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INTRODUCTION 

SUMMARY 
A methodology to determine quantitatively the dimensionality of the dominant 
conducting structures and the resolution of the structural parameters in mag
netotelluric data is presented. In addition, the method recovers the regional 
impedance responses when the regional structure can be characterized, at least 
approximately, as 1- or 2-D. The methodology is based upon three general models 
of the MT tensor, each of which has a distinct parameterization and physical 
interpretation. A weighted statistical residual describes quantitatively the fit of the 
model response to the data within the scatter of the measured data and hence 
permits: (1) tests of dimensionality, (2) determination of the appropriate strike 
angle, and (3) recovery of the regional responses. 

The method has been tested extensively with synthetic data and proven to be 
successful. These synthetic studies give insight into the different physical para
meterizations and the stability of the parameters determined. We describe and 
illustrate some of these synthetic studies. With field data, the methodology is not 
always as straightforward, but its application to a great many sites has proven 
valuable. Data from two closely spaced sites, which are both affected by strong but 
very different 3-D effects, are analysed to illustrate the geological significance of the 
results. The analyses reveal and recover regional responses within the data which 
indicate the presence of electrical anisotropy located deep in the crust and upper 
mantle. Analyses of the entire data set, of which these two form a part, confirm this 
finding. 

Key words: decomposition, galvanic distortion, magnetotelluric data analysis, 
structural dimensionality. 

With the increased sophistication of acquistion, processing 
and interpretation schemes for tnagnetotelluric (MT) data, 
the ability to quantify the dimensionality of the dominant 
conductivity structure becomes increasingly important. For 
example, one must determine if the structure is significantly 
3-D within the errors of the data, and to what extent this 
three-dimensionality may affect the validity of I-D or 2-D 
models of the MT responses. Due to the significance of 
near-surface effects, investigators often rotate their data into 
an assumed geo-electric strike coordinate system, and then 

model either one or both of the off-diagonal elements of the 
rotated tensor in an attempt to derive the regional or 
large-scale structure. It is therefore critical to determine the 
extent to which the data actually fit dimensionality assump
tions, prior to modelling and geological interpretation. 

Determining the characteristics of the conductivity 
structure implied by broad-band MT data is not trivial, and 
has been the subject of much study during the last decade. 
The effective extent and penetration depth of the 
electromagnetic fields increase with period, which implies 
that the apparent dimensionality of the conductivity 
structure will, in general, be frequency dependent. Regional 
strike directions and apparent dimensionality can change 
when a conductive structure, which may be approximately 
2-D at short periods, becomes fully 3-D at longer periods 
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(see, e.g. Jones 1983). At these periods, where the response 
of the large structure can no longer be approximated by a 
2-D model, it may have both frequency-independent (static) 
effects, as well as significant frequency-dependent effects 
caused by induction or by the magnetic effects of current 
channelling. Eventually, at even longer periods, the 
structure will become simply a static distorting structure. 
The effective dimensionality, as a function of period, is 
clearly required pr.ior to modelling or inversion of data 
containing different physical responses. 

The method proposed here can be applicable to all data 
since at some period, and longer, the problem of small-scale 
electric scattering cannot be avoided, as the period of 
oscillation affects the physical scale length of the entire 
experiment, including the recording system. At long periods 
and large skin depths, even extended electric-field 
measurements with electrode lengths of a few kilometres 
can be essentially point measurements when the significant 
3-D structures have scale lengths of tens of kilometres or 
more. Thus, the analyses proposed here are applicable also 
to EMAP (Torres-Verdin & Bostick 1992) and grid-type 
surveys when the periods of interest are long enough such 
that the appropriate skin depths become comparable with, 
or larger than, the spatial sampling or averaging windows. 

We first describe three physically based decompositions of 
the MT tensor; a simple 1-D model (Cagniard 1953), the 
conventional 2-D model (Swift 1967), and a 3-D 
parameterization (Groom & Bailey 1989). A X2 misfit 
statistic is defined for use in quantifying the simplest, yet 
appropriate model. With the use of synthetic 2-D and 3-D 
data, we illustrate an analytic approach for examining MT 
data using the three decompositions and the misfit statistic. 
The analyses include the use of graphical representations of 
parameter stability, resolution and decomposition model fits 
of the data. 

3-D scattering effects often cause significant shifts in the 
amplitude of apparent resistivity curves. Even 3-D 
decompositions suffer from these effects (Groom & Bahr 
1992). The nature, magnitude and means for correcting 
these shifts are investigated, including the introduction of a 
new 1-D estimator which offers some improvement over the 
conventional determinant (effective) and anti-trace 
(average) impedance estimators (Berdichevsky & Dmitriev 
1976). 

Recovery of lower dimensional regional (i.e. large-scale)
responses from 3-D data has many problems. Some of these 
problems, and the ability to recover these responses with the 
described methodology, are examined with the use of data 
from two relatively close (separated by 15 km) sites, which 
suffer from quite different 3-D scattering effects. The two 
sites are part of a much larger data set covering several 
hundred kilometres, all of which have been analysed with 
the suggested method. Prior to this process, the data were 
difficult to interpret using conventional tools, as they varied 
dramatically over short distances and gave regional 
impedance responses which appeared physically implausible. 

PHYSICAL MODELS FOR IMPEDANCE 
TENSOR 

The simplest model of the earth is a layered or 1-D model 
where the impedance tensor is simply estimated by the 

expression; 

= [0 ZOo(W)]. Z(W) = 
-Zo(w) 

(1) 

In this case, there is a single complex impedance Zo( w) and 
thus there are only two model parameters per frequency, 
namely the magnitude and complex phase of Zo (Cagniard 
1953). As well, one might wish to impose smoothing or 
causality constraints on model parameters, thus reducing the 
number of parameters required over the entire frequency 
range. 

A somewhat more complicated and extensively used 
model is to assume a 2-D structure with conductivity varying 
both vertically and in one lateral direction. In the absence of 
noise, the MT data tensor is estimated by: 

Z(w) = R(O)[ 0 ZIIO(W)]RT(O) 
-Z1.(w) 

(2) 

where R is a rotation operator. ZII is the impedance 
associated with the Transverse Electric (TE) mode while Z 1. 
is the impedance of the Transverse Magnetic (TM) mode. 
There are five parameters per frequency (Swift 1967) for this 
model although it is possible (and even desirable) to impose 
constraints on the regional strike 0 by requiring it, for 
example, to be frequency independent. 

It is also possible to have a 3-D parameterization to 
represent the galvanic effects of small-scale conductive 
structure. If the frequency is sufficiently low that the 3-D 
structure has a negligible inductive response, and the 
incident field due to the regional structure and neighbouring 
small-scale structures is sufficiently uniform, then the EM 
fields can be described, to first order, by galvanic distortion 
or scattering of regional (1-D or 2-D) electric fields while 
the regional magnetic field remains unchanged (Bahr 1988; 
Groom & Bahr 1992). Thus the impedance tensor is 
estimated by 

Z(w) = R(O)C(O)[ 0 ) ZIIO(W)]RT(O) 
-Z1.(w 

(3a) 

where C( 0) is the 3-D galvanic electric scattering or 
distortion operator represented in the regional 2-D 
co-ordinate frame (Zhang, Roberts & Pedersen 1987; Bahr 
1988; Groom & Bailey 1989). This model has up to nine 
parameters per frequency although all are not necessarily 
independent or determinable. There are a number of 
methods for decomposing the impedance tensor under this 
physical model (Larsen 1977; Zhang et al. 1987; Bahr 1988; 
Groom & Bailey 1989; Chakridi, Chouteau & Mareschal 
1992). The basic conclusions and limitations of these 
methods will be quite similar although the specific details of 
actual application have yet to be fully compared (Groom & 
Bahr 1992). 

It is possible, with techniques of Groom & Bailey (1989, 
1991; hereafter termed GB1 and GB2), to decompose the 
data under this 3-D galvanic distortion model to obtain, in 
general, seven uniquely determined parameters per 
frequency; namely the regional 2-D strike 0, two 
parameters partially describing the effects of the local 
electric field distortion ('twist' and 'shear'), and the 2-D 
complex regional impedances (Z 11' Z 1.). The true regional 
2-D impedances can be scaled by two real numbers defined 



by GBl as a local anisotropy A and site gain g, so that 

Z(w) = R(8)TS{gALz ~(W) ZIl~W)]}RT(8) (3b) 

providing eight non-linear real equations in seven real 
unknowns. The anti-symmetric operator, T, and the 
symmetric operator, S, are termed twist and shear 
respectively. The diagonal operator, A, is an anisotropy 
operator, while the scalar, g, is termed the site gain. It may 
be desirable, depending upon the characteristics of the data, 
to constrain the distortion parameters as well as the regional 
strike to be independent of frequency over all, or some 
subset, of the frequency bandwidth. 

