simply 
calculate twist, shear, anisotropy and a possibly shifted 1-D 
impedance, but not the site gain. 

For more general distortion, the exact equations (20) must 
be satisfied. It will be shown that there exist, in general, 
two solutions to these equations and only one is physically 
meaningful. 

Recall from (20) 

C __ g, ( (l q- s)(1- te) (1- s)(e- t) ) , (1 + s)(e + t) (1 -- s)(1 + re) (20) 
where gt now includes the normalizing factors. We assume 
a priori that C is not of the form 

(C• 0) C= Cs 0 
or 

0 C•) C= 0 C4 

For these special and physically implausible cases no suitable 
decomposition exists. If these special cases are excluded, 
(20) implies s • 4-1 . 

If C4 • 0, let 

r-- C4 -- 1+re (23a) 
and if C1 • 0, let 

C1 I - te (23b) 
The special cases where C1 -- 0 or C4 = 0 which have two 
solutions are straightforward and are not discussed here. If 
7 =/•, then there exists only one solution: t = 0 and 

C1 -[- C4 C1 - C4 (24a) e=7=fi g= 2 s= 2g 
Again, if 7 = -fi, the only solution is e = 0 and 

C• + C4 C• - C4 (24b) t=-7=fi g= 2 s= 2g 
However, if 7 • fi and 7 • -fi, then from (23) it can be 
shown that e and t satisfy quadratic equations 

(7+ fi)e 2 + 2e(1- 7fi)- (fi + 7) = 0 

(7- fi)t 2 - 2t(1 + 7fi) - (7 - fi) = 0 
which have real solutions as required: 

(25a) 

(2b) 

(7/• + 1) 4- V/(1 + 72)(1 +/•2) 
t = (26a) 

(7/• -- 1) 4- V/(1 + 72)(1 +/•2) 
e = (26b) 

We denote the solution for t with the positive square root 
as t +, while t- denotes the alternate solution, and similarly 
for e. Note 

t+t - =-1 e+e - =--1 

and the two solution sets are (e•,t•) = (e+,t -) and 
t2) = (,-, 

It is easy to show that when 7/• = -1, t = 4-1 and when 
7/• = 1, e = 4-1. Except for these cases, there exists a 
pair of solutions. In one solution, ]e I > 1, and in the other, 
[e I < 1. Similarly, one solution has It[ greater than one and 
in the other, t has magnitude less than one. To be more 
specific, it can be shown that if (g, t, e, s) is a solution, then 
(-gets,-t -1, -e -I, s -I) is also a solution. 

The two solutions cannot always be divided into "small" 
(It, e I < 1 ) and "large" (It, el > 1 ) distortion solutions. 
However, if 

0_< I,1_<1 

then 

and there is a small distortion solution distinct from a large 
distortion solution. However, if 17fil > 1 then the solutions 
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are of "mixed distortion" type. That is, there exists one 
solution which has small shear and large twist and another 
with small twist and large shear. However, one can rea- 
sonably require that [e[ _< 1, since intuitive consideration 
of the effect of the shear operator (18) would imply that a 
shear angle of magnitude greater than 45 ø is not meaningful. 
This restriction to the solution when shear has magnitude 
less than one thus defines a unique solution for the product 
factorization. 

Completion of the uniqueness proof now only requires 
that shear and site gain be uniquely determined from the 
distortion tensor. To obtain the anisotropy factors for a 
known distortion tensor, (20 t) yields 

1+s_ (11+te))C! (27) 1-s - -re •44 

if te • I and C'4 • 0 (The special cases where te = 1 and 
C4 = 0 are easily obtainable). Equation (27) leads to the 
solutions 

