
GEOPHYSICS, VOL. 58, NO. 2 (FEBRUARY 1993); P. 215-226, 17 FIGS.

Three-dimensional magnetotelluric modeling using difference equations-
Theory and comparisons to integral equation solutions

Randall L. Mackie*, Theodore R. Madden*, and Philip E. 

ABSTRACT

We have developed an algorithm for computing the
magnetotelluric response of three-dimensional (3-D)
earth models. It is a difference equation algorithm that
is based on the integral forms of Maxwell’s equations
rather than the differential forms. This formulation
does not require approximating derivatives of earth
properties or electromagnetic fields, as happens when
using the second-order vector diffusion equation.
Rather, one must determine how averages are to be
computed. Side boundary values for the H fields are
obtained from putting two-dimensional (2-D) slices of
the model into a larger-scale 2-D model and solving for
the fields at the 3-D boundary positions. To solve the
3-D system of equations, we propagate an impedance
matrix, which relates all the horizontal E fields in a
layer to all the horizontal H fields in that same layer,
up through the earth model. Applying a plane-wave
source condition and the side boundary H field values
allows us to solve for the unknown fields within the
model. The results of our method compare favorably
with results from previously published integral equa-
tion solutions.

INTRODUCTION

In recent years, a lot of effort has gone into developing
three-dimensional (3-D) magnetotelluric modeling algo-
rithms. Much of this work has concentrated on the integral
equation approach (e.g.,Hohmann, 1975; Weidelt, 1975;
Wannamaker et al., 1984a; San Filipo and Hohmann, 1985;
Wannamaker, 1991), and it has become the standard against
which other methods are measured. Integral equation solu-
tions are computationally quick when there are only a few
inhomogeneous bodies in an otherwise layered earth. As the
complexity of the model increases, however, so also does

the computation time. On the other hand, finite-difference
and finite-element algorithms (e.g., Jones and Pascoe, 1972;
Reddy et al., 1977) are better suited to model arbitrarily
complex geometries, but their use has not been as wide-
spread since they lead to large systems of equations to be
solved even for simple models. Recent advances in iterative
relaxation techniques (Sarkar, 199 1) and continuously in-
creasing computing power will, in the future, allow for
finite-difference and finite-element modeling of more com-
plicated’ 3-D earth models than at the present time.

In developing an algorithm for 3-D magnetotelluric mod-
eling, we were motivated by the desire to be able to model
arbitrarily complex media, which is especially important
when inversions are to be done. This led us to use differential
methods over integral methods, and within the class of
differential methods, finite differences are simpler to imple-
ment than finite elements. The earliest 3-D finite-difference
magnetotelluric modeling algorithms were developed by
Jones and Pascoe (1972) and Lines and Jones (1973a). Their
algorithms solved the second-order vector diffusion equa-
tion in E over a 3-D mesh for simple models using a
Gauss-Seidel iterative scheme (Jones, 1974). That work was
also modified to consider nonuniform source fields (Hibbs
and Jones, 1976). Later, Zhdanov et al. (1982) explored the
application of asymptotic boundary conditions to the finite-
difference scheme, although no numerical examples were
shown for the 3-D case. Applications to time-domain solu-
tions were presented by Adhidjaja and Hohmann (1989),
who developed a finite-difference algorithm for computing
the transient electromagnetic response of a 3-D body using a
Du Fort-Frankel differencing scheme. Their results were
limited to only small models and were not in good agreement
with integral equation solutions, possibly due to rapidly
varying source fields, grid inaccuracies, and using a combi-
nation of numerical and analytic computations for the source
terms. Finally, progress in 3-D finite-difference modeling is
being made independently by other research groups, al-
though their results have not as yet been formally published.
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216 Mackie et al.

Xinghua et al. (1991) have developed a new 3-D finite-
difference modeling algorithm that solves directly for the
three magnetic components and incorporates a thin sheet
above a general 2-D or 3-D structure, and (Smith, J. T., 1992,
personal communication) has developed an iterative 3-D
finite difference algorithm on a staggered grid that appears to
be quick and accurate.

