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Summary 

The two-dimensional problems of interest in studying the perturbation 
of alternating electric current by a sharp discontinuity of conductivity 
in a conductor are considered, and their applicability to geophysical 
problems discussed. A numerical method has been developed for solving 
the appropriate differential equations and boundary conditions. The 
method has been applied to a vertical discontinuity in conductivity such 
as at a continental-oceanic interface. The two polarization cases are 
solved, and the fields and current distributions are determined in detail. 

1. Introduction 

Many observational studies have been made in recent years of the effects of a 
vertical discontinuity in the electrical conductivity of surface layers of the Earth on 
geomagnetic variations having periods ranging from those of micropulsations to 
the daily variations. The effects have been found mainly in the vertical component 
and have been particularly noticeable at coastal stations, though they occur else- 
where and have then been termed ' conductivity anomalies '. Several mathematical 
problems in electromagnetic induction have been devised and discussed in attempts 
to elucidate these effects and to use them to derive information about subterranean 
conductivity distributions (Truemann 1968). 

It has, however, been pointed out by one of us (Price 1964) that the kind of 
problem we need to consider in this connection is not strictly a problem of evaluating 
the currents induced by a given varying magnetic field in a given heterogeneous 
conductor, but rather that of determining the local perturbations of a given alternating 
system of induced currents by given abrupt changes of conductivity. It is natural 
to examine first whether there are any two-dimensional problems of this kind that 
can be usefully discussed. The simplest model conductor that one can take is a 
semi-infinite conductor occupying z > 0, with a vertical plane y = 0 of disc;ontinuity, 
as in Fig. 1. For a two-dimensional problem the field must be indepehdent of x. 
This model has been previously used by Weaver (1963), but he approached the 
problem in a different way, and we think that some of his assumpticns (for the 
E polarization case) need reconsidering. We have therefore examined ,he problem 
again, and have also developed a new method for determining in detail the magnetic 
field and the distribution of currents throughout the composite conductor. The 
results help considerably to elucidate the geomagnetic effects. The method involves 
considerable use of a computer, and has been developed and applied by one of us 
(F.W.J.) for several more complex two-dimensional cases. It is believed that the 
results for these cases will be of considerable value in magnetic and magnetotelluric 
sounding, and it is intended to publish them in subsequent papers. 
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318 F. Walter Jones and Albert T. Price 

Free space 
(u.0) 

FIG. 1. Conductor model and co-ordinates. 

2. Differential equations 

The problem is basically that of solving Maxwell's equations in the three regions 
with suitable boundary conditions, the field being an oscillating one, with period 
2n/w sufficiently long to permit displacement currents being ignored. Also, the 
magnetic permeability is taken as unity. The equations, in electromagnetic units, 
are therefore 

where the time factor exp (iot) is understood in all field quantities, and o is the 
conductivity appropriate to each region. 

curl H = 4mE, curl E = - iwH, (1) 

Since all quantities are independent of x, the above equations reduce to 

-- 'HZ ?!!Y = ~ A C E ~ ,  

-- 6Hx -~ROE,,  

sy sz 

sz 

-- - ~ROE,, - 6HX 
6Y 

6E, 6E - _  -y = -iwHX, 
6y sz 

SEX - = -ioH,, 
6 Z  

-- 'Ex = -iwH,. 
6Y 

These equations are such that only Ex, H, and H ,  are involved in (2a, 3b, 3c) and 
only H,, E, and E, in (2b, 2c, 3a). Hence we can solve these two separate sets of 
equations independently. The first set corresponds to E-polarization and the second 
to H-polarization. In the first, by eliminating H, and H,, we get 

s2Ex ''Ex - + = iq2 Ex, 
6YZ 

(4) 
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Perturbations of alternating geomagnetic fields 319 

and in the second, by eliminating Ey and E,, we have 

where 
q2 = h a m .  

Further, the equations (2b, 2c) show that the lines of constant H ,  are the lines 
of force of E-field, and the equations (3b, 3c) show that the lines of constant Ex 
are the lines of force of H-field. 

