A General Computer Program to Determine the Perturbation of Alternating Electric Currents in a Two-Dimensional Model of a Region of Uniform Conductivity with an Embedded Inhomogeneity

F. W. Jones and L. J. Pascoe

(Received 1971 May 26)*

Abstract

Summary A computer program to calculate the perturbation of alternating electric currents in a two-dimensional Earth model with a conductivity inhomogeneity is presented. The program provides for an inhomogeneity of arbitrary shape surrounded by a region of different conductivity. The equations and boundary conditions are solved by a numerical method for both E-polarization and H-polarization. The computer program allows for the solution over a grid of variable mesh dimensions and for a general model which consists of several conductivities. The program is given in detail and an example for a particular model is illustrated.

1. Introduction

There is considerable interest at present in electromagnetic induction in the Earth and the solution of the induction problem for a surface or buried region of conductivity different from its surroundings.

Many observational studies have been made in recent years of the effects of vertical discontinuities in electrical conductivity of the Earth on geomagnetic variations. Several mathematical approaches have been taken with respect to these problems. D'Erceville \& Kunetz (1962), Rankin (1962) and Weaver (1963) have approached the problem analytically, while Wright (1970) employed a transmission line analogy with a numerical approach.

Price (1964) pointed out that the problem to be considered is one of determining the local perturbations of a given alternating system of induced currents by given abrupt changes of conductivity. Uniform currents are induced in a conductor and are perturbed locally by 'local' variations in conductivity.

Jones \& Price (1970) discussed the equations and boundary conditions for a two-dimensional problem in which the conducting region is a semi-infinite half-space made up of two quarter spaces of different conductivity. This problem was solved by a numerical technique to obtain the field distributions within the conductor and the surface values of the various components along the surface of the conducting half-space. Both the E-polarization (E parallel to the strike) and the H-polarization (H parallel to the strike) were considered. Jones \& Price (1971a) extended this to a comparison of three models with different contact geometry between the two conducting regions. Also, Jones \& Price (1971b) considered a model with one region

[^0]surrounded by a region of different conductivity, and Jones (1971) investigated a two-layered structure of general contact topography.

In the work by Jones \& Price (1971b) a surface or buried rectangular region of one conductivity surrounded by a region of different conductivity was considered. Both the E-polarization and H-polarization cases were solved for a given frequency, and surface values as a function of conductivity, depth of overburden and dimensions of the anomaly were considered. From the foregoing work it has become clear that there is a need for a general computer program to deal with a two-dimensional anomaly of arbitrary shape. The present work illustrates a flexible method of dealing with such a problem. The method allows for a region of arbitrary shape made up of one or more regions of different conductivity and gives the solution in terms of field distributions and surface values of the components. Also, the method includes a provision for a variable grid size in order to remove some of the limitations encountered by using a square grid.

2. The general model

The general model is illustrated in Fig. 1 along with the co-ordinate system. The interface between the anomalous region and the surrounding region is of arbitrary shape and can be adjusted. The grid size is variable, and the anomalous region can be composed of several different conductivities as represented by the different letters. The conductivity A represents free space.

An alternating current, of circular frequency ω, flows in the model. This current is parallel to the surface at $y= \pm \infty$.

3. The differential equations and boundary conditions

For the two polarization cases the equations, in electromagnetic units, to be solved in the various regions are identical and are given by Jones \& Price (1970) as:
E-polarization:

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}=i \eta^{2} E_{x} \tag{1}
\end{equation*}
$$

H-polarization:

$$
\begin{equation*}
\frac{\partial^{2} H_{x}}{\partial y^{2}}+\frac{\partial^{2} H_{x}}{\partial z^{2}}=i \eta^{2} H_{x} \tag{2}
\end{equation*}
$$

where $\eta^{2}=4 \pi \sigma \omega$.
These equations must be solved in each region with the appropriate conductivity (σ) inserted and with the appropriate boundary conditions. The usual boundary conditions exist between the media at internal points of the mesh as explained by Jones \& Price (1970). The boundary conditions on the outer boundaries of the mesh ($y \rightarrow \pm \infty, z \rightarrow \pm \infty$) will be discussed for E-polarization and H-polarization separately.

E-polarization

In the case of E-polarization, the only non-zero field components are E_{x}, H_{y} and $H_{z} . \quad E_{x}$ satisfies equation (1) with the appropriate value of η inserted for each region. At large distances from any discontinuity in σ it is assumed that the field behaves like that for a uniform conductor. Hence as $y \rightarrow+\infty$ or $-\infty, E_{x}$ within the conductor is of the form (Jones \& Price 1970)

$$
\begin{equation*}
E_{x}=E_{0} \exp \{\eta \sqrt{ }[(i)] z\} \tag{3}
\end{equation*}
$$

Δ	A	A	A	A	Δ	A	A
A	A	A	A	A.	A	Δ	A
A	A	A	A	A	A	A	A
A	B	A	A	A	B	A	A
B	B	B	B	B	B	8	B
B	B	B	B	B	B	B	B
B	B	C	C	D	D	B	B
B	B	C	C	E	E	B	B
B	B	F	F	E	E	B	B
B	B	B	B	8	8	B	B
B	B	B	B	B	8	B	B

Fig. 1. The co-ordinate system and the general model. The different letters indicate regions of different conductivity. Regions lettered A constitute the non-conducting region.
where E_{0} is the value of E_{x} at the surface and η depends on σ. When the region surrounding the conductivity anomaly is uniform, as in the case we are considering here, E_{0} is the same for $y=+\infty$ and $y=-\infty$.

Within the conductor the field components tend to zero as $z \rightarrow \infty$, and in particular we require that the perturbation effect of the anomalous structure be negligible at the lower boundary. In the computational method used the field components can be made to approach zero on the lower boundary by choosing vertical grid dimensions such that the lower boundary ($z=d$) is several skin depths from the surface. It is then possible to set the value of E_{x} at the lower boundary constant and equal to

$$
\left.E_{x}\right|_{y=\infty, z=\mathbb{d}} .
$$

Outside the conductor $(z<0)$ for $|y|$ large we have

$$
\begin{equation*}
E_{x}=E_{0}\{1+\eta \sqrt{ }[(i)] z\} \tag{4}
\end{equation*}
$$

as shown by Jones \& Price (1970) and so is a linear function increasing with $-z$ $z \rightarrow-\infty$. Jones \& Price (1970) have shown that the horizontal component of magnetic field $\left(H_{y}\right)$ is the same at $y \rightarrow \pm \infty$ for all negative values of $z . H_{y}$ can then be taken equal to a constant value (say H_{0}) on finite boundaries corresponding to $z=-h_{0}$ at $y= \pm k$ and all along the boundary $z=-h_{0}$ provided that this boundary is far enough away to make the local perturbation in \mathbf{H} negligible there. Since, in this particular problem, $E=E_{0}$ for $y= \pm \infty$ (or in fact for $y= \pm k$), then we may take

$$
\begin{equation*}
E_{x}=E_{0}\left\{1+\eta \sqrt{ }[(i)] h_{0}\right\} \tag{5}
\end{equation*}
$$

along the upper boundary of the grid as long as the above conditions on \mathbf{H} are met.