The models (1)-(3) obviously do not include all effects of 
all possible conductivity structures at any arbitrary period. 
However, even though more complicated physical models 
can be envisaged, it may not be possible to extract the 
parameters from the data (Bahr 1991). Accounting for the 
magnetic field response of 3-D galvanic scattering is one 
additional complexity which can be qualitatively accounted 
for (GB2; Groom 1988; lones & Groom 1993). It is 
arguable that, except for certain types of extremely large 
structures, both the inductive and galvanic magnetic effects 
are secondary (save for a very narrow frequency band) to 
those included in models 1-3 (GB2; Groom & Bahr 1992). 
Thus, if none of the three models adequately fits the data 
then this places strong constraints on the conductivity 
structure. 

QUANTITATIVE TESTING FOR DIMENSION 
AND STRUCTURAL PARAMETERS 

An important aspect of applying the physical models (1)-(3) 
to real data is the computation of some measure of misfit 
to appraise quantitatively the appropriateness of the model. 
Having modelled the data to one of the three physical 
hypotheses and obtained the model parameters (possibly 
constrained), the model hypothesis is tested with a X2-like 
misfit variable. This is a residual error for the fit of the 
model to the data, normalized by estimates for the variance 
(~) of each element of the tensor data: 

2_.1 ~ ~ IZij-Zil 
Y-4L.,L., 2 

i=1 j=1 a ij 

(4) 

where Zij and Zij are the modelled and measured tensor 
elements, respectively. The variances would usually be 
estimated from the sample population of tensor estimates. 
However, often the variances are those of the mean 
impedance estimates. In practice, the data are fit to a model 
(1)-(3) by minimizing a functional which is defined by an L2 
norm. The statistical meaning of this minimization is then 
examined by the use of the X2 norm (4). 

If the errors in the mean impedance estimates are 
distributed randomly, and we require the modelled tensor 
elements to be fit almost always with two standard 
deviations of the data, then the misfit y2 would be expected 
to lie within the range 0-4. If none of the three models fit 
within these levels, this could imply that not all physical 
effects have been included (i.e. 3-D induction). The residual 
y2 emphasizes the fit of the model elements to the 
corresponding data elements which have the smallest 
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variance. However, if the variances are poorly estimated 
then this statistic (4) may be biased either up or down. In 
this case, we might seek the model with the lowest residual 
statistic. A graphical display of the fit of the impedance 
tensor to a particular parameterization has proven most 
useful since the l statistic can vary significantly between 
adjacent periods due to either the randorimess of the noise 
or poor variance estimates (e.g. Figs 2b, 3b, 15b and 16b). 

The best model is not necessarily the one with the lowest 
average residual (averaged over periods) because there is 
always a trade-off between minimizing residual and 
maximizing smoothness. By smoothness (by analogy to 
polynomial line fitting), we mean the fewest number of 
parameters used over a data set (i.e. a set of frequencies or 
a set of stations or both). For example, under model (3) if 
the strike and the distortion parameters (twist and shear) 
are all constrained to be a constant over N frequencies, then 
we will have used 4N + 3 independent parameters for N 
frequencies. On the other hand, if model (2) is used and 
strike is not constrained to be independent of frequency, we 
will have used 5N parameters and if N > 3 we have a 
rougher model. We could, of course, include additional 
constraints to smooth the model such as requiring the 
impedances to vary smoothly with period (i.e. fit to an 
m-order polynomial). The increase in the residual associated 
with any smoothing must be appraised to assess if the 
response of the constrained model is representative of the 
observed data. Implicit in this process is an assumption of 
the nature of the scattering process. If, for example, 
different scattering processes become significant as the 
frequency decreases (due possibly to multiple scatterers) 
then some smooth transition of distortion parameters may 
occur. 

AN EXAMPLE WITH SYNTHETIC DATA 

The methodology and associated graphical analyses 
techniques can be demonstrated by studying 3-D synthetic 
impedance data which are generated by superposing 2-D 
numerical and 3-D analytic responses (GB2). The model 
comprises a 3-D homogeneous hemisphere embedded in a 
2-D regional structure (Fig. 1), and is described in detail in 
GB2. The hemisphere is sufficiently small for the 
frequencies used here that it has a negligible inductive 
response (GB2). However, the conductivity contrast 
between the hemisphere and the host produces a charge 
distribution which has significant effects upon both the 
electric and magnetic fields. The non-inductive effects of the 
hemisphere on the fields produced by the large-scale 2-D 
structure can be expressed via scattering operators described 
in GB2. The resulting impedance data can then be rotated 
to any desired coordinate system to represent a given 
measurement system. For this illustration, Gaussian noise 
was added such that the variance of the noise is identical for 
all four elements of the tensor. 

Consider the 2-D regional MT response at the site of the 
hemisphere (i.e. ignoring the response of the hemisphere) 
where the measurement co-ordinate system is taken to be 
30° counter-clockwise to strike and with 3 per cent noise 
added. We parameterize this data under model (2) to 
illustrate a few aspect of the analyses presentation. Figs 2(a) 
and (b) contain the best fitting parameters of model (2) with 
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Figure 1. The synthetic regional 2-D conductivity structure (GB2) 
not to scale. The measurement site is indicated. The hemisphere has 
a 50 m radius and is located 6 km from the vertical contact in the 
2-D model. The measurement axes labelled x' and y' are rotated 
30° anticlockwise from the 2-D intrinsic co-ordinate system (strike 
based). 
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no constraints and the resulting fit to the data. Fig. 2(a) 
contains the traditional 2-D regional apparent resistivity [iii] 
and phase [iv] estimates in the resulting strike-coordinate 
frame. The convention used here is to remove the negative 
from the yx-components of the regional impedance 
estimate. Thus for a 1-D response, the phases will be equal. 
Fig. 2(a)[i] contains the logarithm of the statistical residual 
(4) for this model. Note that the chi-square variable has, as 
expected, a value generally less than 4 (line on figure). Fig. 
2(a)[ii] illustrates the strike estimates and the traditional 
skew as an angle (i.e. tan- 1 [skew]). For periods less than 
0.1 s, the strike azimuth is poorly defined as the skin depth 
is small and the model appears I-D. The ability to 
determine such a weakly defined strike is dependent upon 
the amount of noise in the data. At long periods, there is 
little to differentiate the phases of the two modes and the 
apparent resistivities are parallel. In effect, the 2-D structure 
has become essentially a thin sheet with primarily a 
galvanic-type response. 

The scatter in a parameter, as indicated by the error bars 
in Fig. 2(a), is determined empirically because the 
parameters generally are not linearly dependent upon the 
noise. Realizations of the noise are generated randomly 
using the given noise statistics and are added to the mean 
tensor estimate. (This can be done for both synthetic or 
experimental data.) Each realization of the mean impedance 
tensor is then fit to the particular decomposition model with 
possible constraints. The scatter in a parameter is 
determined from the spread of the parameter estimates with 
the set of realizations and then displayed as an error bar. In 
a non-linear system, such as here, noise will generally tend 
to bias a parameter estimate rather than scatter it uniformly 
about a mean. Thus, it is possible that the parameter 
derived from mean tensor data will have a value that does 

E 
(iii) I 

4 E 
.r:: 
Q. 

.I ....... ~. C 
2 ~ ..... co ........ c. 

c. ....... « .... 
.. xy ..... 0 

.r:: 
• YX 0 er: 

0; 
0 
-l 

90 
(iv) ' .. ~ 75 III .... ... ... 

60 Cl 
ill ... . • Q) .' .. ....: ::£ 

..... + • 45 Q) 

.JI. CfJ 
co 

30 .r:: 
c.. 