(1a)

It also is important to point out that 3-D finite difference
solutions to Maxwell’s equations have also been developed
quite extensively in the electrical engineering domain, al-
though not necessarily applied to electromagnetic induction
in earth models. The earliest such work for general 3-D
models was done by Yee (1966) who derived a staggered grid
finite-difference, time-domain algorithm for computing the
electromagnetic scattering off perfectly conducting surfaces.
(It turns out that our 3-D modeling algorithm is actually a
frequency-domain equivalent of Yee’s (1966) algorithm, al-
though our derivation is slightly different from his.) More
recently, Taflove (1988) and Morgan (1990) review the
current generation of finite-difference electromagnetic scat-
tering algorithms used in the electrical engineering domain
for a broad range of applications.

Our finite-difference modeling algorithm differs from much
of the previous work in that we start from the integral forms
of Maxwell’s equations rather than the differential forms.
This formulation does not involve differentiation, although it
leads to the same difference equations as if one approxi-
mated the first-order differential Maxwell equations. Finite-
difference schemes based on the differential forms of Max-
well’s equations can be interpreted as approximations to the
pointwise derivatives using numerical differences (Taflove
and Umashankar, 1990). On the other hand, finite-difference
schemes based on the integral forms of Maxwell’s equations
provide one with a simple geometrical understanding of the
coupling between Ampere’s Law and Faraday’s Law
(Taflove and Umashankar, 1990), and the difference equa-
tions result naturally from the application of the contour
integrals to flat surfaces defined by a regular discretization of
space. The main issues one faces, however, are involved
with defining averages, which seems to be a more natural
approach to a discretized approximation than trying to define
finite-difference approximations to derivatives. It turns out
that averages are even used in dealing with finite-difference
approximations to derivatives of earth conductivities, as
arises when discretizing the second-order differential equa-
tions (Brewitt-Taylor and Weaver, 1976). Once averages are
defined, it is a fairly simple matter to solve the first-order
equations using an impedance propagator technique, al-
though iterative relaxation techniques can also be used to
decrease the computation time and memory requirements
for a solution (Jones, 1974; Mackie, 1991; Sarkar, 1991).

DIFFERENCE EQUATIONS

At the low frequencies involved in magnetotelluric explo-
ration, conduction currents dominate over displacement
currents. Therefore, if displacement currents are ignored
and an  time dependence is assumed, then the integral
forms of Maxwell’s equations in mks units are given by:

(1b)

where in general,  and  are tensor quantities (Stratton,
1941). It is straightforward to define a geometry so that either
equation (la) or (lb) is exactly satisfied. For example, H
defined as the average along block edges and  defined as
the average across the block surfaces would lead to differ-
ence equations that would be exact for equation (la). How-
ever, this geometry would be inconsistent for equation (lb)
since in that equation E is defined as the average along a
contour and H is defined as the average across the surface
outlined by the contours. This difference in geometry is what
makes the difference equations an approximation. We would
like to point out, however, that all difference equation
solutions involve approximations whether it is approximat-
ing the integral equations or approximating derivatives of the
fields and earth properties. These are first-order difference
equations that have the advantage that one avoids having to
deal with derivatives of earth properties, as happens when
the second-order system of equations is discretized.

We divide the earth model into rectangular blocks of
arbitrary dimensions with the H field defined along block
edges, and the J and E fields defined along the normals to the
block faces, as shown in Figure 1. This is equivalent to the
geometry for a finite-difference scheme on a staggered grid
developed by Yee (1966). (One could alternatively define E
along the block edges and H along the normals to the block
faces.) Since the H field components surround the block
faces, equation (la) can be used to derive the total current
flow across the face. The J fields are continuous across block
interfaces, but the associated E fields will suffer discontinu-
ities if adjoining blocks have differing conductivities. Dis-
continuities in the E field do not pose any problems since
these equations involve integrations rather than differentia-
tions. The contours for equation (lb) are taken around flat
surfaces centered on the block edges and outlined by the
normals to the block faces, as shown in Figure 1.

One can transform any unequally gridded earth to an
equally gridded earth by making the appropriate transforma-
tions in the conductivity, permeability, and field values
(Madden and Mackie, 1989). This is useful for two reasons.
First, an equally gridded mesh results in an operator for the
difference equations that is symmetric, which would gener-
ally not be the case if the spacing were variable. This is
important when solving the problem by conjugate direction
relaxation techniques that assume symmetric operators.
Second, taking averages is simplified after transforming to
equally spaced grids since the proper weighting of the fields
and earth properties is taken into account by the scaling
factors.