H-polarization

For the H-polarization case the components H_{x}, E_{y} and E_{z} are involved. Also, for the H-polarization case the magnetic field is constant in $z<0$ (Jones \& Price 1970). H_{x} is therefore constant and equal to H_{0}, say, along the surface of the conductor as well. It is therefore only necessary to consider the region $z>0$.

At large distances ($y \rightarrow \pm \infty$) from the anomaly we again assume a uniform conductor as in the E-polarization case. The solution is then similar to the E-polarization case and so for $|y|$ large and $z>0$,

$$
\begin{equation*}
H_{x}=H_{0} \exp \{-\eta \sqrt{ }[(i)] z\} \tag{6}
\end{equation*}
$$

where H_{0} is the value of H_{x} at the surface and η depends on σ.
Within the conductor ($z>0$), the field components vanish as $z \rightarrow \infty$, and we assume a similar boundary condition on the lower boundary of the mesh as we did in the E-polarization case. We choose the lower boundary constant and equal to the value at $|y|$ large. It should be emphasized that this lower boundary must be at large enough z so that the fields approach zero.

4. The numerical formulation

The method of solution involves the solution of the appropriate finite difference equations over a mesh of grid points by the Gauss-Seidel iterative method. The equation to be solved in all regions for both the E-polarization and H-polarization cases is of the form

$$
\begin{equation*}
\nabla^{2} F=i \eta^{2} F, \text { where } \quad \eta^{2}=4 \pi \sigma \omega \tag{7}
\end{equation*}
$$

and F is either E_{x} or H_{x}, depending upon the case we are considering. If we let $F=f+i g$ then

$$
\nabla^{2} f+i \nabla^{2} g=i \eta^{2} f-\eta^{2} g
$$

and equating real and imaginary parts we obtain

$$
\begin{align*}
\nabla^{2} f & =-\eta^{2} g \tag{8}\\
\nabla^{2} g & =\eta^{2} f . \tag{9}
\end{align*}
$$

If a small region of the mesh is considered as illustrated in Fig. 2, equations (8) and (9) must be satisfied at each point and in particular point ' 0 '. Four conductivities occupy the quadrants surrounding the point ' 0 '. Also, the mesh sizes about the point ' 0 ' vary and in general $d_{1} \neq d_{2} \neq d_{3} \neq d_{4}$. Equations (8) and (9) become:

$$
\begin{align*}
& \left(\nabla^{2} f\right)_{0}=\left(-\eta^{2} g\right)_{0} \tag{10}\\
& \left(\nabla^{2} g\right)_{0}=\left(\eta^{2} f\right)_{0} \tag{11}
\end{align*}
$$

Fig. 2. Notation used for grid points, dimensions and conductivities of the regions surrounding point ' 0 '.

To obtain a pair of finite difference equations we make use of Taylor's Theorem which yields

$$
\begin{aligned}
& f_{1}=f_{0}+\left(\frac{\partial f}{\partial y}\right)_{0} d_{1}+-\frac{1}{2}\left(\frac{\partial^{2} f}{\partial y^{2}}\right)_{0} d_{1}^{2}+\ldots \\
& f_{2}=f_{0}+\left(\frac{\partial f}{\partial z}\right)_{0} d_{2}+\frac{1}{2}\left(\frac{\partial^{2} f}{\partial z^{2}}\right)_{0} d_{2}^{2}+\ldots \\
& f_{3}=f_{0}-\left(\frac{\partial f}{\partial y}\right)_{0} d_{3}+\frac{1}{2}\left(\frac{\partial^{2} f}{\partial y^{2}}\right)_{0} d_{3}^{2}+\ldots \\
& f_{4}=f_{0}-\left(\frac{\partial f}{\partial z}\right)_{0} d_{4}+\frac{1}{2}\left(\frac{\partial^{2} f}{\partial z^{2}}\right)_{0} d_{4}^{2}+\ldots
\end{aligned}
$$

and similar equations for $g_{1}, g_{2}, g_{3}, g_{4}$.
If we neglect higher order terms we can express equations (10) and (11) as a pair of finite difference equations:

$$
\begin{align*}
& f_{0}\left(\frac{1}{d_{1}{ }^{2}}+\frac{1}{d_{2}{ }^{2}}+\frac{1}{d_{3}{ }^{2}}+\frac{1}{d_{4}{ }^{2}}\right)-\eta^{2} g_{0} \\
& =f_{1}\left[\frac{1}{d_{1}{ }^{2}}+\frac{1}{\left(d_{1}+d_{3}\right)}\left(\frac{1}{d_{3}}-\frac{1}{d_{1}}\right)\right]+f_{2}\left[\frac{1}{d_{2}{ }^{2}}+\frac{1}{\left(d_{2}+d_{4}\right)}\left(\frac{1}{d_{4}}-\frac{1}{d_{2}}\right)\right] \\
& \quad+f_{3}\left[\frac{1}{d_{3}{ }^{2}}+\frac{1}{\left(d_{1}+d_{3}\right)}\left(\frac{1}{d_{1}}-\frac{1}{d_{3}}\right)\right]+f_{4}\left[\frac{1}{d_{4}{ }^{2}}+\frac{1}{\left(d_{2}+d_{4}\right)}\left(\frac{1}{d_{2}}-\frac{1}{d_{4}}\right)\right] \tag{12}
\end{align*}
$$

or

$$
\begin{equation*}
f_{0}\left(\Sigma \frac{1}{d_{i}^{2}}\right)-\eta^{2} g_{0}=f_{1} D_{1}+f_{2} D_{2}+f_{3} D_{3}+f_{4} D_{4} \tag{12'}
\end{equation*}
$$