3. Boundary conditions 

At the interface (y = 0) between the conductivities and also at the surface z = 0, 
we have the boundary conditions that (i) all components of H are continuous, and 
(ii) the tangential components of E are continuous. Further, the normal component 
of current density must be continuous across y = 0 and zero across z = 0. This 
last condition implies that E, inside the conductor is zero at z = 0. There are also 
conditions to be satisfied at z = f M) and y = i- co. It is most convenient to con- 
sider these conditions separately for the H and E polarizations. 

4. H polarization 

For the H polarization case, the equations (2b, 2c) show that in the region outside 
the conductor, where a = 0, H, is independent of y and z. Hence H is uniform 
throughout this region, and the magnetic field immediately above the surface of 
the conductor is not affected at all by the abrupt change of conductivity of the 
conductor at y = 0. This somewhat surprising result is due to the assumptions 
inherent in the strictly two-dimensional character of the problem, but it will be 
noted that it is in accordance with the requirement that the total current flow across 
all vertical planes parallel to the plane of discontinuity is the same. For the total 
current flow is given by 

00 W 

1 
/ a E y d z  = .!- / 9 d z  = 411 [HX],,, 
0 4n 

00 W 

1 
/ a E y d z  = .!- / 9 d z  = 411 [HX],,, 
0 4n 

on using equation (2b). 

The explanation of this result is that the normal component of the current flow 
sets up a varying surface charge on the plane of discontinuity y = 0. The electric 
field of this surface charge reduces the current flow in the conductor of higher 
conductivity and increases that in the conductor of lower conductivity, so that the 
normal component of flow is equalized on the two sides. It must be emphasized that 
this equalization of the normal component of flow is brought about by the electric 
field of the surface charge. The varying current flow required to build up this surface 
charge has the same order of magnitude as the displacement currents, and we have 
already seen that displacement currents are negligible for the quasi-steady fields we 
are considering. More precisely, the magnetic field of the current associated with 
building up the surface charge is negligible, but the electric field of this surface charge 
is of the same order of magnitude as that of the other electromotive forces involved. 

We now consider the various boundary conditions noted in Section 3. One of 
these is that H is continuous across any boundary. This, together with the result 
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320 F. Walter Jones and Albert T. Price 

above, implies that H, is constant, say H,, everywhere just inside the surface, z = 0, 
of the conductor. It also implies that SH,/Sy is zero just inside this surface, and 
hence, from equation (2c), that oE, is zero. This, of course, is in agreement with the 
requirement that the normal component of current flow must be zero at the surface. 
Again the continuity of H, across the boundary y = 0 implies that 6HX/6z is con- 
tinuous across this boundary and hence, from equation (2b), that uE, is continuous, 
agreeing with the result quoted in the preceding paragraph. Further, the continuity 
of the tangential component E,  at the boundary y = 0 can be ensured by making 
SH,/Sy continuous in virtue of equation (2c). 

At large distances from the discontinuity in u we may assume that the field 
behaves like that for a uniform conductor. Hence as y + + co or - 00, the equation 
(5 )  becomes 

H3/, 

H cmtinuous / Econtinuour 

, - ~ = . 4 ~ ~ - 9 1 ~ ~ ~  HJ1: t-7221i 

- $+"I" = i3 tH 
8 2  I a,2 822 

- a 2 ~ +  8'. . i,,gH 

2.d QI Q2 

6 2  H, 
6z2 
-- - iq2 H, (7) 

with the appropriate value of Q inserted in q2. 

solution of (7) is 
Also the field tends to zero for large positive values of z. Hence the appropriate 

H, = H ,  exp ( -  - 1 (l+i)qz) . 
4 2  

The actual field quantity H, is, of course, the real part of the product of the 
expression (8) with exp (iwr), i.e. 

(9) H, = H ,  exp (- z q z )  1 cos ($ j?z-wI ) .  

It follows that, if we solve the equation (5)  for H, with the appropriate values 
for q in the two parts of the conductor and with the above boundary conditions on 
H,, then the required conditions on E in the conductor will be automatically satisfied. 
The differential equations and boundary conditions for H, are shown diagram- 
matically in Fig. 2. (For clearness the s u f i  x in H ,  is omitted in the figure.) 
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Perturbations of alternating geomagnetic fields 32 1 

5. E polarization 
In the case of E polarization, the field components Ex, Hy and H, only are involved, 

and Ex satisfies equation (4), with the appropriate value of tl for each region. Argu- 
ments, similar to those used in the last section, now show that, for large positive or 
negative values of y, Ex within the conductor is of the form 

(10) 

where tl depends on u, and Eo may have different values at y = + 00 and y = - 00. 