$1 = (C1 -- C4) q- eltl(C1 q- C4) (28a) 
(el q- C4) q- eltl (C1 - C4) 

and 
1 

= -- (2s) 
$1 

Finally, to determine the scaling parameter g, premultiply 
C by S -1 T-1. The inverse of T always exists since its 

determinant is I q- t 2 and t is real. The inverse of S exists if 
e • :kl. (This case is considered separately.) The resulting 
matrix g A is diagonal and the sum of the diagonal elements 
yields 

t I [C1 (1 q- eiti) - C2(ei q- li) 2gi = (1-e•)(l+ 
-C3(ei - ti) q- C4(1 - tiei)] (29) 

where i = 1, 2. 
In summary, there are two solutions (sometimes degener- 

ate) for the decomposition of any physically plausible distor- 
tion tensor, only one of which need be considered physically 
meaningful. Although investigations of channelling effects 
with this factorization may prove useful, an explicit method 
of factorization of the C tensor per se was not our primary 
goal here. The above discussion was necessary to establish 
that the parameters used (g, e, t, s) are in fact well defined 
in the proposed factorization. 

DECOMPOSITION OF THE IMPEDANCE TENSOR 

If the above decomposition (14) of the distortion tensor 
is substituted into (7), the result is 

= g T s 

If g A is absorbed into Z2 to give Z•, this can be written 
as 

Zm = l• T S Z2 l• T (31) 
where the prime on Z2 has been dropped since Z2 and 
Z• are experimentally indistinguishable, as noted previ- 

ously. Equation (31) constitutes the desired decomposition. 
It has seven real parameters, which are (1 and 2) the real 

and imaginary parts of the major principal impedance a (or 
equivalently the major apparent resistivity and phase), (3 
and 4) the real and imaginary parts of the minor principal 
impedance b (or equivalently the minor apparent resistivity 
and phase), (5) the azimuth 8 of the major apparent resis- 
tivity, (6) the shear angle •be = tan-le, and (7) the twist 
angle •bt = tan-it. (An alternative parameter, the local 
distortion strike, which contains the same information, will 
be discussed later.) 

To calculate these parameters from a measured 
impedance tensor, they must be explicitly related to the 
data by multiplying out the decomposition. The datum Zm 
is conveniently represented by its summary decomposition 
coefficients cei, where 

= (32) 

and 

= + 
•1 = Zxy q- Zyx (33b) 

= - (SZc) 
0•3---- Zxx - Zyy (33d) 

If the product decomposition in (31) is multiplied out, it 
yields after some algebra a nonlinear system of equations: 

where for convenience the definitions 

(34a) 
(a4) 
(a4c) 
(a4d) 

a=a+b and 6=a-b (35) 

for the sum of the principal impedances and their difference 
have been used. The 90 ø ambiguity in 8 can be resolved by 
adopting the convention either that la[ > lb[, so that a is the 
major principal apparent resistivity and 8 is the azimuth of 
the electric fields associated with it, or that the azimuth lies 
between 0 ø and 90 ø. The latter has been adopted here. 

There is, in fact, a unique decomposition (34) for a given 
impedance tensor if the physical model is correct for the 
impedance tensor and there is no noise present (after ambi- 
guity for regional azimuth convention is resolved and the low 
shear restriction is made for the solution of the factorization 

of C, as explained in the previous section). In practice, ex- 
perimental data with noise or deviations from the physical 
model will never exactly fit the proposed decomposition. In 
this case, a solution of these eight real equations (34) for 
the seven decomposition parameters must be achieved by 
a least squares fitting procedure. This necessarily requires 
good data; the conventional method, in fitting only five pa- 
rameters, is more stable with respect to data errors. 

A COMPARISON OF METHODS 

Swift (1967) has defined a 3-D indicator, skew, as 

(36) 
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For the distortion model developed here, I' turns out to have 
the value 

ter + 
I' ---- (37) er -- etl• 

Even when the induction is 2-D, it is dear from (37) that 
the skew can be significantly different from zero and a func- 
tion of frequency if distortions axe present. There axe two 
extreme cases which are worth noting. If the impedance 
tensor Z2 recovered by this new decomposition is isotropic 
(i.e., the net effect of the distortion anisotropy and the in- 
ductive anisotropy is nil), then/• is zero, and 

F = t = tan •bt (38) 