$$
\begin{align*}
& g_{0}\left(\frac{1}{d_{1}{ }^{2}}+\frac{1}{d_{2}{ }^{2}}+\frac{1}{d_{3}{ }^{2}}+\frac{1}{d_{4}{ }^{2}}\right)+\eta^{2} f_{0} \\
& = \\
& g_{1}\left[\frac{1}{d_{1}{ }^{2}}+\frac{1}{\left(d_{1}+d_{3}\right)}\left(\frac{1}{d_{3}}-\frac{1}{d_{1}}\right)\right]+g_{2}\left[\frac{1}{d_{2}{ }^{2}}+\frac{1}{\left(d_{2}+d_{4}\right)}\left(\frac{1}{d_{4}}-\frac{1}{d_{2}}\right)\right] \tag{13}\\
& \quad+g_{3}\left[\frac{1}{d_{3}{ }^{2}}+\frac{1}{\left(d_{1}+d_{3}\right)}\left(\frac{1}{d_{1}}-\frac{1}{d_{3}}\right)\right]+g_{4}\left[\frac{1}{d_{4}{ }^{2}}+\frac{1}{\left(d_{2}+d_{4}\right)}\left(\frac{1}{d_{2}}-\frac{1}{d_{4}}\right)\right]
\end{align*}
$$

or

$$
\begin{equation*}
g_{0}\left(\Sigma \frac{1}{d_{i}^{2}}\right)+\eta^{2} f_{0}=g_{1} D_{1}+g_{2} D_{2}+g_{3} D_{3}+g_{4} D_{4} \tag{13'}
\end{equation*}
$$

Equations (12') and (13') must be satisfied at each interior point of each region. In particular, these two equations can be solved simultaneously at point ' 0 ' for f_{0} and g_{0} where up-to-date values of f_{i} and g_{i} are obtained from the previous iteration.

In the following, the first subscript indicates the conductive region considered ($1,2,3$ or 4) and the second subscript refers to the particular point of interest. Equations (12^{\prime}) and (13^{\prime}) must hold for each of the surrounding regions. That is:

$$
\begin{align*}
& f_{10}\left(\Sigma \frac{1}{d_{i}^{2}}\right)-\eta_{1}^{2} g_{10}=f_{11} D_{1}+f_{12} D_{2}+\underline{f_{13}} D_{3}+\underline{f_{14}} D_{4} \tag{14}\\
& f_{20}\left(\Sigma \frac{1}{d_{i}^{2}}\right)-\eta_{2}{ }^{2} g_{20}=\underline{f_{21}} D_{1}+f_{22} D_{2}+f_{33} D_{3}+\underline{f_{24}} D_{4} \tag{15}\\
& f_{30}\left(\Sigma \frac{1}{d_{i}^{2}}\right)-\eta_{3}^{2} g_{30}=\underline{f_{31}} D_{1}+\underline{f_{32}} D_{2}+f_{33} D_{3}+f_{34} D_{4} \tag{16}\\
& f_{40}\left(\Sigma \frac{1}{d_{i}^{2}}\right)-\eta_{4}{ }^{2} g_{40}=f_{41} D_{1}+\underline{f_{42}} D_{2}+\underline{f_{43}} D_{3}+f_{44} D_{4} \tag{17}\\
& g_{10}\left(\Sigma \frac{1}{d_{i}^{2}}\right)+\eta_{1}^{2} f_{10}=g_{11} D_{1}+g_{12} D_{2}+\underline{g_{13}} D_{3}+\underline{g_{14}} D_{4} \tag{18}\\
& g_{20}\left(\Sigma \frac{1}{d_{i}^{2}}\right)+\eta_{2}{ }^{2} f_{20}=\underline{g_{21}} D_{1}+g_{22} D_{2}+g_{23} D_{3}+\underline{g_{24}} D_{4} \tag{19}\\
& g_{30}\left(\Sigma \frac{1}{d_{i}^{2}}\right)+\eta_{3}^{2} f_{30}=\underline{g_{31}} D_{1}+\underline{g_{32}} D_{2}+g_{33} D_{3}+g_{34} D_{4} \tag{20}\\
& g_{40}\left(\Sigma \frac{1}{d_{i}^{2}}\right)+\eta_{4}{ }^{2} f_{40}=g_{41} D_{1}+\underline{g_{42}} D_{2}+\underline{g_{43}} D_{3}+g_{44} D_{4} \tag{21}
\end{align*}
$$

where the underlined values are ' fictitious' values. The boundary conditions for the interfaces allow these values to be expressed in terms of known values. We consider first the E-polarization case and then the H-polarization case.
(a) Internal boundaries

E-polarization. The boundary conditions are that both the tangential and normal components of \mathbf{H} are continuous across any interface. These two components may be expressed in terms of E_{x} as (Jones \& Price 1970)

$$
\begin{aligned}
H_{y} & =\frac{i}{\omega} \frac{\partial E_{x}}{\partial z} \\
& =\frac{i}{\omega}\left(\frac{\partial f}{\partial z}\right)-\frac{1}{\omega}\left(\frac{\partial g}{\partial z}\right) \\
H_{z} & =\frac{-i}{\omega} \frac{\partial E_{x}}{\partial y} \\
& =\frac{-i}{\omega}\left(\frac{\partial f}{\partial y}\right)+\frac{1}{\omega}\left(\frac{\partial g}{\partial y}\right) .
\end{aligned}
$$

The condition for continuity of the tangential components applied to each boundary lead to the finite difference equations:

$$
\begin{array}{ll}
\underline{f_{13}}-f_{10}=f_{23}-f_{20} & \underline{g_{13}}-g_{10}=g_{23}-g_{20} \\
\underline{f_{21}}-f_{20}=f_{11}-f_{10} & \underline{g_{21}}-g_{20}=g_{11}-g_{10} \\
\underline{f_{31}}-f_{30}=f_{41}-f_{40} & \underline{g_{31}}-g_{30}=g_{41}-g_{40} \\
\underline{f_{43}}-f_{40}=f_{33}-f_{30} & \underline{g_{43}}-g_{40}=g_{33}-g_{30} \\
\underline{f_{14}}-f_{10}=f_{44}-f_{40} & \underline{g_{14}}-g_{10}=g_{44}-g_{40} \\
\underline{f_{24}}-f_{20}=f_{34}-f_{30} & \underline{g_{24}}-g_{20}=g_{34}-g_{30} \\
\underline{f_{32}}-f_{30}=f_{22}-f_{20} & \underline{g_{32}}-g_{30}=g_{22}-g_{20} \\
\underline{f_{42}}-f_{40}=f_{12}-f_{10} & \underline{g_{42}}-g_{40}=g_{12}-g_{10}
\end{array}
$$