We also have the boundary condition that H, becomes zero for large values of y, 
and it will be seen from equation (3c) that this condition is satisfied in virtue of the 
above condition on Ex. 

Further, from equations (3b) and (10) we have 

(1 1) 
1 

iwH,=q-(l+i)E,exp 
47 

In the non-conducting region (z  < 0), we see from equation (2a) that 6Hy/6z 
tends to zero for large positive or negative values of y. Hence, for these values of 
y, Hy must be a constant (H, say) with respect to z in z < 0 and, since Hy must be 
continuous at z = 0, we have 

1 tl 
47 0 

H, = -(l-i)-E,. 

Hence, from equation (3b) we get, for large positive or negative y in the region 
z < 0, 

and therefore 

in z < 0 (lyl large), since Ex is continuous across z = 0. 

Within the conductor , each of the field components vanishes as z + 03. Equations 
(3b) and (3c) show that if Ex vanishes at this limit, Hy and H, also vanish. Other 
boundary conditions are that Ex, Hy and H, are all continuous across the boundaries 
y = 0 and z = 0. Equations (3b) and (3c) again show that these conditions may all 
be expressed in terms of conditions on Ex and its normal derivative at each boundary. 

The values of Eo at y = +00 and y = -03, and the conditions at a suitable 
boundary, z = -ho say, in the non-conducting region z < 0, remain to be con- 
sidered. We recall that in the case of the H-polarization, H was found to be uniform 
in the region z < 0, giving a simple boundary condition along z = 0 for the determina- 
tion of the field within the conductor. But though the roles of H and E are in some 
ways interchanged when considering the E-polarization, there is no correspondingly 
simple boundary condition for Ex on z = 0. The E-field in the region z < 0 must 
now be taken into consideration, though in the previous case it could be ignored 
when solving for H and E within the conductor. Nevertheless, there is an important 
feature common to both cases, namely IEI for Iyl large tends to infinity as z -a. 
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322 F. Walter Jones and Albert T. Price 

Thus, in the H-polarization case it is easily found from equation (3a) that for large Iyl 

Ey -+ E ,  + i o H o  z, 

Ex + E,  - i o H o  z. 

(15) 

(16) 

and for the Epolarization case, from equation (13) 

These results are in accordance with the requirement that there must exist an 
energy source, on or beyond the plane z = -ho,  which maintains the oscillating 
currents in the conductor via an inducing field in the region 0 > z > -ho. 

In the E-polarization problem we assume temporarily a condition on the current 
flow somewhat similar to that found to hold for the H-polarization, namely, that 
the total (integrated) flow (now in the x direction) is the same for all values of y ,  
even though the values of a are different for positive and negative values of y .  We 
then have on integrating equation (2a) 

which we assume is independent of y .  

We may note, incidentally, that this assumption of constant total current flow 
for all y is not consistent with Weaver’s assumption of constant Hy along z = 0, 
because the integral of SH,/Sy cannot always be zero near y = 0. However, at 
large positive or negative values of y ,  H, can be taken ultimately as zero, so that 
the above equation leads to 

where H,, is the limiting surface value of H ,  as y + - 00, and Hoz  the value as y -, 00. 

We now examine more closely the assumption that the total current flow is the 
same for large negative y (conductivity a,) as for large positive y (conductivity az). 
It should first be noted that H,, H,, and H o z ,  appearing in the above equations 
represent the total magnetic field at the surface, i.e. the field of the oscillating 
currents plus the field of the extraneous source inducing those currents. It has been 
pointed out by Price (1950) that, for a uniform half-space conductor, it is not possible 
to separate out these two parts, unless the problem is more completely specified. 
In other words, the two-dimensional problem is not completely determinate unless 
it is regarded as the limit of a three-dimensional problem, relating to a conductor 
of given shape and an inducing field of given distribution. Taking the half-space 
conductor as the limit of a spherical conductor as the radius tends to infinity, and 
the inducing field as corresponding to a spherical harmonic of degree n, Price showed 
that the tangential components of the induced and inducing fields are ultimately 
in the ratio n/(n+ l), independent of the conductivity. But any surface harmonic of 
finite degree n will lead to a field that is sensibly uniform over a limited region of a 
large spherical surface. Hence for the half-space conductor the proportionate 
contribution to the total horizontal field H ,  from the induced currents will lie between 
3 and 3, depending on the chosen value of n. Moreover, by taking conductors of 
other shapes it can be shown that any value between 0 and 1 can be found for this 
contribution. 