15 

-4 -2 0 2 4
0 

Log[ Period (seconds) 1 

Figure 2(3). Standard parameter display. (i) Residual error of the fit of the model to the data, (ii) azimuthal parameters (strike and skew), (iii) 
estimated regional apparent resistivities in strike azimuth, (iv) estimated regional phases. The parameters are calculated for 2-D synthetic data 
(including 3 per cent noise), which were rotated to the measurement system. The values given at the bottom of the 'Azimuthal Parameters' 
plot are the average values for these parameters over the entire period band. 
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Figure 2(b). Fit of the model parameterization of Fig. 2(a) to the scaled impedance data (see text for details). Error bars indicate one stan~ard 
deviation of the data. Square symbols and solid lines represent in-phase data and model impedance. Triangular symbols and dashed lInes 
represent quadrature data and model impedance. 

not fall within the error bars of the realizations when the 
data variance is large. (Fig. 2a.) 

Figure 2(b) displays, by impedance element, the fit of 
the measured data (in the measurement co-ordinate system) 
to the response associated with the model parameters of 
Fig. 2(a). The data and the estimated impedance tensor 
have both been scaled by the impedance of a layer over a 
half-space model, which allows the scaled data with the 
model fit to be plotted over the entire spectrum on a 
linear-amplitude scale for each visual comparison. The data 
are plotted as symbols with error bars while the fit to the 
data (estimated impedances) are given as either solid (real) 
or dotted (imaginary) lines. The fit is presented in the 
measurement coordinate frame for simplicity. Displaying 
the fit in a rotated coordinate frame would require obtaining 
estimates of the impedance errors in that coordinate frame. 
Obtaining the errors in the rotated frame from the original 
errors requires strong restrictions on the statistical 
distribution of the errors in the measured fields and on the 
covariance distributions between the fields. Of course, 
recalculation of the errors in the coordinate frame could be 
accomplished by rotating the original time series or Fourier 
spectra and rederiving the impedance estimates from 
recalculated cross-spectral estimates. 

Consider a 3-D test site located 16 m outside the 
hemisphere at an angle of 22.5" clockwise to strike (Fig. 1). 
The data measurement axes are as above (30°CCW from 
strike). Figs 3(a) and (b) display the parameterization 
information for the impedance model (2) and the fit to the 
data. An unrealistically low noise level (0.1 per cent) was 
added initially to demonstrate several points. At the highest 
frequencies, the skew is near zero (Fig. 3) but increases as 
the fields become increasingly more sensitive to the 2-D 

structure. (This effect is due to the symmetry of the 3-D 
body and site location.) The strike angle is approximately 
52.5° at the short periods (the azimuthal position of the site 
relative to the measurement axes) and decreases to a 
long-period azimuth of about 45°. At high frequencies, the 
regional structure is 1-D and thus the current polarization is 
defined entirely by the local structure. For this isometric 
structure it is easily determined that the local current is 
polarized along a radial axis given by the azimuthal location 
of the site. At long periods, the polarization angle of the 
current is determined both by the 3-D current channelling 
and the current pattern of the 2-D structure. These aspects 
are discussed more fully in GB2. 

The impedance phase plot (Fig. 3(a)[iv]) shows that the 
general nature of the regional phase response is recovered 
(compare with Fig. 2(a)[iv]). However, at the shortest 
periods, small effects on the phase by the current distortion 
(GB2) can be seen. The apparent resistivities (Fig. 3(a)[iii]) 
are shifted and there are small changes in shape from the 
regional responses. In the residual plot (Fig. 3(a)[i]), we see 
that the error rises from an acceptable misfit over the first 
two decades to a misfit greater than 100 at the longest 
periods. The 2-D parameterization actually fits the 
high-frequency data which is essentially caused by 3-D 
scattering of a 1-D regional response. This is due to the 
symmetry of the hemisphere which results in a 3-D electric 
scattering matrix that is symmetric and thus can be 
diagonalized. Therefore, the resulting impedance tensor can 
be anti-diagonalized if the regional data is I-D since the 1-D 
impedance tensor commutes with the rotation operator. 
This symmetry also explains a skew of zero for the high 
frequencies. Fig. 3(b) shows the 2-D decomposition fit to 
the data. The effects of the 3-D body and the attempt to fit a 
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Figure 3(a), The residual error (i), strike, skew (ii), and regional apparent resistivity and phase (iii, iv) estimates for a 2-D model 
parameterization of the synthetic 3-D data with 0.1 per cent noise. 
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Figure 3(b). Parameterization fit to scaled data. 

2-D model, can be seen clearly by comparing Figs 2(b) and 
3(b). The off-diagonal elements are generally well fit (in 
accordance with the mathematics of this decomposition) 
while the diagonal elements are poorly fit at the longer 
periods. 

Figure 4 shows the parameterization for model (2) for the 
same data with the noise contribution increased to 2 per 

--Real Fit - - - Imaginary Fit 

1.5 
.~.-"',. ........ 

1.0 

~ 0.5 
>-

0 X 
N 

-0.5 

-1.0 

-1.5 

1.5 

... :_"'AAA 1.0 ,. ... "... - -..... "-

~ "1..; .. ' ~ •• 0.5 
>-

0 >-
N 

-0.5 

-1.0 

-4 -2 0 2 4 
-1.5 

Log[ Period (seconds) 1 

cent. The larger noise level results in a minor impedance 
phase which is essentially undetermined. However, the 
strike estimation is similar to, but not as smooth as, the 
low-noise case. The 2-D strike estimate from data with 
relatively strong current channelling effects is actually an 
estimate of the local current azimuth (GB2). The 
long-period residual (Fig. 4[i]) has now dropped an order of 
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Figure 4. The residual error, strike, skew, regional impedance estimates for a 2-D model parameterization of 3-D data with 2 per cent noise. 

magnitude, compared to the lower noise case (Fig. 3(a)[i]), 
to near 10 due to the increased variance of the data 
estimates. Although this is at the limit of an acceptable 
value, the consistency of the value, from period to period, 
indicates a 3-D model is still most probable. 

Applying parameterization model (3) to the 3-D synthetic 
data set, Fig. 5 displays some of the 3-D parameters for the 
low noise (0.1 per cent) data set. The figure presents the y2 
residual, a normalized error, the twist, shear and 
channelling parameters as functions of period and 2-D 
rotation angle (i.e. assumed strike). The parameters and 
residual information for the plot are obtained by 
constraining the strike at increments of 3° from 0-90° and 
then recovering the remaining parameters of the GB1 3-D 
decomposition as functions of this constrained strike. 

Two residual error plots are given. The first is the 
logarithm to base 10 of y2 (4). If the noise were distributed 
normally with a given variance, a logarithmic value of 0.3 
would represent approximately 1.41a (=85 per cent). Thus 
a blue to blue-green shaded y2 indicates a good fit. (Note 
the asymmetry in the contoured error.) Although the 
correct strike (30°) is well determined in the mid-to-long 
periods, both the shortest and longest periods show only 
weak preference for this azimuth. At the shortest periods, 
the data are not sensitive to the 2-D contact, whereas at the 
longest periods the 2-D structure is inductively thin and has 
essentially no phase response (the 2-D TE and TM 
impedances have almost the same phase although different 
magnitudes). At these long periods, the 2-D impedance 
tensor can be approximately described by a 2-D real 
distortion matrix operating on a 1-D complex impedance 
tensor, i.e. 

Without information from shorter periods, the 2-D 
distortion matrix in combination with the 3-D distortion 
matrix (3) represents a net effect which cannot be 
distinguished from 3-D distortion of 1-D data. In other 
words, without a priori information the 2-D strike is not well 
determined. This relates very strongly to the 2-D-2-D 
distortion decomposition of Zhang et at. (1987). 

The normalized error plot (Fig. 5) is a non-linear 
mapping of the error which varies rapidly in the best fit and 
worst fit regions but only gradually in between. Thus, the 
error information is normalized to highlight best fit (red) 
and worst fit (blue) and clearly indicates the correct strike. 
Note also the general banded ne ss of this figure with a kink 
at those periods where the fields become more sensitive to 
the 2-D structure. The dark blue band (worst fit to regional 
strike) generally follows the yellow bands (0°) for the shear 
and twist angles. This is, therefore, simply the 2-D model 
parameterization fit since model (3) reduces to model (2) 
when shear and twist are both zero. Of course, the worst fit 
is for 2-D with only five free parameters. The question of 
the appropriate number of free parameters will be addressed 
below. 