These equations allow us to express the fictitious values of equations (14) to (21) in terms of known values. Adding equations (14), (15), (16), (17) and making use of the fact that
we obtain

$$
\begin{aligned}
f_{a b} & =f_{b} \\
g_{a b} & =g_{b}
\end{aligned}
$$

$$
\begin{equation*}
A f_{0}+B g_{0}=f_{1} C_{1}+f_{2} C_{2}+f_{3} C_{3}+f_{4} C_{4} \tag{22}
\end{equation*}
$$

Similarly, adding (18), (19), (20), (21) we obtain

$$
\begin{equation*}
-B f_{0}+A g_{0}=g_{1} C_{1}+g_{2} C_{2}+g_{3} C_{3}+g_{4} C_{4} \tag{23}
\end{equation*}
$$

where in these two equations

$$
\begin{aligned}
A & =4 \Sigma \frac{1}{d_{i}^{2}} \\
B & =-\Sigma \eta_{i}^{2} \\
C_{1} & =4 D_{1} \\
C_{2} & =4 D_{2} \\
C_{3} & =4 D_{3} \\
C_{4} & =4 D_{4} .
\end{aligned}
$$

Equations (22) and (23) are simultaneous equations which must be solved for f_{0} and g_{0}.
H-polarization. As in the E-polarization case, continuity of the tangential components of E allows the fictitious values of equations (14) to (21) to be expressed in terms of known values. From Jones \& Price (1970), the electric field components may be written:

$$
\begin{aligned}
E_{y} & =\frac{\omega}{\eta^{2}} \frac{\partial H_{x}}{\partial z} \\
& =\frac{\omega}{\eta^{2}}\left(\frac{\partial f}{\partial z}\right)+i \frac{\omega}{\eta^{2}}\left(\frac{\partial g}{\partial z}\right) \\
E_{z} & =\frac{-\omega}{\eta^{2}} \frac{\partial H_{x}}{\partial y} \\
& =\frac{-\omega}{\eta^{2}}\left(\frac{\partial f}{\partial y}\right)-i \frac{\omega}{\eta^{2}}\left(\frac{\partial g}{\partial y}\right) .
\end{aligned}
$$

When the condition that the tangential components of \mathbf{E} must be continuous is applied the following finite difference equations are obtained for f :

$$
\begin{aligned}
& \underline{f_{13}}-f_{10}=\frac{\eta_{1}^{2}}{\eta_{2}^{2}}\left(f_{23}-f_{20}\right) \\
& \underline{f_{14}}-f_{10}=\frac{\eta_{1}^{2}}{\eta_{4}{ }^{2}}\left(f_{44}-f_{40}\right) \\
& \underline{f_{21}}-f_{20}=\frac{\eta_{2}{ }^{2}}{\eta_{1}^{2}}\left(f_{11}-f_{10}\right) \\
& \underline{f_{24}}-f_{20}=\frac{\eta_{2}^{2}}{\eta_{3}{ }^{2}}\left(f_{34}-f_{30}\right) \\
& \underline{f_{31}}-f_{30}=\frac{\eta_{3}^{2}}{\eta_{4}^{2}}\left(f_{41}-f_{40}\right) \\
& \underline{f_{32}}-f_{30}=\frac{\eta_{3}^{2}}{\eta_{2}^{2}}\left(f_{22}-f_{20}\right) \\
& \underline{f_{43}}-f_{40}=\frac{\eta_{4}^{2}}{\eta_{3}^{2}}\left(f_{33}-f_{30}\right) \\
& \underline{f_{42}}-f_{40}=\frac{\eta_{4}{ }^{2}}{\eta_{1}^{2}}\left(f_{12}-f_{10}\right) .
\end{aligned}
$$

A similar set of equations is obtained for g.
These equations allow us to express the fictitious values of equations (14)-(21) in terms of known values. Adding equations (14), (15), (16), (17) we obtain

$$
\begin{equation*}
A f_{0}+B g_{0}=f_{1} C_{1}+f_{2} C_{2}+f_{3} C_{3}+f_{4} C_{4} \tag{24}
\end{equation*}
$$

and adding (18), (19), (20), (21) we obtain

$$
\begin{equation*}
-B f_{0}+A g_{0}=g_{1} C_{1}+g_{2} C_{2}+g_{3} C_{3}+g_{4} C_{4} \tag{25}
\end{equation*}
$$

where, in these two equations

$$
\begin{aligned}
A= & \frac{4}{d_{1}{ }^{2}}+D_{1}\left(\frac{\eta_{2}{ }^{2}}{\eta_{1}{ }^{2}}+\frac{\eta_{3}{ }^{2}}{\eta_{4}{ }^{2}}-2\right)+\frac{4}{d_{2}{ }^{2}}+D_{2}\left(\frac{\eta_{3}{ }^{2}}{\eta_{2}{ }^{2}}+\frac{\eta_{4}{ }^{2}}{\eta_{1}{ }^{2}}-2\right) \\
& +\frac{4}{d_{3}{ }^{2}}+D_{3}\left(\frac{\eta_{4}{ }^{2}}{\eta_{3}{ }^{2}}+\frac{\eta_{1}{ }^{2}}{\eta_{2}{ }^{2}}-2\right)+\frac{4}{d_{4}{ }^{2}}+D_{4}\left(\frac{\eta_{1}{ }^{2}}{\eta_{4}{ }^{2}}+\frac{\eta_{2}{ }^{2}}{\eta_{3}{ }^{2}}-2\right) \\
B= & -\left(\eta_{1}{ }^{2}+\eta_{2}{ }^{2}+\eta_{3}{ }^{2}+\eta_{4}{ }^{2}\right) \\
C_{1}= & D_{1}\left(2+\frac{\eta_{2}{ }^{2}}{\eta_{1}{ }^{2}}+\frac{\eta_{3}{ }^{2}}{\eta_{4}{ }^{2}}\right) \\
C_{2}= & D_{2}\left(2+\frac{\eta_{3}{ }^{2}}{\eta_{2}{ }^{2}}+\frac{\eta_{4}{ }^{2}}{\eta_{1}{ }^{2}}\right) \\
C_{3}= & D_{3}\left(2+\frac{\eta_{4}{ }^{2}}{\eta_{3}{ }^{2}}+\frac{\eta_{1}{ }^{2}}{\eta_{2}{ }^{2}}\right) \\
C_{4}= & D_{4}\left(2+\frac{\eta_{1}{ }^{2}}{\eta_{4}{ }^{2}}+\frac{\eta_{2}{ }^{2}}{\eta_{3}{ }^{2}}\right)
\end{aligned}
$$

and $D_{1}, D_{2}, D_{3}, D_{4}$ are the same as for the E-polarization case.
(b) External boundaries