If the anisotropy of Z2 is extreme, so that [a[ >> I•1 and 
thus 5 • •r, then 

t + e _ tan(d, + de) (39) I'-- 1-et 
using the formula for the tangent function of a sum of angles. 
This prompts us to define a skew angle 7 as tan-1 I' (note 
that this is to be distinguished from skew angles defined by 
L•o•c• • •l. D9so] •.d r•,[•9s2]. Wh• •k•w •.sl• i• 
an approfimate estimate of the magnitudes of the twist and 
shear angles. Thus MT data can be rejected unnecessarily 
on the b•is of a large skew even if induction is 2-D in nature. 
The new decomposition proposed above will identify such 
situations and permit the use of such data. 

The conventional method of recovering the principal 
impedances and the inductive strike is to minimize 

I • +[z• 

• a function of coordinate rotation angle 0 t [Swift, 1967; 
Sims and Bostick, 1969]. This is equivalent to minimizing 
I•(•')l • [s•it•. 19s5. si• •. •o,tic•. •9•9]. A• ß fu.ctio. 
of the chosen coordinate rotation angle •, 

•s(•') = -(t• + •) co• 2(• - 
- (• - •t•)•i. 2(• - •') (40) 

It is cle• that minimizing [a3[ 2 • given by (40) with re- 
spect to • will not yield for • the true inductive strike • if 
distortion is present. What result will be obt•ned? Rather 
than solving the general c•e, we will solve the simpler spe- 
cial c•es. Where Z2 is highly anisotropic (5 • •), as can 
be made zero by choosing 

1 -l(t+e) 1 •' = 0 + •t• 1 - •i = • + • 

Thus the recovered azimuth differs from the princip• induc- 
tive strike by hMf the skew angle. The generM implication 
of this speci• c•e is that azimuth errors of the convention• 
method can be of the same orde• of magnitude • the skew 
angle. Going to the other extreme, in the isotropic c•e 
(• • 0), •3 can be made zero by choosing 

0 t = 0 + •tan -x = 0 • • + •dt (4•b) 
if t is not zero. 

For the special case of high anisotropy, what principal 
impedances will be recovered? The answers we would like 

are of course scalax multiples of the true 2-D impedances, 
a(•) and b(•), where b(•) • a(•). Use of an impedance 
tensor of the form expressed by (31) in the conventional 
(i.e., Swift) decomposition process shows after a little alge- 
braic manipulation that the impedances a • and b • actually 
recovered by the conventional method are 

a•(•) • a(•) [(1-et)(l +cøs 7) + (e + t)sin 7] 2 (42•) 

and 

b•(•) • a(•)[(1- et)(1-cos 7)-(e + t)sin 2 (42b) 

Thus the major principal impedance is recovered correctly, 
except for a scaling factor which is frequency independent if 
the model is true. However, the minor principal impedance 
is not recovered correctly at all. The value obtained is the 
major principal impedance multiplied by some scaling fac- 
tor. The temptation, on seeing such a result for the two 
principal impedances, would be to conclude that 1-D induc- 
tion, modified by distortions in some unspecified way, was 
occurring and to attempt to fit the impedance curves with 
a 1-D inductive model. This would of course be incorrect. 

Another instructive special case is that of weak distortion 
(e, t, and s all much less than unity) in a regionally ap- 
proximately isotropic Earth. In this case, terms of second 
and third order in e, t and/•/• can be neglected, giving as 
approximations for equations (32a) to (32b) 

Note that if the shear e is zero, i•s(0')l • is minimized by 
0 • = 0, and the conventional method will recover the cor- 
rect inductive strike no matter what the twist is. The 

conventional method in fact recovers the correct principal 
impedances as well in this case (except for the usual static 
shifts). Note that the skew la0/a2[ depends only on the 
twist and not at all on the shear, whereas it is the shear 
which is the important parameter in determining the valid- 
ity of the conventional method. This illustrates a case in 
which the conventional method gives the right answers even 
when the skew is nonzero. A corollary of this is that the con- 
ventional method can do badly in this case with zero skew 
(t = 0) if the shear is nonzero. 