Linear vertical bands of constant colour in the 3-D 
parameters (twist, shear and current channelling polariza
tion azimuth) indicate frequency independence of these 
parameters and thus possible 3-D galvanic distortion. The 
current channelling azimuth can be highly constrained by 
the local conducting structure and may be largely 
independent of the regional response. If a model is chosen 
in which both the twist and shear are independent of 
frequency for the entire band, then a low y2 residual is 
obtained only for the correct 2-D strike (or the orthogonal 
direction). 

Figure 6 presents the parameters and fit for model (3) for 
the same data as in Fig. 5, with no constraints. In Fig. 6[ii), 
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for periods longer than 0.1 s, a strike direction (diamonds) is 
obtained which is reasonably close to the correct strike of 
30°. However, at the shortest periods, the combination of a 
strike which is physically poorly defined, and the phase 
effects caused by the anomalous magnetic field of the 
current channelling, have disrupted the strike determina
tion. The twist and shear parameters are almost frequency 
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independent at periods longer .than 0.1 s. However, at the 
shorter periods, these parameters vary with period as they 
are functions of the determined strike direction. The 
regional phases (Fig. 2a) are well recovered, as are the 
shapes of the regional apparent resistivities, while the local 
anisotropy has split the regional responses even at the 
highest frequencies. 
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In this synthetic data example, a relatively smooth model 
is expected which suggests that the twist, shear and regional 
strike should be independent of frequency. This example 
illustrates the trade-off between the smoothest or simplest 
model (i.e. least parameters) and the lowest average 
residual. Although the residual plot of Fig. 6 indicates an 
extremely good fit to the data, the model is rather rough as 
the 3-0 parameters and the 2-0 strike are free to vary at 
each period. Thus, one may argue that the improved fit is 
due merely to the use of more parameters. 

We now consider the resolution and stability of the 
decomposition parameters in the presence of noise. Figs 5 
and 6 would indicate that a constrained strike of about 30° 
over the entire period range and frequency-independent 3-0 
parameters (twist and shear) should fit the data adequately. 
Fig. 7 shows such a decomposition model. Note that the 
estimate of local current azimuths is close to the 
short-period strike estimate from the 2-0 parameterization 
model (Fig. 4). For periods longer than 0.1 s we have shown 
that we can produce a smooth model with 4N + 3 
parameters with an acceptable residual which fits the 
required characteristics of the a priori physical model. 
However, for shorter periods the residual increases to a 
maximum value near five. This poor fit is due to the 
anomalous galvanic magnetic field which can be seen in the 
fit to the scaled data plots (not shown for this case). Some of 
the misfit, however, has been absorbed by alterations to the 
phase of the regional impedances. Note that the 
short-period phases are gradually nsmg instead of 
asymptotically approaching 45°. The maximum error in 
regional phase estimation is about 4° and decreases with 
increasing period due to the general Vw fall off of this 
second-order 3-0 effect. The regional phases for the 
remainder of the periods are recovered very accurately for 
this low-noise level. There are also small effects on the 
shape of the apparent resistivity curves due to this 
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anomalous magnetic field. The remaining effects on the 
apparent resistivity (Fig. 7[iii]) due to the local anisotropy 
and gain will be discussed below. 

The stability of parameters in the presence of noise is an 
important facet of this study. Fig. 8 utilizes the same data as 
Fig. 5, but with noise added at the 2 per cent level, which is 
more typical of experimental data. Notice that the correct 
strike is less resolved by both the y2 residual and the 
normalized error. Only in the narrow period band from 0.1 
to 10 s where there are strong differences between the 
phases of the regional TE and TM modes (Fig. 2a) is the 
strike determined. However, the twist and shear angles and 
channelling azimuth have varied only slightly from Fig. 5. 
Several synthetic studies have shown that the distortion 
parameters are significantly more stable in the presence of 
noise than is the 2-0 strike (Jones & Groom 1993). This is 
understandable considering that, for this example, the 3-0 
effects are first-order scattering, while the inductive 
response (contribution of the vector potential) from the 2-0 
structure is a much weaker scattering effect. Generally, the 
2-0 strike is a very poorly constrained parameter in the 
presence of 3-0 static distortion and noise. This is why 
methods for recovering regional strike and phase responses 
based solely upon rotating the impedance tensor (Bahr 
1988, 1991; Chakridi et al. 1992) are unstable for 
galvanically distorted data (Jones & Groom 1993). 

Examining Fig. 8 suggests that constraining the twist and 
shear to be independent of frequency will result in a low y2 
at all periods only for regional strike angles which are 
approximately correct (i.e. 25°-35°). Constraining the strike 
(figure not shown) to lie between 25°-35° produces relatively 
frequency-independent shear, twist and current azimuth. 
When the strike, twist and shear are constrained to be the 
mean parameters of this model, the parameterization of Fig. 
9 is obtained. The azimuthal parameters (Fig. 9[ii]) are 
slightly different from those for the low-noise data (Fig. 7). 
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The regional impedance (Fig. 9[iii]) estimates are close to 
the low-noise estimates, although the phases (Fig. 9[iv D 
deviate somewhat more from the true phases and are more 
erratic. The misfit residual is about 1 at all periods and this 
smooth model fits the data well (again not shown). The 
regional phase estimates are still disturbed at high 
frequencies (Fig. 9[ivD by the magnetic field, due to the 3-D 
structure, but now any inadequacy in the underlying model 
cannot be determined with this noise level (Fig. 9[iD. 

Improved estimates of regional apparent resistivities 

In some cases, it is possible to correct for the effects of local 
distortion on the amplitudes of the regional apparent 
resistivity estimates. The decomposition method used here 
assumes that the interpreter cannot distinguish between 
regional and local anisotropy. That is, any regional and local 
anisotropy which are developed along the same coordinate 
axes cannot be distinguished a priori (GBl). Thus, the 
regional impedance estimates from model (3) are actually 

g(l +S)Zl and g(l-s)ZII (6) 

where the anisotropy parameter, s, lies within (-1, 1). If, 
however, one can determine the regional anisotropy then 
the local anisotropy can be corrected by simple algebraic 
methods. 

In our experimental experience, often the anisotropy at 
the high end of the frequency range is due to structures 
which are small compared to the survey scale and the site 
density. In these cases, this anisotropy can be adjudged local 
or uninterpretable due to inadequate field sampling. The 
synthetic example is a case in point. An examination of Figs 
5 and 8, along with impedance phase information, indicates 
that there is little or no preference for 2-D strike until 
periods are longer than 0.1 s. For the short periods, all the 
anisotropy is local and related to the other 3-D effects seen 
in Figs 7 and 9. Therefore, at short periods, what is 
recovered by the decomposition is often approximately 

g(l + s )Zo and g(l - s )Zo (7) 

where Zo is the underlying regional response which is I-D. 
The value of the anisotropy parameter, s, can now be 
estimated by some simple algebra. The method chosen here 
is to average the estimates of s at each period over some 
preferred period range determined from decomposition 
analyses of the data. Once s is estimated, it can then be 
removed from both impedance estimates (6) throughout the 
entire period range. This is valid since, as a galvanic 
scattering effect, it persists for all longer periods. Fig. 10 
shows the resulting corrected regional apparent resistivities 
for low- and high-noise levels compared to the actual 
regional estimates. For this synthetic data, the actual electric 
distortion matrix C is known analytically and there exists an 
analytic decomposition of C into its constituent parts (GBl). 
Thus, the impedance decomposition and anisotropy 
correction can be verified. Clearly the recovered shapes are 
correct while much of the 3-D effects on the magnitudes of 
the Pa have been removed. Comparing Figs 3(a), 7 and 
10 shows that the primary effects of the electric distortion 
are due to the effects of shear, twist and anisotropy rather 
than an intrinsic level change. These three effects cause both 

10'~--~----~--~----~--~----~--~----, 

I 6 
TRUE TE 

! 

10' - + - 1 - -I---i- I L: __ ~:-~_:_H_nn_::-i:_:---, 

--·-·--+-------~----1·-·········--
! i 

I) TRUE TM 

LOW noise 

o HIGH noise 

10°L-__ ~ __ ~~--~----~--~--~------~ 
10-4 10' 100 10' 10' 

Period (5) 

Figure 10. Comparison of estimated regional apparent resistivities 
after anisotropy correction. Low noise 0.1 per cent. High noise 2 
per cent. 

the mixing of the regional responses into the four elements 
of the impedance tensor thus distorting the phase 
information as well as causing much of the magnitude 
distortions. The result is independent of whether the 
hemisphere is resistive or conductive but is true only for 
sites outside the anomaly. If the site were inside the 
out-cropping hemisphere, the impedance tensor would 
appear 2-D (i.e. no shear, twist or anisotropy) due to the 
symmetry of the hemisphere, but the gain factor would be 
important. The apparent resistivity levels would be 
depressed significantly for a conducting hemisphere or 
enhanced for a resistive hemisphere. However, if the 
heterogeneity did not outcrop, then the magnitude shift of 
the scaling parameter (g) would be reduced even for sites 
over the anomaly (Pellerin & Holmann 1990). Building 
distortion matrices, C, via a variety of numerical methods 
and then decomposing the distortion matrices (GB1) into 
their constituent parameters (i.e. g, s, t, e) verified these 
conclusions. 