E-polarization. For E-polarization, on the boundary between the non-conducting region and the conductor $(z=0)$ and for $y \rightarrow+\infty, y \rightarrow-\infty$, we set $E_{x}=E_{0}=1$, that is, $f=1, g=0$. In the non-conducting region $(z<0)$ and for $|y|$ large, we have from equation (4),

$$
\begin{aligned}
E_{x} & =E_{0}\{1-\eta \sqrt{ }[(i)] z\} \\
& =1-\frac{\eta z}{\sqrt{ } 2}-\frac{i \eta z}{\sqrt{ } 2}
\end{aligned}
$$

and so:

$$
f=1-\frac{\eta z}{\sqrt{ } 2}
$$

and

$$
g=-\frac{\eta z}{\sqrt{2}}
$$

In the conductor $(z>0)$ and for $|y|$ large, from equation (3) we have

$$
\begin{aligned}
E_{x} & =E_{0} \exp \{-\eta \sqrt{ }[(i)] z\} \\
& =\exp \{-\eta \sqrt{ }(i) z\} .
\end{aligned}
$$

Therefore:

$$
f=\exp \left(\frac{-\eta}{\sqrt{ } 2} z\right) \cos \frac{\eta}{\sqrt{ } 2} z
$$

and

$$
g=-\exp \left(\frac{-\eta}{\sqrt{ } 2} z\right) \sin \frac{\eta}{\sqrt{ } 2} z
$$

The lower boundary $(z=d)$ is assumed to be far enough away from the perturbation that it can be made constant. Then

$$
f=\exp \left(-\frac{\eta}{\sqrt{ } 2} d\right) \cos \frac{\eta}{\sqrt{ } 2} d
$$

and

$$
g=-\exp \left(\frac{-\eta}{\sqrt{ } 2} d\right) \sin \frac{\eta}{\sqrt{ } 2} d
$$

on that boundary. Along the upper boundary $\left(z=-h_{0}\right) E_{x}$ is constant, and so:

$$
f=1-\frac{\eta}{\sqrt{ } 2}\left(-h_{0}\right)
$$

and

$$
g=-\frac{\eta}{\sqrt{ } 2}\left(-h_{0}\right)
$$

on this boundary.
H-polarization. Along the surface of the conductor $(z=0)$

$$
H_{x}=H_{0}=1
$$

and therefore

$$
f=1, \quad g=0
$$

Above the surface of the conductor ($z<0$), H_{x} is constant and equal to the value at the surface. This means that $f=1, g=0$ in the non-conducting region and it is not necessary to solve for f and g there. However, in our programs we have had occasion to compare E-polarization and H-polarization problems and we have provided for a variable placement of the surface of the conductor in both programs. Hence, we initially set the E-polarization and H-polarization grids the same, place the surface of the conductor along the same row of grid points for E-polarization and H-polarization cases, and then solve for the whole grid in the E-case, but only for the grid corresponding to the conducting regions for the H-case. In the conducting region ($z>0$) and for $|y|$ large

$$
\begin{aligned}
H_{x} & =H_{0} \exp \{-\eta \sqrt{ }[(i)] z\} \\
& =H_{0} \exp \left(-\frac{\eta}{\sqrt{ } 2} z\right)\left(\cos \frac{\eta z}{\sqrt{ } 2}-i \sin \frac{\eta z}{\sqrt{ } 2}\right) .
\end{aligned}
$$

Therefore

$$
f=\exp \left(\frac{-\eta}{\sqrt{ } 2} z\right) \cos \frac{\eta}{\sqrt{ } 2} z
$$

and

$$
g=-\exp \left(-\frac{\eta}{\sqrt{ } 2} z\right) \sin \frac{\eta}{\sqrt{ } 2} z
$$

The values of f and g on the lower boundary of the model $(z=d)$ are the same as for the E-case:

$$
\begin{aligned}
& f=\exp \left(-\frac{\eta}{\sqrt{ } 2} d\right) \cos \frac{\eta}{\sqrt{ } 2} d \\
& g=-\exp \left(-\frac{\eta}{\sqrt{ } 2} d\right) \sin \frac{\eta}{\sqrt{ } 2} d
\end{aligned}
$$

5. Calculation of components

In general

$$
F=(f+i g) \exp (i \theta)
$$

where $F=H_{x}$ or E_{x} and $\theta=\omega t$ is a function of time.

E-polarization

In this case, the value of E which is actually observed may be written

$$
E_{x_{o b s}}=\operatorname{Re}[(f+i g) \exp (i \theta)]=f \cos \theta-g \sin \theta
$$

Similarly for the magnetic field components:

$$
\begin{aligned}
& H_{y_{o b} b}=\operatorname{Re}\left[\frac{i}{\omega} \frac{\partial E_{x}}{\partial z}\right]=\frac{-1}{\omega}\left(\frac{\partial f}{\partial z} \sin \theta+\frac{\partial g}{\partial z} \cos \theta\right), \\
& H_{z_{b b s}}=R e\left[\frac{-i}{\omega} \frac{\partial E_{x}}{\partial y}\right]=\frac{1}{\omega}\left(\frac{\partial f}{\partial y} \sin \theta+\frac{\partial g}{\partial y} \cos \theta\right) .
\end{aligned}
$$

The phases of these three components may be calculated as follows:

$$
\begin{aligned}
& \left(\text { Phase } E_{x}\right)_{o b s}=\operatorname{Arctan}\left(\frac{f \sin \theta+g \cos \theta}{f \cos \theta-g \sin \theta}\right) \\
& \left(\text { Phase } H_{y}\right)_{o b z}=\operatorname{Arctan}\left\{\frac{\frac{\partial f}{\partial z} \cos \theta-\frac{\partial g}{\partial z} \sin \theta}{-\frac{\partial f}{\partial z} \sin \theta-\frac{\partial g}{\partial z} \cos \theta}\right\}, \\
& \left(\text { Phase } H_{z}\right)_{o b s}=\operatorname{Arctan}\left\{\frac{-\frac{\partial f}{\partial y} \cos \theta+\frac{\partial g}{\partial y} \sin \theta}{\frac{\partial f}{\partial y} \sin \theta+\frac{\partial g}{\partial y} \cos \theta}\right\}
\end{aligned}
$$

In the computer program the relative phase between each point on the surface and the end point is calculated. This is independent of the time (i.e. θ), since if at a particular point we have

$$
E_{x}=f+i g
$$

and if we write

$$
\phi=\tan ^{-1} \frac{g}{f}
$$

then $f=\cos \phi$ and $g=\sin \phi$, so that at this point the phase calculation for a given θ gives

$$
\begin{aligned}
\Phi & =\tan ^{-1}\left[\frac{f \sin \theta+g \cos \theta}{f \cos \theta-g \sin \theta}\right] \\
& =\tan ^{-1}\left[\frac{\sin (\phi+\theta)}{\cos (\phi+\theta)}\right] \\
& =\phi+\theta
\end{aligned}
$$

Similarly, at some other point the phase calculation will give

$$
\Phi^{\prime}=\phi^{\prime}+\theta
$$

Hence the difference in phase between these two points will be

$$
\Omega=\Phi^{\prime}-\Phi=\phi^{\prime}-\phi
$$

and so in general the phase difference between any two points will be independent of θ and so constant with respect to time. It is therefore sufficient to calculate the phase shift across the surface with respect to an end point for only one value of θ.