The role of the effective one dimensional impedances 
[Berdichevsky and Drnitriev, 1976; Ranganayaki, 1984] such 
as half the difference of the off-diagonal elements of Zm (the 
Berdichevsky trace impedance) and the square root of the 
determinant of Zm is worth examining. The use of these 
effective impedances does not necessarily correspond to a 
belief that the Earth is layered; they are simply convenient 
condensations of the information in the measured impedance 
tensor to forms which can be used for modeling and which 
are thought to be less affected by noise and telluric distor- 
tions. In suitable cases they also have the desirable prop- 
erty of reflecting to some extent a horizontally averaged re- 
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Fig. 4. Comparison of parameters by different methods. The left column contains graphs of the parameters, 
inductive strike, apparent resistivities, impedance phases, and error of fit by the conventional technique. The right 
column contains the same information by the new technique when the distortion parameters are not constrained 
to be independent of frequency. 

gional inductive structure. In the absence of distortions, 
the Berdichevsky impedance is preferable, since its errors of 
estimation are lower. Where distortions are present, how- 
ever, the Berdichevsky impedance is no longer simply the 
arithmetic mean of the two principal impedances, but an 
unknown linear combination of them, and, as such, cannot 
be modeled. The determinantal impedance, on the other 
hand, is unaffected by distortion as described here except 
for multiplication by a frequency-independent scalar (the 
determinant of C). This result would appear to contradict 
a result of Berdichevsky and Drnitriev [1976]. They showed 
that the trace impedance was less distorted than the deter- 
minantal impedance, measured outside a vertical elliptically 
cylindrical inhomogeneity. The discrepancy, however, is ex- 

plained by the fact that their measurement location lay on 
an axis of symmetry where the shear and twist would be 
zero. 

So far in this section, the new decomposition has been 
compared to other approaches which, explicitly or implicitly, 
make too many simplifying assumptions to be useful for the 
physical model used here (i.e., 3-D galvanic distortion over 
2-D induction). It is also instructive to compare our decom- 
position with approaches which make too few simplifying 
assumptions for this particular physical model (i.e., fail to 
take advantage of the model in deciding what quantities to 
extract). 

We emphasize again prior to this comparison that thc pur- 
pose of our decomposition presented here is to separate local 
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and regional parameters as much as possible under the as- 
sumption that the regional structure is at most 2-D and the 
local structure causes only galvanic scattering of the electric 
fields. Recently, there have been a number of eight parame- 
ter decompositions developed [e.g. Eggers, 1982; LaTorraca 
et al., 1986; Yee and Paulson, 1987]. These decompositions 
are based on mathematical characteristics of the impedance 
tensor and do not attempt to separate local and regional 
effects. The eigenstate formulation of Eggers [1982] is a 
reasonably characteristic example of these methods. Four 
of Eggers' parameters are the two complex eigenvalues 
which are given by 

Ad:_ a2 -4- 1 -- 2 • 2-4 der I Z I (44) 
where a2 is defined by (33c). These are intended to be anal- 
ogous to the two principal impedances of the Swift method 
and in fact reduce to those when the Swift model of sim- 

ple 2-D induction is appropriate. When the physical model 
of intermediate complexity defined here is appropriate, these 
eigenvalues do not relate simply to the principal impedances. 

In the physical case of local 3-D galvanic scattering of 
electric fields due to a regional 2-D structure (7), 

= 2 • 2 - 4 det l Z2 I det l C I (45) 

where now c•2 is given by (34c). Thus we see that the eigen- 
values mix the regional 2-D impedances in a similar manner 
to the conventional method. This mixing is dependent on 
the electric distortion matrix C. A more detailed analy- 
sis of this comparison can be found in the work by Groom 
[1988]. 