Final gain level correction 

The apparent resistivities determined from model (3) are 
scaled relative to the true 2-D responses by a multiplicative 
factor of about 1.6 (the impedances by 1.25). The final 
site-gain scaling effect should normally be addressed by 
other techniques for it cannot easily be determined from 
analysis of the tensor data alone. The difficulty is that there 
are two level changes; one associated with the 3-D structure 
and one with the 2-D structure. 

To appreciate the two level changes, we examine the I-D 
inverse model derived from two standard I-D estimators. 
The first estimator is simply the square root of the 
determinant of the impedance tensor (DA) while the second 
is the arithmetic average (TA) of the off-diagonal elements 
(Berdichevsky & Dmitriev 1976). Impedance level problems 
expected for both the estimators, DA and TA, are 
associated with two galvanic effects, one 2-D and one 3-D. 
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Figure 11 contains the DA and TA estimators and their 
minimum-structure inverses (Constable, Parker & Constable 
1987) for the true regional data at the site with the 3-D 
anomaly removed and for a moderate noise level. An 
iterative method of inversion sought a small misfit with 
minimum structure beginning with a half-space model 
having the true resistivity of the upper layer. The 
long-period apparent resistivity of the DA is slightly lower 
than the TA, but the two are roughly parallel. Apart from 
the fact that the DA is here not sensitive to the resistive 
layer (3000 Qm, Fig. 1), the models are very similar, both 
underestimating the depth to the second contact, and 
recovering a substratum resistivity less than half the true 
value. This can be understood by considering that at the 
long periods the 2-D structure has only a galvanic effect with 
no phase difference between TE and TM. In the regional 
strike system with sufficiently small w, from (5) one obtains 

Z () (1 + S2·0 0) 
2-0 W = g2.0 0 1 - S2.0 

X [ 0 Zo(W)], 
-Zo(w) 0 

IS2.DI < 1. (8) 

Thus there is a site gain (g2.0) and an anisotropy (S2.0) 
associated with the 2-D response (GB2). (S2_0) represents 
the amount of apparent resistivity splitting in the 2-D 
impedances and ranges from (-1, 1). The TA response 
recovers, in the terms of these parameters, g2.0Z0 while the 

DA recovers g2-0Zo{l- S~_0)1I2. Thus unless IS2_01 is near 
one, the two estimates will be close. 

Figures 12(a) and (b) show the DA and TA estimators and 
their four layer inverses for the 2 per cent noise level 3-D 
synthetic data. Comparison of the DA estimator with the 
TA shows the better statistical stability of the TA as an 
estimator especially for the phases as indicated by the 
variance bars on the estimators. At this site (chosen to have 
only moderate current channelling effects), the TA 
overestimates the top layer resistivity, is not strongly 
sensitive to the resistive layer, and underestimates the 
depths to both contacts. However, the TA estimates the 
basement resistivity better than the DA. The determinant of 
the electric distortion matrix is close to 1 at 0.96. Thus the 
determinant average apparent resistivity is reduced only by 
approximately 0.92 from the determinant average of the 
regional response. As a result, the DA estimates the upper 
layer quite well at 275 Qm. The resistive layer is not 
detected while the depth to the second contact is 
underestimated and the basement resistivity is three times 
too small. These results should not be construed as general 
implications, but are rather due to the specifics of the 
responses both 2-D and 3-D. In particular, there are other 
cases where the DA is an extremely poor estimator. 
Whenever the current channelling is severe, the electric 
currents are constrained to flow locally in one direction 
independent of the direction of the horizontal magnetic field 
vector. In this case, since the impedance tensor is a linear 
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Figure 12(b). Inverse of anti-trace average (TA) for same data. 

transformation between magnetic and electric field vectors, 
the tensor will be almost singular as it maps a 2-D magnetic 
vector space to a 1-D electric vector space. In this case, the 
phase of the DA is almost indeterminate which adds to the 
already unstable phase estimates generated by a multiplica
tive average. 

Comparing Figs 11 and 12(a, b), note that for the DA, the 
3-D effect has only slighly modified the 2-D response while 
increasing the resistivities for the TA model. However, 
much of the long-period level problem and resulting 

inversion value for the substratum resistivity is associated 
with the 2-D site-gain level, not that of the 3-D structure. 
That the inverted substratum for the TA of the 3-D data is 
close to the correct regional substratum resistivity is merely 
fortuitous. 

The decomposition trace 1-0 estimator 

It is difficult to rationalize theoretically the use of either of 
the aforementioned I-D estimators for a general 3-D 



scattering problem. There are, however, theoretical 
arguments for the anti-trace, or Berdichevsky average, in a 
2-D environment. In addition, the arithmetic average is 
clearly more stable in the presence of noise with strong 
galvanic effects. We derive another arithmetic I-D estimator 
that extends the rational used for the TA in a 2-D 
environment to 3-D environments. It can be understood by 
realizing that the decomposition of Groom & Bailey (1989) 
actually recovers estimates of a 2-D impedance that is an 
extension of (8), namely 

= (I+S3_0 
Z2-D(W)=g3_0 0 

o ) (1 + S2_0 0) 
1 - g2-0 0 1 S3_0 - S2_0 

X [-Z~(W) (9) 

In (9) the first two operators are the 3-D site-gain and 
anisotropic effects, whereas the next two are those of the 
2-D structure as in (8). Thus, there are two level effects and 
two anisotropy effects. Taking the anti-trace average of this 
tensor, which is equivalent to averaging the estimates of 
impedance from the decomposition (GB!), results in a 1-D 
estimator called herein the decomposition anti-trace 
average, (DTA), which is g2_~3-0[1 + (S2_0S3_0)]ZO' Now 
we see clearly the two level problems in the 3-D-2-D data. 
If, for example, the regional structure was 1-D, then this 
estimator recovers simply g3-0Z0' We have seen (Fig. 10) 
that the site-level effect g3-0 is a small 3-D effect compared 
to others (which we have removed) unless the site is inside 
the 3-D scatterer. If the structure is truly 2-D, or the tensor 
appears 2-D due to the symmetry of the 3-D body, then TA 
and DT A are equivalent. 

Figure 13 presents the minimum-structure inverse of the 
DTA for the 3-D data used for Fig. 12 with high noise. A 
minimum of five layers were required to fit the DT A 
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estimator at the misfit levels of Figs 11 and 12(a, b). The 
DT A (Fig. 13) produces a slightly better estimate of the 
upper level resistivity than TA. Once the magnetic 3-D 
effects have decayed, the upper level resistivity is reasonably 
well estimated (i.e. 350 gm) as galvanic effects in the 
magnetic fields bias the resistivity and thickness of the first 
layer. The DT A is sensitive to the second resistive layer 
while the depth to basement and the basement resistivity are 
well estimated. 

The preferred estimator is, in our opinion, dependent 
upon the conductivity distribution. Arguments may be 
found for each depending on the specific structure, site 
location and noise levels. Generally, the DA can be 
extremely unstable when there are large galvanic effects 
(2-D or 3-D) polarizing the electric field. The DTA and TA 
generally are similar in magnitude but the DT A, because it 
derives from a method which is designed to recover the 
shapes of the regional responses, is more likely to maintain 
the small changes in these shapes due to moderately thick 
resistive layers. For the hemisphere scatterer, from a study 
of many sites in and around the structure, the DTA is 
preferred particularly if the background structure is 1-0. 
These estimates, after decomposition and ani sot ropy 
correction, still contain a remnant static shift factor, albeit 
rather small. Most importantly, for the techniques described 
herein, using the DT A in conjunction with the use of other 
EM methods may allow the recovery of the correct level for 
the regional apparent resistivity estimates (e.g. Fig. 10). 