If the transformed parameters are denoted with an apos-
trophe, then the scaling factors for the transformation are

(2)
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and the transformed conductivity and permeability tensors For our application, we assume isotropic conductivity, but
are the generalization to anisotropic media is straightforward.

We also assume that         everywhere.
The transformed E, H, and J fields are defined as

(3)
       (5a)

       (5b)

      (5c)

(4)

Under these transformations, equations (la) and (lb) remain
invariant, so that solving the transformed system is equiva-
lent to solving the original or untransformed system.
Throughout the remainder of this paper it will be assumed
that we are dealing with the transformed variables, and the
apostrophes will be dropped. Furthermore, to ensure sym-
metry, it is required that       

FIG. 1. The difference equation geometry based on the integral forms of Maxwell’s equations. The earth model is divided into
rectangular blocks of arbitrary dimensions. Each block has resistivity    and magnetic permeability  The H fields are
defined as averages along block edges, and the J and E fields are defined as averages along the normals to the block faces. The
contours for equation (1a) are taken along the edges of the block faces. The contours for equation (1b) are taken around flat
surfaces centered on the block edges and outlined by the normals to the block faces and are shown at the bottom of the figure.
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With this formulation and the geometry shown in Figure 1,
the x, y , and z components of equation (1a) are

              

        

              

        (6)

              

       

The J fields are continuous, but the E fields suffer disconti-
nuities when adjoining blocks have differing conductivities.
It is natural, therefore, to define the E fields along the block
face normals as the average of the E fields on either side of
the block face which, since J is continuous, can be written as

   
        

  

   
          

   

(7)

   
        

  

The resistivities are subscripted because the transformed
resistivity tensor is anisotropic with principle directions x , y ,
and z, even though the actual resistivities are isotropic, as in
equation (3). This likewise applies to the magnetic perme-
abilities. The components of equation (lb) are given by

              

          

            

          

            

(8)

         

where we define the average permeabilities as:

     

   

(9)

                        

One can solve the first-order system of equations, or one can
algebraically eliminate either E or H to obtain a second-order
system of equations. The direct solution technique described
in this paper solves the first-order system of equations (after
eliminating  and  The E and H fields are output on the
earth’s surface at the top face center of each model block.
Since the H fields are defined along block edges, the H fields
in the center at the earth’s surface  and  are simply
taken to be the average of the adjacent H fields (here ks
refers to the top, or surface, earth layer):

            

(10)
            

Since the E fields in the model are defined as normals across
the block faces, more care must be taken in computing the
fields at the earth’s surface. First, we compute the E fields in
the top model block centers  and  using the average
of the J fields across the corresponding block faces (e.g.,

             From
equation (7), it then follows that

  
  

         
  

  

        
    

(11)

  
  

        
  

  

        
    

Then, the E fields are continued up to the earth’s surface
using equation (8) modified to account for the different
geometry and also setting = 0, which is correct just under
the surface because of the large resistivity contrast between
the earth and the atmosphere.

BOUNDARY CONDITIONS, GRADING OF MODELS

Proper treatment of the model boundaries is important in
calculating the magnetotelluric response of realistic 3-D
models. One common approach is to assume that the model
is periodic in the horizontal direction. This approach is used
in Fourier methods (Park, 1983) and Rayleigh-FFT (fast-
Fourier transform) methods (Jiracek et al., 1989), and it can
also be used in difference equations. However, even if the
boundaries are extended a considerable distance away from
the local 3-D structure, there are still many situations where
this would not be an accurate representation of the regional
structure. This is because oftentimes, local magnetotelluric
fields are biased by regional features far away from the local
measurement site. The ocean-continent boundary is perhaps
the most severe example of this (Ranganayaki and Madden,
1980).

In our modeling algorithm, we assign the tangential H
fields on the boundaries of the 3-D model. This is in essence
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assigning the regional current field a priori, both laterally and
vertically. These boundary values come from a 2-D TM
mode calculation where each vertical plane of the 3-D model
is treated as the inner part of a larger-scale 2-D model. The
values obtained at the positions corresponding to the bound-
aries of the 3-D model are used as the boundary values for
the full 3-D calculations. This is not the most sophisticated
method for assigning boundary values, but if the side bound-
aries are put far enough away from the 3-D inhomogeneity
and the larger-scale 2-D models are similar for each 3-D
slice, then the boundary values will be smoothly varying and
the error in the solution will be reduced, but at the expense
of the model being less realistic.