However, for our problem, the important result is that the ratio found above is 
ultimately independent of the conductivity, when the radius tends to infinity. Since 
we assume that the inducing field is of the same intensity and form over the entire 
composite conductor, we may deduce that the total surface H y  is the same at the 
extreme values of y, i.e. the equation (18) is a correct boundary condition for our 
problem. This condition relates to H,, but it is simpler to obtain the solution of the 

HOl = Hoz,  (18) 
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Perturbations of alternating geomagnetic fields 323 

problem in terms of Ex first. Hence we now consider what this condition on Hy 
implies with regard to Ex. 

Using (12) and (18) we find 

and from (16), Ex in the region z < 0 with Iyl large is given by 

Ex = E , , - i o H , z  with y -+ -a (20) 

= E o z - i o H , z  with y -+ +a. (21) 
At a sufficiently large (negative) value of z we may assume that the magnetic 

field of the perturbation due to the discontinuous conductivity along y = 0 will 
tend to zero, so that the total magnetic field will tend to H y  = H,,  H ,  = 0. Equation 
(24 would then be automatically satisfied as z + - a, equation (3b) would require 
(20) and (21) to be satisfied for large negative z, and equation (3c) would require 

The last equation is not inconsistent with (20) and (21) although E,, differs 
from E o z .  This is because 

However, in our numerical method of solution, we have to approximate to the 
conditions at infinity by taking suitable corresponding conditions at finite boundaries, 

= -ho and y = +_k say. It is not practicable to take the values of ho and k 
sufficiently large to regard (23) as satisfied when ly,-y,l = 2k. It follows that 
we cannot assume that (22) is satisfied along z = -ho because this would imply 
Eol = Eoz which is inconsistent with (19), and it is important that equation (19) 
should be satisfied in order to satisfy the conditions on the current distribution 
within the conductor. Since, however, the horizontal component Hy has the same 
value H ,  at the two extreme values of y for all negative values of z ,  it is permissible 
to take H ,  constant and cqEal to H o  all along the boundary z = -ho, provided this 
boundary is far enough away to make the local perturbation in H negligible there. 
It should perhaps be emphasized that the abrupt change in continuity at y = 0 has 
two distinct effects. One is the local perturbation in the electromagnetic field near 
y = 0, which will decrease with increasing negative z because it is due to a local 
concentration of current. The other is the effect on the current distribution and 
field which extends to infinity in the positive and negative y directions. Insofar as 
the field in the non-conducting region is concerned, we have shown that there is 
ultimately no change in the H-field at the extreme values of y, butthere is an important 
change in the E-field, represented by equations (19), (20) and (21). 

We therefore take 
H, = H o  in the region of z = -ho. 

We then deduce from (2a) that 

H ,  = K (a constant) along z = -ho. (25) 
Equation (3c) then gives on integrating 

Ex = ioKy+ C.  (26) 
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324 F. Walter Jones and Albert T. Price 

a = O  €continuous 
/-$continuous 7 
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QI 

FIG. 3. E polarization. Equations and boundary conditions for Ex. 

On inserting Eol and EO2 for Ex at y = -k  and y = k respectively, we get 

We have now obtained all the boundary conditions in terms of Ex. These boun- 
dary conditions, and the differential equations for Ex in the different regions, are 
summarized in Fig. 3. 

6. Numerical formulation of the problem 
The equations to be solved in all regions for both cases are of the form 

V 2  F = iq2 F ,  (28) 
with the appropriate value of q inserted. 
If we let F = f+ ig, then 

and 
V 2  F = V 2 ( f + i g )  = V 2 f + i V 2 g  

iq2 F = i q2 ( f+ ig )  = i q 2 f - q 2  g .  