H-polarization

In this case similar expressions are obtained for the components:

$$
\begin{gathered}
H_{x_{o b s}}=\operatorname{Re}[(f+i g) \exp (i \theta)]=f \cos \theta-g \sin \theta, \\
E_{y_{o b s}}=\operatorname{Re}\left[\frac{\omega}{\eta^{2}} \frac{\partial H_{x}}{\partial z}\right]=\frac{\omega}{\eta^{2}}\left\{\frac{\partial f}{\partial z} \cos \theta-\frac{\partial g}{\partial z} \sin \theta\right\}, \\
E_{z_{o b s}}=\operatorname{Re}\left[\frac{-\omega}{\eta^{2}} \frac{\partial H_{x}}{\partial y}\right]=\frac{-\omega}{\eta^{2}}\left\{\frac{\partial f}{\partial y} \cos \theta-\frac{\partial g}{\partial y} \sin \theta\right\}, \\
\left(\text { Phase } H_{x}\right)_{\mathrm{obs}}=\operatorname{Arctan}\left(\frac{f \sin \theta+g \cos \theta}{f \cos \theta-g \sin \theta}\right) \\
\left(\text { Phase } E_{y}\right)_{\mathrm{obs}}=\operatorname{Arctan}\left\{\frac{\frac{\partial f}{\partial z} \sin \theta+\frac{\partial g}{\partial z} \cos \theta}{\frac{\partial f}{\partial z} \cos \theta-\frac{\partial g}{\partial z} \sin \theta}\right\} \\
\text { (Phase } \left.E_{z}\right)_{\mathrm{obs}}=\operatorname{Arctan}\left\{\frac{\frac{\partial f}{\partial y} \sin \theta+\frac{\partial g}{\partial y} \cos \theta}{\frac{\partial f}{\partial y} \cos \theta-\frac{\partial g}{\partial y} \sin \theta}\right\}
\end{gathered}
$$

The same comments about the phase calculations apply for this case as for the E-polarization case.

6. The computer programs

The computer programs are written in fortran iv, and the development of the program and the solution for the example illustrated have been done on the University of Alberta IBM $360 / 67$. The program for the H-polarization case is given in detail in Figs 3-10. Comment statements are included in the program for guidance. The E-polarization program is similar to that for the H-polarization. However, three sub-routines are slightly different, the subroutine for calculating the boundary values (BYCOND), the iteration subroutine (ITERE), and the subroutine for calculating the surface values of the components (SURFVL). These subroutines are given in Figs 11, 12 and 13. Also, the notation throughout differs for the two cases.

Both the input and output data are in electromagnetic units. The same data can be used as input for either the E or H case. The programs compute the amplitudes
FLRTRAN IVCCGMPILEF MAIN $03-16-72$ PAGE OOQ1

C		c
C		c
c		c
C	M-gol inisaticn program	c
c		c
c		c
c		c
c	Plfpose	c
c		c
c	TC SOLVE FOh the magnetic field foh a twa dimenisional model of a	c
c	CRNUUCTIVE CCNFIGURATICN CN A 41×1 SET OF GRID POINTS	c
c		c
c		c
c		c
c	FENARKS	c
c		c
c	an iterative methoo is used to computt the real and imaginary	c
c	FARTS UF THE magnetic field	c
c		c
c		c
c		c
c	SLERCLTINES MECUIREC	c
C		c
c	EYCEND (N) SETS THE BOUNOARY VALUES ON THE 41×41 GRID WITH	c
c	the surface cf the fagth gn the nith rom of the grio	c
c		c
c	ITERH (EPS.NAXIT,N) Iterates lp to maxit times duer the grid in	c
c	the rggicn felum the eamitios surface until the change in	c
c	PGThf and g ts less than eps	c
c		c
c	SIHFVL (N) CALCULATFS THE ELECTRIC AND MAGNETIC CGMPONENTS AT	c
c	tre sulaface of the eahth	c
C		c
c	ffiele frinis cut the magneitc field as calculated at mach grid	c
c	foimt fuk ant desifed prase cf the cycle	c
c		c
c		c
c		c
c	methes	c
c		c
c	A 41×41 VahJable sized ghid is superimpased on the tmo-	c
c	UIMENSICNAL NCDEL LF INTEREST. THE GRIO STEP SIzES ARE READ	c
c	fich the hirizuntal and vertical axts as well as the scale (cmal	c
c	ANC THE FhEG (SEC**(-1)	c
c		c
c	the data fure itis cineists of the inofx of the conductivity	c
c	ctsintis her any pahticular fitgich, there may re up to 15	c
c	cenductivitifs in the. model (head into the vectip cunducilis).	c
c		c
c	cace thf cata fur any ncuel has heen read ey the phogram,	c
C		c
c		c
c	VALLES UF INTEFESI ARE CALCULATED aY ThE SUEROUT INE SURFVL (N)	c
C	Anl the magneilc field is pginted dut ey hfitlo.	C
C		c

Fig. 3. H-polarization program (main).

Fig. 4. H-polarization program (main).

TCTAL MEMCRY FEGLIFEMENTS OOCE22 EYTES
Fig. 5. H-polarization program (main).

FIG. 6. H-polarization boundary condition subroutine.

Fig. 7. H-polarization iteration subroutine.

Fig. 8. H-polarization iteration subroutine (contd.)

Fig. 9. H-polarization surface values subroutine.

Fig. 10. H-polarization field print-out subroutine.

TCTAL MEMCRY FE゙GLIFEMENTS OCO4T2 BYTES
Fig. 11. E-polarization boundary condition subroutine.

TCTAL MEMCRY FEOUIFEMENTS CCGCB4 BYIES

Fig. 12. E-polarization iteration subroutine.