STRONG OR 2-D DISTORTIONS 

Zhang et al. [1987] have applied the same physical ideas 
as Bahr [1988] to the special case where the distortion struc- 
ture is two-dimensional in nature. For comparison, we ex- 
amine the strong distortion case (not necessarily 2-D) with 
the decomposition proposed here. Consider the net effect of 
the tensor T S on the regional electric fields produced by 
Z2 h. If the distortion is strong (lel approaching unity), S 

highly polarizes the electric field along azimuth 7r/4 with re- 
spect to the principal inductive coordinate system (or-7r/4 
if the shear is negative). The twist tensor T then rotates 
this axis of polarization by the twist angle. In the mea- 
surement coordinates the final azimuth of the strong local 
electric field polarization direction is thus 

-4- 7r (46) 4 

where the sign is chosen the same as that of the shear. We 
can define 01 as the distortion strike or local strike; it will be 
either perpendicular or parallel to the strike of the strong 
distortion structure. The distortion strike can be used as a 

decomposition parameter in place of the twist, as it contains 
all the information about the twist and describes more di- 

rectly the distortion structure. The above result (46) can be 
derived rigorously for 2-D distortion by using the result of 
Zhang et al. [1987] for the form of a 2-D distortion tensor (it 

has only three independent parameters, as it is symmetric) 
and a strong distortion condition (lel • 1). 

INDICATORS OF 3-D INDUCTION 

The assumption of 3-D distortion acting on 2-D induction 
will not be true in all cases and it is important to be able to 
see when this is the case. As noted above, the skew is not 
a suitable indicator for this purpose. There are two ways in 
which deviations from the ideal distortion model can be de- 

tected. The distortion model leads to a decomposition with 
only seven real parameters and therefore cannot exactly fit 
all possible impedance tensors, which need in general eight 
real parameters to describe them. The root mean square rel- 
ative error of fit e of the channeling decomposition is given 
by 

2 2 

Z Z - z,l 
½2 = i=1j=1 2 2 (47) 

i=lj:l 

where Zij and 2ij are the measured and modeled impedance 
tensor elements respectively. This error parameter e should 
be small compared with unity. It can be calculated at every 
frequency and thus can be used to define frequency ranges 
in which the ideal distortion model is significantly in error. 
Note that non-zero estimated values for e may not be signif- 
icant if data errors are taken into account. A conventional 

chi-square test with one degree of freedom may be used to 
assess this significance if the errors in Z can be assumed 
normally distributed. This is not the only way to assess the 
model validity; Bahr [1988] has defined a somewhat different 
measure of deviation from this model. 

A second way to detect deviations from the ideal distor- 
tion model is to examine the frequency dependence of the 
distortion parameters. If the ideal distortion model is a re- 
alistic model in a range of frequencies, these parameters will 
be approximately independent of frequency in that range. In 
practice, a structure which acts as part of the regional in- 
ductive structure at high frequencies may act as a frequency- 
independent distortion structure at much lower frequencies. 

If application of the decomposition to the data suggests 
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Fig. 5. Distortion parameters (twist and shear) for the inter- 
pretation given by Fig. 4 
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Fig. 6. Comparison of parameters for frequency-independent distortion versus nonconstrained distortion. Right 
column contains parameters for a decomposition constrained to have frequency-independent shear and local or 
distortion azimuth. 

that the model is valid, at least over a certain frequency 
range, because e and 0t are approximately constant for in- 
stance, how might one test this? One fits the data at N 
relevant frequencies with a different set of seven parameters 
at each frequency, requiring 7N parameters in total. One 
then fits the data using the same shear and local azimuth at 
all frequencies, requiring 5N + 2 parameters. If the reduc- 
tion by 2N- 2 in the number of adjustable parameters used 
to fit the model has not significantly increased the fitting 
error, the model is probably valid. This approach can be 
rigorously formulated as a standard partial F-test if neces- 
sary. 

Finally, as a third test, if nearby sites give quite different 
impedance tensors, their decompositions can be compared. 
If the regional inductive parameters are very similar (except 

for static shift) despite large possible differences in the dis- 
tortion parameters, it argues that the underlying model here 
can explain the data. 