Equating real and imaginary parts, we obtain 

and 
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Perturbations of alternating geomagnetic fields 325 

f=l 
9.0 

FIG. 4. Finite difference equations for H polarization problem. 

g= 0 

fi 

9 

FIG. 5. Finite difference equations for E polarization problem. 
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326 F. Walter Jones and Albert T. Price 

These two equations are replaced by corresponding finite difference equations, 
which are then solved simultaneously for each point on a rectangular mesh by finite 
difference methods, which also take into account the boundary conditions already 
considered and now expressed in finite difference form. Figs 4 and 5 give the 
finite difference equations for the two polarizations in the interior regions and on the 
boundaries (where h is the mesh size.) The equations were solved by the Gauss- 
Seidel iterative method. 

7. Numerical solution for H-polarization case 

The numerical solution has been obtained for a composite conductor in which 

o1 = 100, = iP3e.rn.u. ,  

and the period of oscillation (2nlo)  is 1 second. Since o always appears in the 
equations in combination with o1 or o2 as a product om, it follows that the same 
solution will apply if both conductivities and the period are all increased in the same 
ratio. For example, it will apply if o1 = 4.10-" e.m.u. (approximately the con- 
ductivity of sea water), and the period is 400 s. Also the ' skin depth ' for each 
conductor remains the same, being 5-03 km for the conductor ul and 15.91 km for 
the conductor 02. These values determine the linear scale of the solution. 

The solution is exhibited in the nine diagrams of Figs 6 and 7 ,  which show the 
contours of equal magnitude of 23, for equal steps of time during one-half of the 
oscillation period. These contours are also the lines of force of the E-field and 
consequently also the lines of flow of the electric current. Noteworthy features of 
the diagrams are the strong refraction of the lines of current flow at the discontinuity, 
and the formation of current vortices in the comer of the conductor oi, these vortices 
migrating inwards into the conductor with time. Two vortices of opposite senses 
are formed during each complete oscillation. 

In spite of these remarkable effects on the distribution of currents within the 
conductor, the magnetic field outside remains uniform and quite unaffected by them, 
as we have already noted in Section 4. This implies that the total current system 
can be divided into two parts, one consisting of sheets of current flowing parallel 
to the surface and contributing to the uniform field outside, and the other consisting 
of toroidal current systems whose magnetic field is contained entirely within the 
conductor. 

Applying the above results to actual geomagnetic field variations, we may conclude 
that the component of the magnetic field normal to an extended line of abrupt 
conductivity change, e.g. a long coast line, will not be appreciably affected by the 
induced electric earth currents, and therefore a study of this component is unlikely 
to reveal much about the Earth's conductivity. It should, however, be noted that this 
idealized two-dimensional problem cannot exactly represent any real geophysical 
situation. In most real situations the electric currents in the higher conductivity 
region flowing towards the interface with the lower conductivity region would be 
able, at least partially, to leak away laterally as well as vertically, and the charge 
built up on the interface would be smaller than in the ideal two-dimensional case. 
Hence the above theoretical result that the external magnetic field is unaffected by 
the local perturbation of earth currents may not always be applicable to actual geo- 
magnetic problems that appear to satisfy the right local conditions. 

8. Numerical solution for E-polarization case 

We take the same numerical values for the conductivities and period of oscil- 
lation as in the previous case, and the same remarks apply about the solution being 
useful for other conductivities and suitably adjusted periods. The ' skin depths ' 
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FIG. 6. H-polarization. Lines of force of E-field (= contours of equal H J .  
Line diagrams give successive intervals of field at equal intervals of one-eighth 

of the period. 
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FIG. 7. H-polarization. Lines of force of Efield (= contours of equal Hx). 
Line diagrams give successive intervals of field at equal intervals of oneeighth 

of the period. 

and the linear scale of the solution are also unchanged. However, the E-field and 
therefore also the current flow are now everywhere parallel to the x-direction. An 
important difference between this problem and the previous one is that the magnetic 
field outside the conductor is no longer uniform and has to be calculated. 