Fig. 13. E-polarization surface value subroutine.
of the surface values for the components and normalize them with respect to the field over a uniform conducting region. Also, the phases of the components and the apparent resistivities are calculated. The programs can easily be altered to compute further ratios of interest or other relative phases. The surface values are printed out and a representation of the conductivity distribution is also exhibited.

The programs calculate the field distributions throughout the mesh, and print out two instantaneous field values, $(\theta=\pi / 2$, which corresponds to a field value of $-g$ and $\theta=\pi$, which corresponds to a field value of $-f$). The program can be modified to calculate and print out the field distributions for any instant during the cycle.

The program illustrated is for a mesh of 1681 grid points (41×41), although it can be adapted for any grid size.

7. Computed example

The model used to illustrate the program is one with an anomaly of several conductivities. Fig. 14 gives the conductive configuration which is printed out in both programs. The anomaly consists of four conductivities. The conductivities used are shown in Fig. 14. The frequency employed in this example was 0.000333 Hz (approximately $50-\mathrm{min}$ period) and is also given in Fig. 14. The skin depths for the various conductivities are calculated and shown in Fig. 14 as well. The product $\sigma \omega$ only is required in the calculations, and so it follows that the same solution will apply if both conductivities and the period are decreased in the same ratio, with suitable adjustment of the grid size. The horizontal and vertical grid sizes are also given in Fig. 14, and in this example the vertical grid sizes (K) vary, while the horizontal grid sizes (H) are equal. Fig. 15 is the H-polarization printer output for the computed surface values. Fig. 16 illustrates these surface values graphically. For this polarization $\left|E_{z}\right|$ (AMEZ), phase of E_{z} (DPHAEZ) and phase of H_{x} (DPHASH) are zero, while the amplitude of H_{x} along the surface (AMH) has been set constant and equal to one. The normalized amplitude of E_{y} (AMEY) is shown along with its phase (DPHAEY). Also the apparent resistivity (APPRES) profile is given.

Fig. 17 gives the computed surface values for the E-polarization, and Fig. 18 illustrates them graphically.

8. Conclusions

For the model illustrated the computation time for the H-polarization case was 89.7 s , and for the E-polarization was 115.3 s . The computation time depends on the grid size, conductivity contrasts and the frequency. Also, the time depends upon the convergence criterion imposed (value of EPS). The initial values for f and g at interior points are set to values corresponding to a uniform conductor.

In the present programs the surface values are approximated by finite differences. This leads to error in the surface values which is evident in the apparent resistivity curve. The position of the curve is displaced from the true apparent resistivity values over the uniform regions.

In the E-polarization case the graph of DPHAHZ (the phase H_{z}) as shown in Fig. 18 exhibits two jump discontinuities of order 2π. This is because of the limited range of the ATAN2 function of fortran iv. The graph can be made to appear continuous by shifting the displaced portion of the curve by 2π.

It should be noted that the programs solve the problem of an isolated inhomogeneity and so the anomaly should be far away from the boundaries of the grid so that the assumption of uniform conductivity as $y \rightarrow \pm \infty$ will be valid.

Abstract

A A L F P H C B P甘 H O H U H I: E

SIGMA SKIN DEPTH

0.0	
0.1000E-09	8.72
0.1c00F- 3 3	2.76
U.5000E-09	3.90
0.5000E-10	12.33
0.1COOE-10	27.58
0.0	
0.0 =	
0.0 -	
$\checkmark .0$	

Fig. 14i. Conductive configuration.
$\begin{array}{lll}\mathbf{S} & 0.0 & * * * * * * * * \\ \mathbf{U} & 0.0 & * * * * * * * * \\ \mathbf{W} & 0.0 & * * * * * * * * \\ \mathbf{X} & 0.0 & * * * * * * * * \\ \mathbf{Z} & 0.0 & \text { ******** }\end{array}$
W VALUES 10.10 .100
 SCALE $=100000$. FGEC $=0.000333$
Fig. 14 ii.

```
*EPS = O.CCOIOO VAXIMUM MJ.CF ITFRATICNS = 500%/
CSTCPFED CNITEHAJICA 2&3*/
```

/* Surface values */

2	1.000	1.000	0.0	0.0	0.0	0.0	O.39.3E 10
3	1.600	1.000	0.0	0.0	-0.0.50	0.0	$0.894 E 10$
4	1.080	1.000	0.0	0.0	-0.000	0.0	0.894 C 10
5	1.000	1.000	0.0	0.0	-0.000	0.0	0.394 F 10
t	$1 . c 00$	1.000	0.0	0.0	-0.000	0.0	O.ASAF 10
7	$1 . c o u$	1.000	0.0	0.0	-0.000	0.0	0.394 C 10
8	1.000	1.000	0.0	3.0	-0.000	0.0	$0.894 E 13$
5	$1 . C C C$	1.000	0.0	0.0	-0.030	0.0	$0.844 F 10$
10	1.600	1.000	0.0	0.0	-0.000	0.0	0.894 F 10
11	1.000	1.000	0.0	U.0	-0.000	0.0	0.89410
12	1.600	1.000	0.0	0.0	-0.000	0.0	0.344510
13	1.600	1.000	0.0	0.0	-0.000	0.0	3.594E 19
14	1.000	1.000	0.0	0.0	-0.0.00	0.0	$0.890[$ is
15	1.000	1.001	0.0	0.0	0.000	0.2	0.896F 10
16	1.000	1.001	0.0	0.0	0.008	0.0	0.8972 10
17	1.cco	$1 . C 56$	0.0	N.0	0.028	0.0	0.99517
18	1.cco	1.2to	0.0	0.0	0.066	0.0	0.1415
15	1.crc	1.354	0.0	0.0	0.053	0.0	0.165511
<0	1.600	1.270	0.0	0.0	0.049	0.0	0.194 F 11
21	1.000	0.406	0.0	0.0	0.018	0.0	0.733 F in
<2	$1 . \mathrm{Cco}$	0.303	0.0	0.0	0.100	0.0	0.226 F 10
23	1. COO	0.445	0.0	0.0	0.062	0.0	0.177510
24	1.060	0.805	0.0	0.0	-0.042	0.0	0.223 EF 13
25	1.000	0.764	0.0	0.0	-0.064	0.0	$0.52 \% 10$
26	1.000	1.006	0.0	0.0	-3.031	0.0	0.704 E 10
27	1.c00	C.493	0.0	v.0	-0.004	0.0	0.990 C 10
28	1.coo	1.000	0.0	0.0	-0.000	0.0	0.893510
29	1.000	1.000	0.0	0.0	-0.000	0.0	0.844510
30	1.000	1.000	0.0	0.0	-0.000	0.0	0.894 F 10
31	$1 . \operatorname{coc}$	1.000	0.0	0.0	-0.000	0.0	0.894510
32	1.000	1.000	0.0	0.0	-0.000	0.0	0.344 F 10
33	1.000	1.000	0.0	0.0	-0.000	0.0	0.49 E 10
34	1.000	1.000	0.0	0.0	-0.000	0.0	$0.394 E 10$
35	1.000	1.000	0.0	0.0	-0.000	0.0	0.894510
30	1.060	1.000	0.0	0.0	-0.000	0.0	$0.994 E 10$
37	1.000	1.000	0.0	J. 0	-0.000	0.0	0.894 E 10
38	1.000	1.000	0.0	0.0	-0.000	0.0	0.844 L 10
39	1.060	1.000	0.0	0.0	-0.000	0.0	0.894510
40	1.000	1.000	0.0	0.0	0.0	0.0	0.893 E 10