It is possible to extend the side boundaries to large
distances without creating unmanageably large systems by
grading the 3-D model in the horizontal directions (e.g.,
Lines and Jones, 1973b). Discretizing the model on a finer
scale near regions of strong conductivity gradients allow us
to obtain more accurate solutions. We can also grade the
model in the vertical direction because: (1) the diffuse nature
of electromagnetic waves in conducting media smears the
information content with depth and (2) this allows us to use
the same model for a wide range of frequencies without
changing the vertical spacing, at least up to some high-
frequency limit that is determined by the thickness and
conductivity of the first layer. We found (Madden and
Mackie, 1989) that geometrical grading factors of 2 in the
vertical direction and factors of 3 in the horizontal directions
gave results accurate to within 1 percent in amplitude and
less than a degree in phase. These results applied to 1-D and
2-D geometries, but our own modeling experience has been
that these results are probably valid for 3-D calculations.

Several graded air layers are added on top of the earth
model to account for perturbations in the H fields from
lateral current gradients. All of the H field perturbations are
required to be damped out at the top of the air layers. These
air layers extend far above the earth. All the results in this
paper are from computations with the air layers extending to
75 km above the earth. We ran a test case for the model
tested in this paper with the air layers extending to 150 km
above the earth, but this did not result in any appreciable
differences in the computed field values compared to those
that had the air layers to 75 km above the earth. It is
probably necessary, however, to extend the air layers to
greater than 75 km for ocean-continent models since the
height scale of the air layers is related to the width scale of
the H field variations. At the bottom of the earth model, a
1-D impedance for a layered earth is used to relate the E field
to the H field. Thus, it helps to have the bottom of the model
below the resistivity lower crust, which acts to filter out
shorter wavelength H field variations.

DIRECT SOLUTION: IMPEDANCE MATRIX FORMULATION

The system of equations resulting from the discretization
of Maxwell’s equation has a coefficient matrix that is large,
sparse, and structured. Relaxation algorithms are one
method for dealing with such systems. Sparse matrix inver-
sion routines are another method that take advantage of the
structure and sparsity of the matrix. However, we will use a
Ricatti equation approach (Eckhardt , 1963), which propa-

gates the impedance matrix from the bottom of the model to
the surface. This reduces the size of the matrices to be
inverted, but it also has the advantage that different models
with the same lower layers can reuse the propagator results,
which reduces the computations.

If  and  are eliminated from the discretized system of
equations given earlier, then the horizontal E or H fields in
one layer can be expressed in terms of the fields in that layer
and the one below it. For example, since by equations (6)
and (7),  is given by

   
          

      

             (12)

then  in the k - 1 layer, by virtue of equation (8), can be
written in terms of the horizontal E and H fields in the kth
layer directly below as

        

        

       

        

            

         

          

     (13)

Similar equations can also be written for   and 
We can express these equations in a compact form as

  (14)

  (15)

Here,  and  are matrices that contain the coefficients in
the equations for  ,   and  after  and  have
been eliminated (such as equation (13) above), a is the vector
that contains the contributions from the boundary tangential
H fields (for example the terms in equation (13) that involve
known boundary H field values), and E and H are the vectors
of the unknown horizontal electric and magnetic fields,
respectively.

If the E:H relationship is known at the k + 1 layer, then
equations (14) and (15) can be combined to give

 

         (16)

         

and we can therefore propagate this up to the earth’s
surface. The starting relationship at the bottom of the model
is taken as a 1-D plane-wave impedance for a layered media
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representing the earth beneath the model. The impedance
matrix  does not grow exponentially coming up through the
media as does the E and H fields, which makes the numerical
propagation of the impedance matrix much more stable than
trying to deal with the field values.

The source field for the magnetotelluric problem is a
uniform current sheet at the earth’s surface. Since it is
uniform, the current sheet can be put anywhere above the
earth’s surface as long as we allow for the secondary
outgoing fields above the current sheet. With the current
sheet at the earth’s surface, the tangential H field boundary
terms in the air layers are zero, which means that the H field
in the air is a secondary outgoing field that is equal to the H
field due to the earth’s conductivity structure minus the
uniform field at the earth’s surface.