The nine diagrams of Figs 8-10 show the contours of equal magnitude of Ex 
for nine epochs at equidistant intervals of time during one half of the period of 
oscillation. These Ex contours are also the lines of force of the magnetic field. 
With regard to the currents in the conductor, the Ex contours are also the contours 
of current density, but since this is proportional to Q, the current density in the ol 
half is ten times that in the c2 half for the same value of Ex. 

In the first diagram, it will be seen that a wedge of high current density (flowing 
perpendicular to the plane of the diagram in the positive x direction) is present at 
the corner of the higher conductivity part. The current density decreases with 
depth and ultimately changes sign, the magnetic field lines forming closed curves in 
this region of negative current. The current density in the part of lower conductivity 
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Perturbations of alternating geomagnetic fields 329 

F I ~ .  8. E-polarization. Lines of force of H-field (= contours of equal Ex). 
Line diagrams give successive intervals of field at equal intervals of oneeighth 

of the period. 
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330 F. Walter Jones and Albert T. Price 

FIG. 9. E-polarization. Lines of force of H-field (= contours of equal Ex). 
Line diagrams give successive intervals of field at equal intervals of oneeighth 

of the period. 
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Perturbations of alternating geomagnetic fields 33 1 

FIG. 
Line 

10. E-polarization. Lines of force of H-field (7 contours of equal Ex). 
diagrams give successive intervals of field at equal intervals of oneeighth 

of the period. 
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O L 
FIG. 11. E-polarization. Changes in amplitude during one-half the period on 
passing across the surface over the discontinuity of E (e.m.u.), W. ( x  gammas), 

Hy ( x  gammas), HJH, ( x  10-I) and E/H, ( x  lo6). 

is much weaker, and it changes more slowly with increasing depth, corresponding to 
the fact that the skin depth is greater. 

In the second diagram, the wedge of current in the comer has slightly decreased 
in intensity. The negative current flow has also decreased and moved further into 
the conductor. 

In the third diagram, the field and current flow at great distances becomes small, 
being theoretically zero at infinity, so that the field then existing is purely the perturba- 
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H H 
Klan 10 km 

H W 
lckm lOkm 

E ff2 4 

FIG. 12. E-polarization. Changes in E (e.m.u.), H. ( x  
gammas), IH,/H,I ( x  10-l) and IE/H,I ( x  lo6) on passing across the surface 

over the discontinuity at equal intervals of one-eighth of the period. 

gammas), H,. ( x  

tion field at that instant. It will be seen that the magnetic field outside the conductor 
is nearly vertical over most of the surface of the conductor, though there is a significant 
horizontal component at a place on the more highly conducting side some distance 
from the discontinuity. It will also be noticed that the wedge of high positive current 
density is showing some signs of getting detached from the corner of the good 
conductor. 

In the fo&h diagram, the positive current concentration is definitely detached 
from the corner, and magnetic field lines surround it. The negative current system 
is weaker and still further inside the conductor. 
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334 F. Walter Jones and Albert T. Price 

The remaining diagrams clearly show that current concentrations are being 
continually formed at the corner of the more highly conducting half, and move 
inwards into the conductor. The successive concentrations are of opposite sign, and 
two are formed in each complete oscillation. It is these concentrations of current 
that are mainly responsible for the local perturbation of the electromagnetic field. 
There are also, of course, changes in the current distribution within the half conductor 
of lower conductivity, but these make a much smaller contribution to the perturbation. 

The changes in amplitude during one-half period of E, H,, H, and of the ratios 
HJH, and E/Hy on passing across the surface over the discontinuity are shown in 
Fig. 11. It will be seen that Hy is the same at the extreme ends, but varies as the 
discontinuity in conductivity is crossed. This does not agree with Weaver’s assump- 
tion that Hy is constant along z = 0. Also, H ,  and the ratio H,/H, are enhanced 
near the discontinuity with a steeper decline in this enhancement with distance from 
the discontinuity over the higher conducting region. This is in agreement with 
observed measurements near the continental-oceanic interface. 

Fig. 12 shows the changes in the instantaneous values of E,  H,, H,, IHz/Hyl and 
IE/HyI on passing across the surface over the discontinuity for the nine time steps 
taken during the half period. It will be noted that the large variations of IH,/H,I 
and IE/H,I at the seventh stage are due to the small value of H, at this time. 
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