Fig. 15. Line printer output of H-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu.

Fig. 16. Graphs of surface values in Fig. 15.

```
1*PS = C.COCIOC AAXIMLMNO.CF ITHKATICNS= EOC&%
|EICFFEDCN IIERATICN 327*/
```

* surface valles */

	AME	ANHT	AMPZ	DFHASE	DPHAHY	DPrarz	APPR	
2	1.000	1.000	$0 . C C 1$	-0.000	-0.000	-3.074	$0.106 F$	11
3	C. 599	1.000	C. 000	-0.001	-0.000	-3.762	c. 1006	11
4	C. 595	1.000	0.000	-0.001	-0.001	-4.048	0.1065	11
5	0.459	1.000	c.ccc	-0.001	-0.001	-4.126	0.1065	11
6	0.549	1.000	0.000	-0.001	-0.001	-4.328	$0.106 E$	11
7	C. 599	1.000	c.000	-0.001	-0.001	1. 553	0.106 F	$1:$
0	C.499	1.000	c. 000	-0.001	-0.001	1.284	$0.106 E$	11
9	C. 599	1.000	c. 0 cc	-0.001	-0.000	1.087	$0.106 E$	11
10	C.55s	1.CCO	C.CCO	-0.001	-0.000	0.832	$0.106 E$	12
11	C.599	1.000	0.0 CO	-0.0c0	-0.000	0.288	0.106E	11
12	C. 599	1.000	0.000	-0.000	-0.000	-1.103	$0.106 E$	11
13	C. 599	1.001	C.ccc	-0.000	-0.001	-1.701	0.105%	11
14	1.cOC	1.002	c.0c2	-0.0c1	-0.001	-1.687	0.105 E	11
15	1.004	1.005	0.005	-0.002	-0.000	-1.408	$0.105 E$	11
16	1.017	1.011	0.01 .2	-0.002	0.004	-0.953	0.107 F	11
17	1.057	1.001	0.042	c.01E	0.012	-0.619	$0 \cdot 1$ lae	11
18	1.115	C.553	0.044	0.075	0.013	-0.312	0.146 E	11
19	1.138	C.913	0.024	0.122	0.006	1.442	$0.164 E$	11
20	1.052	C.925	c.1C4	c. 106	0.016	-4.087	$0.137 E$	11
21	c.e2t	1.C25	C.1Ec	0.017	0.011	-4.210	0.687 E	10
22	C.589	1.102	c. 102	-0.023	-0.044	-4.417	$0.302 E$	10
23	C. 505	1.103	0.012	-C.010	-0.067	-3.882	$0.222 E$	10
24	C. 557	1.103	C.C7s	-0.064	-0.042	-1.447	0.2701	17
25	0.754	1.034	0.112	-0.044	0.015	-1.137	$0.562 E$	13
26	C. 920	C.553	0.071	0.040	0.011	-1.071	$0.987 E$	10
27	c.971	C. 975	0.622	0.026	0.014	-1.688	$0.105 E$	11
28	C.se6	c. 588	0.069	0.013	0.010	-2.076	$0.105 c$	11
25	C.S91	C.994	0.004	0.000	0.006	-2.209	$0.105 E$	11
30	0.994	0.996	C. 0.02	C.OC3	0.003	-2.169	$0.105 E$	11
31	C.556	0.597	, C.CCl	0.0 Cl	0.002	-2.068	$0.105 E$	11
32	6.997	C. 598	C.CCI	0.001	0.001	-1.969	0.105E	11
33	C.557	C. 599	0.040	C.OCO	0.001	-1.8e4	0.1065	11
34	c.s58	$0.9 \$ 9$	0.000	-0.000	0.000	-1.808	0.108 E	11
15	0.998	0.999	c.0cc	-0.000	-0.000	-1.735	$0.108 E$	11
36	C.5s5	C.999	C.0co	-c.0cc	-0.000	-1.651	O. 108 E	11
37	C.Sss	C. 899	0.000	-0.001	-0.000	-1.516	$0.105 E$	11
38	C.scs	1.000	C.cco	-0.00:	-0.000	-1.257	0.106 E	11
39	C.ssy	1.000	0.000	-0.0CO	-0.000	-0.805	$0.106 F$	11
40	1.CCC	1.600	0.001	3.0	0.0	0.0	$0.106 E$	11

Fig. 17. Line printer output of E-polarization surface values. Amplitudes of components normalized, phase differences in radians, apparent resistivity in emu.

Fic. 18. Graphs of surface values in Fig. 17.

Acknowledgments

This work was supported by the National Research Council of Canada.

Department of Physics and the
Institute of Earth and Planetary Physics,
University of Alberta,
Edmonton, Canada.

References

D'Erceville, I. \& Kunetz, G., 1962. Geophysics, 27, 651-665.
Jones, F. Walter \& Price, Albert T., 1970. Geophys. J. R. astr. Soc., 20, 317-334.
Jones, F. Walter \& Price, Albert T., 1971a. Geophysics, 36, 58-66.
Jones, F. Walter \& Price, Albert T., 1971b. Geophys. J. R. astr. Soc., 22, 333-345.
Jones, F. W., 1971. Geophys. J. R. astr. Soc., 22, 17-28.
Price, A. T., 1964. J. Geomagn. Geoelect., 15, 241-248.
Rankin, D., 1962. Geophysics, 27, 666-676.
Weaver, J. T., 1963. Can. J. Phys., 41, 484-495.
Wright, J. A., 1970. Can. J. Earth Sci., 7, 527-531.

[^0]: * Received in original form 1971 March 30.