As we did for the earth layers, it is very straightforward to
derive a simple formula for propagating an air impedance
matrix down to the earth’s surface from the top of the air
layers. The air is often taken to be an insulator in modeling
algorithms, but our difference equations require a finite value
for the resistivity of every model block [see equation (13)].
Therefore, we have set the resistivity of each air layer to IO”

 m because this is still a large contrast to the earth’s
resistivity, but the value is not so large as to cause numerical
problems. As before, we start at the top of the air layers with
a plane-wave impedance appropriate for the atmosphere.
The E:H relationship is continued layer by layer to the
earth’s surface using equations (14) and (15) except as just
stated, the boundary terms are zero. This information can be
written as

MODEL RESPONSES

 

 (17)

We now have an earth impedance matrix, an air imped-
ance matrix, and a uniform current sheet, all at the earth’s
surface. The E field is continuous across the current sheet,
but there is a jump in the H field due to the current sheet.
Therefore, we have the following relationships:

 = 

where J,, is the uniform current sheet at the earth’s surface,
 contains the effects of the side boundary values,  and

 correspond to the unknown E and H fields just above
the current sheet, and    and correspond to the
unknown E and H fields just below the current sheet. Since
E is continuous across the current sheet, we can write:

 =   + (19)

Once the H fields at the earth’s surface are known, then the
E fields at the surface can be determined as well as the E and
H fields everywhere in the model using equations (14) and
(IS). Thus, solving the 3-D model has been reduced to
solving the EM interactions at each layer in the model rather
than solving the EM interactions in the 3-D model as a whole
at one time. This algorithm has the advantage ot directly
solving the 3-D MT equations by doing several smaller

matrix inversions rather than one large matrix inversion. A
further advantage of this method, as we previously men-
tioned, is that the impedance matrices computed at each
level can be reused for different models that have the same
structure beneath that layer.

We compare the computed responses from our algorithm
with those from the integral equation algorithm of Wanna-
maker (1991). The integral equation approach was originally
outlined in Wannamaker et al. (1984a) and the recent modi-
fications are described in Wannamaker (1991). The model we
have chosen for our comparisons is one proposed by Dr.
M. S. Zhdanov of the USSR Academy of Sciences in his
effort to compile 2-D and 3-D model responses by investiga-
tors worldwide. In this section we are striving merely to
compare responses from different modeling algorithms, and
we are not intending to explore in detail the 3-D responses
for complicated geometries. There are several studies that
have concentrated on examining 3-D field behavior (Park et
al., 1983; Wannamaker et al., 1984b: Park, 1985).

The model under study consists of two adjacent rectangu-
lar blocks residing in a three-layer host (see Figure 2). One
block is conductive (1  m) and the adjacent block is more
resistive (100  m). The rectangular blocks are imbedded in

FIG. 2. The 3-D model used to make comparisons between
our difference equation algorithms and Wannamaker's (1991)
integral equation algorithm.
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a layer of 10  . m and are each 20 km in width, 40 km in
length, and 10 km in depth. The first layer is underlain by a
second layer of 100  l m and 20 km thickness. This layer is
then underlain by a half-space of resistivity 0.1  l m. The
responses were computed for periods of 10, 100, and 1000 s.
The skin depths in the conductive block are 1.6 km, 5 km,
and 16 km, respectively and 16 km, 50 km, and 160 km for
the resistive block. We define the strike length to be the
length of the conductive and resistive bodies in the y-direc-
tion. Therefore, the strike length is 40 km for all calculations
except when we compare the 3-D results with 2-D results,
for which case the strike length is increased to 200 km. For
reference, in Figure 3 we show the 1-D response for the
three-layer media in which the 3-D bodies reside.

COMPARISONS WITH WANNAMAKER’S SOLUTIONS

The model described above was discretized into 28 blocks
in the x-direction, 19 blocks in the y-direction, and 18 layers
in the z-direction (11 earth layers and 7 air layers). The
model was more finely discretized near the conductivity
contrasts (see Figure 4). We will show the apparent resistiv-
ities and phases for the  and  responses for profiles
across the 3-D body. The  component of the surface
impedance tensor is the  field due to an applied  field.