AN EXAMPLE WITH EXPERIMENTAL DATA 

The example presented here is not intended to be a rein- 
terpretation based on the new factorization. It is intended to 
demonstrate some of the points made in the section on com- 
parisons. The data are long period data obtained recently 
at a site on the Canadian Shield in northern Ontario about 

30 km north of the town of Chapleau [Cavaliere, 1987]. The 
data set is expected to have relatively large errors and was 
chosen for this reason to test the robustness of the method. 

The upper crustal rocks are granitic and have resistivities 
of the order of 104 ohm-meters. The topographic relief of a 
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few tens of meters is extensively but erratically covered with 
glacial debris ranging from clays (resistivity of the order of 
10 ohm-meters) to gravels and sands (resistivity of the or- 
der of 103 ohm-meters). The likelihood of strong telluric 
distortion with a length scale of several hundred meters is 
high. 

The distortion decomposition was first obtained without 
any frequency-independent constraints on the distortion pa- 
rameters. The resulting induction parameters from the con- 
ventional method and the new decomposition are compared 
in Fig. 4 along with the rms error of fit (47). Fig. 5 contains 
the distortion parameters, twist and shear, obtained by the 
new decomposition. 

There are three specific pieces of evidence in these results 
which suggest that the channelling decomposition is appro- 
priate. On examination of Fig. 5 it is observed that the dis- 
tortion parameter shear is essentially frequency-independent 
without it having been so constrained. Second, the error of 
fit, e, of the new decomposition is 0.05 or smaller at all 
periods and typically about 0.02, whereas the conventional 
errors ranged as high as 0.4. Third, the local strike (shown 
in the small figure which contains the new decomposition 
azimuth) is very close to the conventional regional azimuth. 
That such results occur in the galvanic distortion regime 
w• discussed in a previous section. On the other hand, 
in opposition to an hypothesis of galvanic distortion there 
is the presence in these results of a frequency-dependent 
twist. However, it should be noted that although the re- 
gional azimuth may vary slowly with frequency if the model 
is only approximately valid (e.g., in a nearly 1-D model with 
a poorly defined strike direction), a strong local strike •l 
(local electric polarization direction) will not do the same. 
Thus the twist must compensate by varying in an opposite 
sense from the regional azimuth as per (46). It can be noted 
from Fig. 4 and 5 that the twist does indeed vary more or 
less oppositely to the regional azimuth here. 

The conventional apparent resistivities are very fiat over 
this period range and appear to be "static shifts" (i.e., mul- 
tiplication by real but frequency-independent constants) of 
each other. This result combined with the similarity in the 
major and minor impedance ph•es would suggest, conven- 
tionally, a 1-D regional conductivity structure with unknown 
"static shift". However, the error of fit for the 2-D model of 
the impedance tensor is quite high. 

The new inductive strike azimuth differs considerably 
from the old and varies much more with frequency. The 
local electric fields seem to have a direction of polarization, 
namely the apparent local strike or azimuth (which is rel- 
atively independent of frequency) • shown on Fig. 4. It 
seems clear that the inductive strike recovered by the con- 
ventional method is wrong • a result of domination by dis- 
tortion effects; note the near coincidence of the conventional 
strike and the local strike on Fig. 4. 

The model for the decomposition dictates that the local 
distortion parameters be independent of frequency. As re- 
quired by the physical model underlying the decomposition, 
the distortion parameters shear and local strike (e,•l) are 
relatively independent of frequency a•s seen from Fig. 4 and 
5. This decomposition gave a data set error as discussed pre- 
viously of 0.0009 (the average over frequencies of the square 
of the rms error). The next stage in the method is to inves- 
tigate whether the distortion parameters are actually inde- 
pendent of frequency and whether the observed variations 

in the distortion parameters in Fig. 4 and 5 are due to noise 
or slight inadequacies in the model. The shear in Fig. 5 is 
almost frequency-independent, as is the local strike in Fig. 
4. If we assume a priori that the shear and distortion strike 
are independent of period and constrain them to be so in a 
least squares fit, the average error of the fit of the decom- 
position increases to 0.0014. This increase is not significant 
compared to errors in the data and thus supports the model 
hypothesis. Fig. 6 is a comparison of induction parameters 
between the unconstrained decomposition (left column) and 
the constrained decomposition (right column). Fig. 7 gives 
the shear and twist for the constrained solution with the 