Another 1-D estimator of interest, particularly where the 
site is on the conductive side of a 2-D contact, is the TE 
response. Prior to decomposition, inversion of a single 
impedance element (possibly after rotation) can lead to 
erroneous interpretations if the 3-D scattering is significant. 
This can occur even when the correct regional TE mode 
direction is known from other sources. After 3-D 
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Figure 13. Decomposition Trace (DTA) for synthetic 3-D data and 1-0 model responses (left panel) for the resistivity model (right panel) 
determined by a minimum structure inversion. 
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decomposition has recovered the correct phases and 
removed all but the site gain (Fig. 10), one could model 
one-dimensionally the TE mode without any further 
correction when the TE-TM ambiguity has been resolved. 
Fig. 14 presents a minimum-layer 1-D inversion for the TE 
mode response for both the true 2-D impedances and the 
estimated 2-D impedances from the 3-D data after all 3-D 
corrections (i.e. decomposition plus local anisotropy 
removal). Comparison of estimated and actual impedances 
(Fig. 14) indicates what remains of the 3-D scattering. The 
phases are essentially equivalent within the noise except for 
some high-frequency distortion due to the 3-D magnetic 
effects, and the apparent resistivities are parallel, but the 
3-D level is now shifted upwards only slightly from the true 
response. The true 2-D response recovers the basement 
resistivity and the basement contact accurately, and is 
sensitive to the resistive layer. However, the 2-D induction 
modifies the depth to the first contact as determined by the 
1-D inversion. The improved estimate of the first contact 
depth is fortuitous and not generally significant. A surface 
resistive layer is recovered from the estimated impedance to 
fit the 3-D magnetic effects. No intermediate layer is 
required (Fig. 14) between the resistive layer and the 
basement to fit the data, and the depth to basement is 
determined accurately. Outside a resistive 3-D anomaly, the 
contact depths would be made shallower. This inversion of 
the 3-D data is certainly more accurate than any of the 
others (TA, DA, DTA or either impedance from a 2-D 
decomposition). 

AN EXAMPLE WITH FIELD DATA 

With actual field data the application of the decomposition 
or parameterization analysis process can be more difficult 

because of poor data and uncertainty in the variance 
estimates. Also, 3-D induction may be important and the 
physical parameterization may not be correct for such 
scattering. To indicate both the usefulness and the 
difficulties in applying this methodology, data from two 
closely spaced sites from an MT survey conducted in the 
Canadian Southern Cordillera (Jones et al. 1988) are 
analysed. The general trend of the exposed geological 
structures throughout the region is N30oW, although one 
site (LITOOO) lies in a valley following the Eocene 
extensional Slocan Lake Fault, which locally strikes about 
N30oE. The fault dips east beneath the Nelson Batholith and 
has been imaged seismically to depths of 25 to 30 km (Cook 
et al. 1988). The valley contains relatively conducting 
sediments. The other site (LITW02) is located 15 km to the 
west within the Valhalla Gneiss complex on the flanks of a 
glacial valley. 

Figure 15(a) presents model 2 (i.e. 2-D) parameters and 
residual errors for the western site, LITW02. Both the 
residual error and skew plots show similarities to the 
synthetic 3-D example discussed in the previous section. The 
skew increases gradually from approximately zero to a 
long-period asymptote. This response could be due either to 
3-D effects becoming dominant at longer periods, or to the 
advent of 2-D effects coupled with a local, short-period, 3-D 
response. The residual errors are probably acceptable to 
periods of about 0.1 s, but then increase to values greater 
than 1000. There is a decrease in the misfit at long periods, 
but this is probably the result of an increse in the variance 
estimates. The minor impedance phase increases to values 
greater than 90°, a fairly common occurrence for a 2-D 
parameterization (Groom & Bahr 1992), and occurs at many 
of the sites in this survey. Again, the comparison plots of 
the data and the model parameterization results (Fig. 15b) 
indicate that the off-diagonal elements of the tensor are well 
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Figure 15(b). Fit to scaled impedance data. 

modelled, whereas the diagonal elements are not, 
particularly at the longer periods. The parameterization 
suggests that the regional strike is approximately 900 (or 0°) 
but clearly, model (2) is not appropriate for these data. 

Figures 16(a) and (b) show the results of applying model 
(3), without constraints, to these data (site LITW02). The 
regional strike is poorly defined for periods shorter than 
0.1 s, but is fairly stable and smooth with values between 50° 
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and 70° at longer periods. Recall that the 2-D strike and the 
skew also underwent a transition at 0.1 s. The short-period 
twist and shear are erratic, but at periods greater than 0.1 s 
the twist is nearly frequency independent, and the shear 
varies in a similar fashion to that of the strike azimuth. Since 
these distortion parameters are functions of the coordinate 
system, and the decomposition technique uses the regional 
strike as the definition of the coordinate system, it is 
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Figure 16(a). The unconstrained 3-D model parameters for field data from station LITW02. 
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Figure 16(b). Fit to scaled impedance data. 

expected that they should vary with the regional strike 
parameter (e.g. Fig. 5). The minor phase, although still near 
900 at longer periods, remains now within the first quadrant. 
The residual errors have decreased by at least one order of 
magnitude for all periods. Fig 16(b) indicates that to a great 
extent this unconstrained parameterization fits the data. We 
now examine the significance of the variations in the 

--Real Fit Fit 
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azimuthal parameters. 
Figure 17 indicates that while the short-period strike is 

poorly constrained (error and normalized error plots), there 
is a well-resolved long-period strike. If we seek a strike 
angle that has a low associated residual error, and for which 
twist and shear are as period independent as possible, then a 
fairly narrow band of rotation angle around an azimuth of 
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Figure 18. The 3-D model parameters for field data from site LlTW02 with strike constrained to 60°, 

600 is defined. Fig. 18 shows that, with the strike constrained 
to 60°, the twist and shear are relatively constant for periods 
greater than 0.03 s, while the residual error is only slightly 
increased over the unconstrained model (Fig. 16a). The 
large residual errors at frequencies between 1 to 10 Hz may 
be associated with poor impedance estimates or unrealisti
cally small variances. 

In Fig. 19(a), a model has been used which constrains the 
regional strike, twist and shear to 60°, -22° and -12° 
respectively, over the entire period range to fit preferentially 
the data at periods greater than 0.01 s. The residual error is 
slightly larger than for the previous model, especially for the 
shortest periods, but there is very little difference in the 
regional impedance estimates (Fig. 19b). There is a misfit 
near 1 s for all elements except for the Zxy component. The 
short-period misfit in Zyy is the result of constraining the 
azumiths preferentially for the longer periods. The 
long-period misfit for the real part of Zyy, also apparent in 
the unconstrained fits (not shown), may be the result of 
noise bias in the data, inadequacy of the model or source 
field effects. It is important to note, however, that this 
rather smooth 3-D model fits the data well, certainly much 
better than the best fitting 2-D model. An additional 
correction was made to the regional estimates since there 
appears to be no strong preference for strike at short 
periods, A short-period anisotropy (estimated to be 
s = 0.14) was assumed to be entirely local and thus 
removed. The only remaining uncertainty is the absolute 
level (i.e. site gain) of the apparent resistivity curves. This 
problem will be addressed later. 

The stable strike azimuth is determined by the 
high-quality data and by the strong 2-D inductive-phase 
response characterized by the phase split occurring over 
more than four decades of period. The low shear values 
(less than 25°, Fig. 19(a)[ii]), the weak local anisotropy (Fig. 

18[iii]) and the azimuthal dependence of the channelling 
azimuth (lower right panel, Fig. 17) all indicate a moderate 
3-D current channelling response. The persistent phase split 
indicates that the 2-D structure must continue to 
considerable depth or that there must be additional lateral 
2-D contacts at increasingly greater distances and/or depths. 
However, this is not supported by 2-D modelling studies of 
MT and geomagnetic depth-sounding data collected along 
east-west profiles across southern British Columbia (Jones 
et al. 1988; Jones, Groom & Kurtz 1993). Another 
possibility is electrical anisotropy in the lower crust and/or 
upper mantle. 

Regional large-scale geological trends are approximately 
N300W in southern British Columbia. Since structural strike 
azimuths as determined from magnetotellurics are am
biguous by 90°, the strike direction determined from the 
decomposition is consistent with the geological trends. For 
this reason, ZXy (Figs 18 and 19(a)[iii]) is considered to be 
the regional estimate of the TM impedance (electric fields 
measured perpendicular to strike). The direction of 
present-day large-scale tectonic stress is approximately 
orthogonal to the geological trends (Adams 1989). 