FIG. 3. The 1-D MT response for the three-layer media (see
Figure 2) in which the three-dimensional bodies reside.

Similarly, the component of the surface impedance
tensor is the  field due to an applied  field.

Shown in Figures 5 and 6 are the  mode and  mode
responses for the model at a 10-s period for a profile across
the center of the bodies (along the x-axis of Figure 2). There
is generally good agreement between Wannamaker’s re-
sponses (labeled as rhoxy.ie, phxy.ie, etc., where the .ie
stands for integral equation) and our difference equation
responses (labeled rhoxy.dir, phxy.dir, etc. where the .dir
stands for the direct difference equation solution). There are
small discrepancies in the phases over the center of the more
resistive body and near conductivity contrasts. The phase
differences near the boundaries are probably due to a com-
bination of differences in the E field geometry between our
difference equation approach and Wannamaker’s integral
equation approach and differences in the model discretiza-
tion. The E fields in our algorithm actually represent aver-
ages across block faces, whereas in Wannamaker’s algo-
rithm, the E fields represent averages for a block and not
across block faces. Near conductivity contrasts the E fields
are changing rapidly, and the issue is how the E field is
averaged to obtain a value that is called the field at a
particular location. Finer discretization can be used to obtain
more accurate results in areas where strong gradients in the
E field exist. (We should point out, however, that field
measurements use finite lengths of wire to obtain a measured
E value, so only average E values are actually seen.) The
difference equation responses were computed with a differ-
ent model discretization than was used by Wannamaker for
the integral equation solutions. In fact, our discretization
was somewhat finer near the conductivity contrasts than that
used by Wannamaker. We are not certain why there is more
phase discrepancy over the center of the resistive body, but

FIG. 4. A plan view of the horizontal discretization used for
the model of Figure 2. The model has been more finely
discretized near the conductivity contrasts to obtain more
accurate solutions in these areas.
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it is possible that this may be related to the discretization of
the model used in the integral equation solution (Wannama-
ker, 1990, pers. comm.). Figures 7 and 8 show that the
difference equation Zxy and Zxy mode responses at this
period agree almost exactly with 2-D transverse magnetic
and transverse electromagnetic (TM and TE) mode re-
sponses when the strike length of the 3-D body is increased
from 40 km to 200 km (effectively making the response
across the center of the body a 2-D response since the ends
of the 3-D body are many skin depths away from the center).

The Zxy and Zxy mode responses for the model at a 100-s
period are shown in Figures 9 and 10, respectively, and the
Zxy and Zxy mode responses at a 1000-s period are shown in
Figures 11 and 12, respectively. There is excellent overall
agreement between Wannamaker’s integral equation re-
sponses and our difference equation responses, especially in
the amplitudes. Discrepancies in phase are usually no more
than l-2 degrees and occur primarily near conductivity
contacts and over the more resistive body, as before.

We have made additional comparisons at a period of 10 s
but for profiles along the strike direction of the bodies (the
y-direction as shown in Figure 2). Figures 13 and 14 show
the Zxy and Zxy mode responses, respectively as a function
of position along the y-axis at a strike position of x = - 10 km

FIG. 5. The Zxy response along a profile across the center of
the bodies at a period of 10 s, and a strike length of 40 km
(this is the width of the bodies in the y-direction). The
responses labeled rhoxy.ie, phxy.ie, etc. are those from
Wannamaker’s (1991) integral equation solution. The re-
sponses labeled rhoxy.dir, phxy.dir, etc. are those from our
direct solution of the difference equations.

(this is down the strike of the conductive body). Likewise,
Figures 15 and 16 show the Zxy and Zxy mode responses,
respectively as a function of position along the y-axis but at a
strike position of x = + 10 km (this is down the strike of the
resistive body). As before, there is excellent overall agreement
between the integral equation responses and the difference
equation responses. Minor phase differences can be found near
conductivity contrasts and over the resistive body, and most
likely result for the same reasons as stated earlier.

Finally, we compare the vertical magnetic transfer func-
tion Mzx for the model at a period of 10 s. Figure 17 shows
the real and imaginary components of Mzx as a function of
the position for a profile across the center of the bodies
(along the x-axis). Along this profile, Mzy is zero due to
symmetry. There is excellent agreement between Wannama-
ker’s responses and our difference equation responses.
There are small discrepancies in the imaginary component
near x = 0 km (this is the interface between the conductive
and resistive bodies). This is probably due to a combination
of the large gradient in the Hz field near this conductivity
boundary and the differences in model discretization.