cla•ssical skew angle for comparison. 
The resulting regional azimuth for the constrained decom- 

position (Fig. 6) is significantly modified and is now much 
less variable with frequency. The major apparent resistivity 
and impedance pha•se are virtually unaltered from the un- 
constrained case, and the minor impedance is only slightly 
altered from the unconstrained case. The twist still varies 

in an opposite sense to the regional strike. Note that for a 
constrained local strike, twist is no longer an independent 
parameter but depends entirely on local strike and regional 
azimuth. In fact, if there is no preferred regional azimuth 
(i.e., 1-D regional structure) then the regional azimuth (•) 
and the twist (t) can vary arbitrarily so that their total is a 
constant defined by the constrained local azimuth. 

Because of the relative isotropy of the apparent resistivi- 
ties, it appears possible that the regional strike may be wan- 
dering simply because it is intrinsically poorly determined, 
not because the model is grossly invalid. This prompts the 
following question. What would the result be if the regional 
azimuth as well as the shear and twist were constrained to be 

more or less constant? If the large-scale structure is truly 
l-D, this set of constraints should produce an equally ac- 
curate parameterization of the measured impedance tensor. 
Fig. 8 shows the decomposition results when regional strike, 
shear angle, and twist angle are all constrained in the fit to 
lie within 2 ø of the mean values suggested by Fig. 6 and 7. 
There is very little increase in the error of fit from the un- 
constrained decomposition. The number of free parameters 
used for the entire data set is now less than the number used 
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for the conventional decomposition. However, the error of 
fit, as seen by comparing Fig. 8 to 4, is still almost an order 
of magnitude smaller than the conventional error. 

Twist, shear and local azimuth are now essentially 
frequency-independent, as is the regional azimuth. There 
are only slight variations in the impedances (Fig. 6) from 
the previous constrained decomposition. It appears that 
the large-scale structure can be interpreted as being one- 
dimensional at these periods, except for one problem. That 
problem is with the impedance phases in Fig. 8. If the re- 
gional structure is truly l-D, the impedance phases should 
be identical. However, other physical effects may be present, 
which have not been considered, causing these phase differ- 
ences. In particular, an important factor to be considered 
is the effect on the magnetic field of the galvanically dis- 
torted currents. This effect produces a magnetic field out 
of phase with the primary magnetic field. Berdichevsky and 
Dmitriev [1976], for instance, have considered the effects of 
this anomalous field for some restricted cases. In fact, a 
careful analysis of the effect of the anomalous magnetic field 
due to the distorted currents indicates that the major effect 

of this anomalous field on the decomposition is to alter the 
phases of the 2-D impedances. In fact, the majority of the 
phase differences in Fig. 8 can probably be accounted for 
by such a magnetic field [Groom, 1988]. However, this result 
does indicate the necessity of recognizing if not actually in- 
corporating galvanic magnetic effects in any decomposition 
which attempts to account for all the effects of strong 3-D 
galvanic electric field distortions by conductive overburden 
over a resistive Earth. 

CONCLUSIONS 

The discussion of the physics of distortion given in this 
paper is not new. What is new is an explicit-decomposition 
of the impedance tensor, the parameters of which separately 
represent the determinate distortion effects, the indetermi- 
nate distortion effects, and 2-D inductive effects. It offers, in 
addition, a relatively robust way of determining these quan- 
tities in the presence of noise by virtue of being implemented 
as a fit to all the available data. 

Because the class of magnetotelluric responses described 
by the distortion model is much larger than that described 
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by ideal 2-D induction, the recovered principal impedances 
and inductive strikes should be physically meaningful in a 
much larger proportion of experimental cases. Even in cases 
where the physical system does not conform exactly to the 
simple distortion model, this decomposition may still offer a 
useful standard way to present and compare both real and 
synthetic magnetotelluric data for 3-D structures. 
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