Before continuing with the interpretation of the data from 
site LITW02, it is useful to examine the parameters of an 
adjacent site to confirm and refine our analysis. Fig. 20 
shows the model (2) decomposition parameters for site 
LITOOO. The large skew values along with one of the phase 
estimates increasing to values greater than 90° for periods 
longer than 1.0 s are indicative of strong 3-D effects, The 
residual error is also large for the longer periods. The 
response can be divided into two bands, one above 1.0 sand 
one below. The short-period strike azimuth is approx
imately N30oE, parallel to the valley (Slocan Lake) and 
the decomposition indicates a satisfactory fit to the data (not 
shown). At longer periods, the skew increases, the strike 



1112 R. W. Groom et al. 

4 E 
(i) (iii) 4 E ..... .c . ....... . Q .... 2 ....... , ... . ... 

~ 
e t 

. . c .... • ~ w 2 CIl 

Cl • 0. 
0. 

0 0 <! ....J I 
.. XY 0 

.c 
• YX 0 a: 

0; 
-2 0 

~ 
-l 

Cl 90 
~" .. 90 

Q) 

(ii) ii;'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ~ 60 (iv) .. .. 
75 .. 

(fJ . } Cii 
30 ~.. 11'\, 

60 Cl Q3 >OOOOOOOO~:::c:c~ 

~ /l" ~~ 
(J) 

E ~ 
~ 0 45 Q) 
ctS 1111111111111111111111111111111111111111 (fJ 

c.. hV " or 
ctS 

tu -30 30 .c 

.~ c.. .c 
'5 -60 • STRIKE (60') + SHEAR (-12') 15 E 
'N • CURRENT (70') x TWIST (22') 

<! -90 0 
-4 -2 0 2 4 -4 -2 0 2 4 

Log[ Period (seconds) J Log[ Period (seconds) J 

Figure 19(3). The 3-D model parameters for field data from site LITW02 for a fully constrained model after correction for anisotropy in 
apparent resistivities. 

X 
X 
N 

X 
~ 
N 

• Real Data 
1.5 

1.0 

0.5 

0 

-0.5 

-1.0 

-1.5 

1.5 

1.0 

0.5 

0 

-0.5 

-1.0 

-1.5 
-4 -2 0 2 

Log[ Period (seconds) J 

Figure 19(b). Fit to scaled impedance data. 

4 

azimuth swings towards 0°, the minor phase increases out of 
the first quadrant and the diagonal impedance elements 
(not shown) are poorly fit. The impedance tensor is 
essentially singular at long periods, for which GB2 have 
shown that the major 2-D impedance estimate is well 
determined, but the minor is not. GB2 also shows that 
phases increasing out of quadrant can be generated in 
synthetic data by strong 3-D effects on 2-D regional 
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responses. If the strike is constrained to the short-period 
azimuth (Fig. 21), the minor phase is better behaved but the 
residual error is still large at longer periods. For 3-D electric 
distortions, 2-D models generally result in linear combina
tions of the 2-D regional responses which depend on the 
chosen strike. In this example, the choice of strike results in 
a minor phase similar to, but offset from, the major phase. 

Figure 22 shows the unconstrained parameters for 



Conductivity structural dimensionality from MT data 1113 

4 E 
...... -. (i) (iii) 4 E 

.c , , ~ Q , , 
2 

, 

~~Jt. ... ' .... r 0 · ' , E , + , ' . '- " . 
~ I '- t .. ID 

LU 
.~ 11 

............... f' 
2 ro 

Ol 0-
j ! 0-

0 0 ~ « ....J 
.. XY 0 

.c 
• YX 0 a: 

Ol 
-2 0 

....I 

en 90 I 180 
ID 

r. • -," 
~ (ii) (iv) • 60 loT f/) · ~-. • 135 (jj -a Q) 30 .~ • • ID 
E . , • ~ 
Cl! 0 •••• -~-.... #- t • 90 ID ro 

.~.J. .... Jt."'-"AJt.~1 
f/) 

Cl. Cl! 

(ij -30 .c 
Cl. 

.c 45 :; -60 • SKEW 
.. .... .... 

E 
• STRIKE 125") 

...... ~ -N .. .. 
« -90 0 

-4 -2 0 2 4 -4 -2 0 2 4 

Log[ Period (seconds) 1 Log[ Period (seconds) 1 

Figure 20. The 2-0 model parameters for field data (LlTOOO) for best fitting strike. 

parameterization model (3). The residual error is uniformly 
low. The short-period strike is about 30° with very small 3-D 
parameters as indicated by the previous 2-D parameterization 
model. As the skew increases with period, the 3-D 
parameters also increase dramatically with the shear 
approaching a value of 45°. This is a strong indication of 
impedance tensor singularity. The ramifications of this 
singularity can be studied with eq. (3b). The determinant of 
the estimated impedance tensor is the product of the 
determinants of its constituent tensors [i.e. T, S, A and Z2 
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(GBl)]. The rotation operators, including the twist operator, 
have determinants of one. A shear angle of 45° implies 
lel = 1 (GBl) and accordingly the shear operator, and thus 
the total data tensor, have a determinant of zero (GB1). In 
such a case, inversion for model parameters can be a very 
unstable process with strong noise bias in a parameter 
estimate. This is particularly true for the strike, which was 
previously demonstrated to be a poorly constrained 
parameter in the presence of noise (lones & Groom 1993). 

Figure 23 shows the parameter variations for the 3-D 
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Figure 22. The unconstrained 3-D model parameters for field data (LlTOOO). 

model as a function of period and regional strike. The 
residual error indicates that at short periods a 2-D model 
with very small static 3-D effects and with a strike azimuth 
of 25° to 30° parallel to the valley is the most appropriate. 
At about 1.0 s period the azimuth starts to swing towards 0°, 
an azimuth parallel to the western boundary of the Nelson 
batholith. In this mid-range, with the strike changing and 
with a transition from weak to strong distortion parameters 
(twist and shear), it is possible that model (3) will not fit the 
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data adequately, since both 3-D inductive and 3-D galvanic 
magnetic effects are expected. These 3-D effects are 
frequency dependent, however, and should fall off as Vw 
(GB2). Model (3) should be adequate again by 10 s period. 
At the longer periods the strike azimuth approaches 60° but 
is not well determined. The channelling azimuth (lower right 
panel, Fig. 23) indicates that the current remains 
constrained to flow at 25° to 30°, parallel to the valley at all 
periods. Since the shear is relatively uniform and the twist is 
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Figure 25. Final model parameters after correction for anisotropy in apparent resistivities for site LlTOOO. 

frequency independent for most strike angles, and since the 
tensor is nearly singular at long periods, information from 
other sites is required to fix the strike. Fig. 24 shows the 
decomposition azimuthal and error results with uncon
strained distortion parameter but with the regional strike 
constrained to 60° as suggested by Fig. 23, and the analyses 
of site LITW02. This azimuth is adequate for the regional 
strike for periods longer than 1 s as evidenced by the 
residual error (Fig. 24[iJ), and by the constant distortion 
parameters. The current polarization azimuth remains fixed 
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around 30°. The short-period error arises almost entirely 
from misfitting the imaginary part of the Zxy and Zyy 

components of the data until 1 s (not shown), indicating 
possible 3-D source effects. Further constraining the model, 
with the distortion parameters fixed at the long-period mean 
values, results in the parameters and fit of Fig. 25. Again for 
periods longer than 1 s, there is a generally good fit to the 
data with some significant but not extreme misfit at shorter 
periods. Impedance estimates include removal of local 
anisotropy with s = 0.19. 
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Regional responses for LITOOO and LITW02 

Figure 26 shows a comparison of the regional estimates of 
apparent resistivity and phase from the final 3-D 
decomposition models and includes the anisotropy correc
tion. The TE impedance corresponds to the Zyx (Figs 18 and 
25) component in the rotated decomposition model 
coordinate system. The TE impedance is assumed (with 
some evidence) to be parallel (N300W) to the large-scale 
regional trends of the Cordillera and orthogonal to the 
present-day tectonic stress (Cook et al. 1988; Adams 1989). 
In addition, the shapes of the apparent resistivity curves at 
the long periods (Fig. 26) are characteristic of TM and TE 
responses observed at other stations in the survey. The 
similarity of the longer period regional phase responses from 
the two sites is quite remarkable when compared with phase 
estimates obtained by standard 2-D decomposition tech
niques. The TE mode apparent resitivities from the two sites 
are equivalent at longer periods. while the TM mode 
resistivities are parallel but slighly shifted from each other. 
This may be caused by different 2-D level effects (static 
shift) which would be expected from two separated sites or 
by an incorrect estimation of the local anisotropy or the final 
site gain (g) which may still be present. 