COMPUTATIONAL CONSIDERATIONS

All of the modeling in this paper was done on the CRAY-
2/4-256 computer maintained by the MIT Supercomputer

FIG. 6. The Zxy response along a profile across the center of
the bodies at a period of 10 s and a strike length of 40 km
comparing the integral equation solutions with the direct
difference equation solutions.
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FIG. 7. The Zxy response along a profile across the center of
the bodies when the strike length of the bodies is increased
to 200 km. The results are for a period of 10 s. Here we are
comparing the 3-D difference equation direct solution results
along this profile with the 2-D TM results for the profile
computed using a 2-D finite-difference (transmission analog)
algorithm.

FIG. 9. The Zxy response along a profile across the center of
the bodies at a period of 100 s comparing the integral
equation solutions with the direct difference equation
solutions.

FIG. 8. The Zyx response along a profile across the center of
the bodies when the strike length of the bodies is increased
to 200 km. The results are for a period of 10 s. Here we are
comparing the 3-D difference equation direct solution results
along this profile with the 2-D TE results for the profile
computed using a 2-D finite-difference (transmission analog)
algorithm.

FIG. 10. The Zyx response along a profile across the center of
the bodies at a period of 100 s comparing the integral
equation solutions with the direct difference equation
solutions.
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FIG. 13. The Zxy response for a profile in the direction of the
y-axis at the position x = -10 km (this is down the strike of
the conductive body) and a period of 10 s comparing the
integral equation solutions with the direct difference equa-
tion solutions.

FIG. 11. The Zxy response along a profile across the center of
the bodies at a period of 1000 s comparing the integral
equation solutions with the direct difference equation
solutions.

FIG. 12. The Zyx response along a profile across the center of
the bodies at a period of 1000 s comparing the integral
equation solutions with the direct difference equation
solutions.

FIG. 14. The Zyx response for a profile in the direction of the
y-axis at the position x = -10 km (this is down the strike of
the conductive body) and a period of 10 s comparing the
integral equation solutions with the direct difference equa-
tion solutions.
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Facility. The Lanczos (1961) method for inverting complex
matrices was used in conjunction with CRAY-optimized real
matrix inversion routines to invert the complex operators.
Additional time-savings were obtained by using the Lanczos
(1961) matrix partitioning method for inverting matrices, and
by using CRAY-optimized routines for multiplying matrices.
It took approximately 25 minutes of CPU time per frequency
(two polarizations per frequency) for the direct calculations
and 30 MWords of memory (1 word = 8 bytes). This is about
the same time and memory used by the integral equation
program of Wannamaker (1991) for the same model. For a
given model discretization, the complexity of the conductiv-
ity model does influence the computation time for the
integral equation approach but not for the difference equa-
tion approach. Iterative methods can be much quicker, but
there are questions about the accuracy of the results.

CONCLUSIONS

We have developed an impedance propagator algorithm to
solve for the magnetotelluric response of a 3-D earth model
using finite differences on a staggered grid. The finite-
difference equations are first-order equations that are based
on the integral forms of Maxwell’s equations, so the main
issue is that of taking averages rather than in approximating
derivatives of the fields or earth properties. The results of
our algorithm compare favorably with those from Wanna-
maker’s (1991) integral equation solutions for the same
model. Minor discrepancies were usually found near con-
ductivity contrasts and over the more resistive body. The

FIG. 15. The Zxy response for a profile in the direction of the
y-axis at the position x = + 10 km (this is down the strike of
the resistive body) and a period of 10 s comparing the
integral equation solutions with the direct difference equa-
tion solutions.

FIG. 16. The Zyx response for a profile in the direction of the FIG. 17. The real and imaginary components of the Mzx
y-axis at the position x = + 10 km (this is down the strike of response for a profile across the center of the bodies (along
the resistive body) and a period of 10 s comparing the the x-axis) for a period of 10 s comparing the integral
integral equation solutions with the direct difference equa- equation solutions with the direct difference equation solu-
tion solutions. tions.
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differences were most likely due to differences in the E field
geometry between the two solution algorithms and to differ-
ent model discretizations.
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