The geological significance of the resulting impedance 
estimates becomes evident with the analyses of the entire 
suite of sites from the region. The results confirmed that the 
long-period phases recovered from the decomposition were 
indeed regional responses (Groom & Bahr 1992). The deep 
structural electrical anisotopy indicated in Fig. 26 is 
confirmed across the entire region (Jones et al. 1993). 

Finally, Fig. 27 presents a comparison of the 
Decomposition Trace (DT A) apparent resistivity and phase 

data for the two sites. The short-period responses are 
different but they are almost identical at the longer periods 
as would be expected from two such closely spaced sites. 
The 1-D models (Fig. 27) were obtained using the 
minimum-structure inversion procedure of Constable et al. 
(1987). Parker's (1980) D+ test provided the smallest misfit 
value possible for a I-D model for both sites. The misfit 
values were increased by approximately 10 per cent to 
establish the minimum misfit allowed for the inversion. Both 
inversions give similar deeper crustal structures as was 
expected. 

METHODOLOGY SYNOPSIS 

From the above, it is clear that 3-D galvanic distortions can 
seriously affect MT data and lead to inappropriate strike 
angles being chosen which may result in erroneous 
interpretations. We have described a methodology for 
dealing with such distortions under a model of 3-D/2-D, i.e. 
3-D distortion over a 2-D regional earth model. It is clear 
that for the case of 3-D/3-D our methodology is 
inappropriate. However, the frequency band of the 
inductive response of a body is normally quite smaIJ, 
compared to the bandwidth of modern MT systems 
(typically more than five decades), and thus often 3-D/3-D 
quickly becomes 3-D/2-D or 3-D/I-D with increasing period. 
Our proposed methodology to assess the dimensionality of 
the data, and to remove the distortions caused by local 3-D 
effects, can be summarized as follows. 

(1) Test the rotational invariance of Z, thus fitting the 
data to a 1-D parameterization (1). The misfit to that model 
(log y2, eq. 4) is then determined and if 95 per cent of the 



misfit values lie below 4, then this I-D model fits the data 
and no further analysis is appropriate or required. If the 
misfits are significantly above 4, then either the I-D model is 
inappropriate, or the statistics of the data errors are too 
small. In either case, we go the step 2.l. 

(2.1) Fit the data to a 5N free-parameter 2-D model (2) 
(i.e. frequency-dependent strike), and determine the misfit 
of this model. The definition of strike angle can be either 
from the data themselves, e.g. the Swift angle, or from 
other information, e.g. predominant geological strike of the 
region. If 95 per cent of the misfit values lie below 4, the 
next step is to try to find the appropriate strike direction for 
the entire frequency range of the data (step 2.2). If most 
values are above 4, then either the 2-D model is 
inappropriate, or the statistics of the data errors are too 
small. If the 2-D model has significantly lower misfits than 
the I-D model, then we investigate whether a 3-D model 
has a lower misfit (step 3.1). If the misfit level has not 
decreased much with the 2-D model over the I-D model, 
then we attempt to reduce any 3-D distortions with the 
model of 3-D over I-D. 

(2.2) Constrain the strike direction to that most 
consistent with much of the data. Determine the misfit for 
this model with 4N + 1 degrees of freedom (2-D with 
frequency-independent strike), and, if satisfactory (still 
below 4) then stop. Otherwise, go to step 2.3. 

(2.3) A frequency-dependent 2-D strike implies that 
there are large bodies striking in different directions at 
different depths in the crust. In this situation the structure 
may be true 2-D at high frequencies, but then if 2-D/2-D at 
longer periods, a 2-D local distortion of a 2-D regional 
structure is produced. In this case, only the highest 
frequencies can be treated as true 2-D; for treating the data 
at longer periods, step 3.1 is required. 

(3.1a) Perform an unconstrained fit of model (3) to the 
data over the whole bandwidth and inspect the misfits. Is the 
3-D fit significantly better than the 2-D fit? If yes, go to step 
3.1b. If not, then either the model of 3-D/2-D is 
inappropriate and the data are too sensitive to 3-D inductive 
effects, or a 2-D model is sufficient (go to 2.2). 

(3.1b) Perform a strike-constrained fit varying the strike 
angle in increments between 0° and 90° and consider how 
the error and telluric distortion parameters vary, e.g. Figs 
5, 8, 17 and 23. Is there a stable azimuth for which the 
distortion parameters are frequency independent and for 
which the error is minimized? If so, then one can be 
confident that the 3-D/2-D model is appropriate over the 
whole range of frequencies, and that one can continue with 
the analysis (go to step 3.2.). If not, then the anomalies are 
such that 3-D inductive effects are important for some part 
of the bandwidth, if not all. In this situation work from the 
surface downwards, i.e. from the highest frequencies to the 
lowest, until the 3-D/2-D model becomes inappropriate. 

(3.2) Constrain the stab lest of the telluric distortion or 
regional azimuthal parameters to a particular value or a 
small range of values over the whole bandwidth. In our 
experience either the shear or twist are far more stable than 
the regional rotation angle e. This may not be possible over 
the entire bandwidth, in which case, treat the data in bands 
which are as broad as possible. In rare cases, the plot 
produced by step 3.1b will indicate that the regional strike is 
reasonably robust and well resolved. Then the strike angle 
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should be constrained first because this will stabilize the 
non-linear estimation process for determining the telluric 
distortion parameters. It is possible that as the period 
increases, additional 3-D effects are significant. In which 
case, band-limited frequency-independent telluric distortion 
parameters are required. 

(3.3) Constrain the second telluric' distortion parameter; 
either the twist or shear depending on what was constrained 
in step 3.2. 

(3.4) Constrain the strike angle e to an angle which is 
most consistent over a broad band of frequencies and over 
as many sites as possible. 

(3.5) It is necessary at this stage to ensure that the strike 
angle is appropriate for the data, and not one obtained by 
inappropriate choices of twist and shear. Accordingly, 
constrain the strike angle and permit the twist and shear to 
vary with frequency. Do they exhibit the originally 
constrained values? With some badly distorted, or noisy, 
data one must iterate between constraining the parameters 
in turn until a satisfactory model is determined. 

(3.6) Remove the anisotropy. This can be done by 
determining the arithmetic mean of Zxy and Zyx at 
sufficiently high frequencies and shifting the two apparent 
resistivity curves to those levels. 

The final correction which must be applied at each site is the 
local site gain, g, which is the same factor for both modes. 
This factor must be determined from other information, 
such as controlled-source soundings or from making 
assumptions about certain parts of the earth model, e.g. a 
uniform layer in the section (see Groom & Bahr 1992, and 
references therein). 

CONCLUSIONS 

In this paper we have described a systematic method for 
determining the appropriate dimensionality of MT data 
from a site, and we have illustrated the application of this 
method to analyse both synthetic data and real data. In 
addition, we described the extraction of regional impedance 
responses from multiple sites. 

Synthetic studies have provided insight into the different 
physical parameterizations and parameter stability. In 
difficult cases, such as the field examples here, mUltiple sites 
need to be used to help constrain parameters. These 
parameters can then be used for modelling and inversion 
studies. Here we have demonstrated for two neighbouring 
sites that the analyses methodology can be extremely useful 
in unravelling the bulk regional response when hidden by 
strong 3-D effects. 

As predicted by earlier theoretical work, the method 
applied to experimental data clearly indicated, as illustrated 
here with two sample sites, a result of significant geological 
importance which was not evident by standard techniques 
(Figs 15a and 20). Analyses of more than 20 sites have 
confirmed the general nature of the recovered regional 
response from the two sample sites, indicating electrical 
anisotropy deep in the crust (Jones et al. 1993). Although 
there may still be some uncertainties remaining in the true 
levels for the regional responses for stations LITOOO and 
LITW02, the analysis has provided models which not only fit 
the data but are consistent for neighbouring sites, whereas, 
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these data would initially suggest that the stations are seeing 
significantly different structures. 
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