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S U M M A R Y
In the magnetotelluric technique, several methods exist to perform dimensionality analysis of
the measured data using rotational invariants of the impedance tensor. Among these methods
there is some dilemma on the different criteria established, which sometimes lead to non-
equivalent interpretations. The aim of this work is to compare the Bahr and Weaver et al. (WAL
hereafter) methods, and to propose a new method that makes both dimensionality methods
consistent. This new method complements the parameters used in Bahr method with WAL
invariant Q, and redefines their threshold values. To accomplish this, we used the analytical
relations between both sets of parameters and re-analyse and compare the threshold values of
each method. Both the Bahr and WAL methods use sets of rotational invariant parameters of
the magnetotelluric tensor [M (m s−1); �E = M · �B] and establish a classification of their values
to determine the kind of dimensionality associated to the measured data.

Key words: geoelectric dimensionality, magnetotelluric tensor, rotational invariants,
threshold values.

1 B A H R M E T H O D

Bahr (1991) (with modifications of Szarka 1999) was the first au-
thor who presented a classification of the types of distortion that
affect the regional structures by quantifying the values of four rota-
tional invariant parameters: κ (swift skew), µ, η, (regional skew of
phase sensitive skew) and �. Bahr parameters are dimensionless;
µ and η are normalized to unity whereas κ and � can have values
greater than 1 in the presence of galvanic distortion. κ is related to
one-dimensionality. µ is a measure of the phase difference in the
magnetotelluric tensor. η indicates if the magnetotelluric tensor can
be described by a superimposition model (a real distortion matrix
that represents a 3-D small heterogeneity producing galvanic dis-
tortion multiplying the regional 1-D or 2-D magnetotelluric tensor:
3-D/1-D or 3-D/2-D) and is also a measure of three-dimensionality.
� is related to two-dimensionality. The information given by these
parameters, and the recommended threshold values according to
Bahr (1991), are summarized in Table 1.

One of the main limitations of the Bahr method is that, except
for κ and η (Simpson & Bahr 2005), the threshold values do not
have a justified physical or mathematical meaning, or are set in
a statistical framework. As we will show below, the use of only
these four parameters is insufficient to characterize completely the
dimensionality (Ledo et al. 2002).

2 WA L M E T H O D

Weaver et al. (2000), following and extending the work of Szarka
& Menvielle (1997), defined a set of seven independent (I 1−I 7)

rotational invariant parameters. An eight invariant, dependent on
the other ones, Q, is also defined, which controls the value of I 7.
As Q approaches zero, that is, for error-free and distortion free data
from a 1-D or 2-D Earth, then I 7 approaches infinity and its value
is undetermined.

Invariants I 1 and I 2 provide information about the 1-D magnitude
and phase of the geoelectrical resistivity. The other invariants char-
acterize the dimensionality according to whether their values are
null of not (Table 1). Cases 3 and 4 are related to different types of
galvanic distortion. Case 3a (3-D/2-Dtwist) corresponds to a local
distortion caused by a twist of the electric field (Groom & Bailey
1989).

Case 3b corresponds to a regional 1-D or 2-D with equal phases
for both xy and yx polarizations, affected by small-scale distortion
(3-D/2-D1-D). In this case there is an ambiguity in the recovery of
the regional tensor (Weaver et al. 2000). Case 4 corresponds to a
regional 2-D tensor affected by galvanic distortion described by a
general distortion tensor (3-D/2-D) (Groom & Bailey 1989).

For real data, it is necessary to use a threshold value to evaluate
whether an invariant is null or not.

3 C O M PA R I S O N B E T W E E N B O T H
M E T H O D S

The number of WAL invariants used for determining dimen-
sionality criteria is six (I 3−I 7 and Q), which can be reduced
to five since I 3 and I 4 are used together in the dimensionality
classification.
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Table 1. Dimensionality cases according to Bahr and WAL rotational invariants methods.

Bahr WAL Dimensionality cases

κ < 0.1, � < 0.1 Ik = 0 (k = 3–6), 1) 1-D
I 7 = 0 or Q = 0

κ < 0.1, � > 0.1 I 3 �= 0 or I 4 �= 0, 2) 2-D
I 7 = 0 or Q = 0

κ > 0.1, µ = 0 I 3 �= 0 or I 4 �= 0 WAL 3a) 3-D/2-Dtwist (I 7 = 0)
and I 5 �= 0 3b) 3-D/2-D1-D

(I 7 undefined)
Bahr 3) 3-D/1-D

κ > 0.1, µ �= 0, η < 0.05 I 6 �= 0 4) 3-D/2-D

κ > 0.1, µ �= 0, η > 0.3 I 7 �= 0 5) 3-D

In order to compare the reliability of both methods, we used
an example of a magnetotelluric tensor M, clearly representing a
2-D structure, with different phases in the xy and yx polariza-
tions: M = [ 0

−15−12i
25+9i

0 ]. Bahr parameters values are κ = 0,
µ = 0, η = 0 and � = 0.05. According to Bahr criteria (Table 1:
κ and � < 0.1, and η and µ ≈ 0), this values would correspond to
a 1-D or 3-D/1-D structure. WAL invariant values I 3−I 7 and Q are
I 3 = 0.25, I 4 = 0.14, I 5 = I 6 = I 7 = 0 and Q = 0.39. Following
WAL criteria, this MT tensor represents a 2-D structure.

From these different dimensionality interpretations, it is clear
that, in some circumstances, Bahr’s criteria lead to incorrect infer-
ences.

The use of only four parameters in the Bahr method is an impor-
tant limitation in determining dimensionality, but also the classifi-
cation of the dimensionality types and the threshold values should
be revised to become more concise and consistent.

4 A N A LY T I C A L R E L AT I O N S H I P S A N D
E Q U I VA L E N C I E S F O R I D E A L C A S E S

The analytical relationships were obtained by expressing Bahr pa-
rameters as functions of WAL invariants and are given as:

κ = f (r, I5, I6) =
√

1 + r 2

1 − a
2b + r2b

2

− 1, (1a)

µ = f (r, I5, I6, I7, Q) =
√

|I7 Q + I6| + |I6|
1
r

(
1 − a

2b

) + rb
2

, (1b)

η = f (r, I5, I6, I7, Q) =
√

|I7 Q|
1
r

(
1 − a

2b

) + rb
2

, (1c)

� = f (r, I3, I4, I5, I6) = I 2
3 + I 2

4r 2

1 − a
2b + r2b

2

, (1d)

where a and b depend on I 5 and I 6:

a = (I5 − I6)2, b = 1 − I5 I6 +
√

1 + I 2
5 I 2

6 − I 2
5 − I 2

6 .

r is the quotient between I 2 and I 1, which appears in all the rela-
tions due to the different kinds of normalization used in each set of
parameters.

Relating these identities to WAL dimensionality criteria, parame-
ter k is the one that distinguishes between undistorted and distorted
cases (depending on I 5 and I 6 being null or not). µ and η depend
also on the product I 7 ·Q, but not on their individual values; and

� is the only one that depends on I 3 and I 4, and, consequently, that
deals with two-dimensionality.

The analytical relations presented allow finding easily the partic-
ular expressions of Bahr parameters for the ideal cases following
the WAL conditions (Table 1):

(1) 1-D: κ = µ = η = � = 0.

(2) 2-D: κ = µ = η = 0 and � = f (r, I3, I4) = I 2
3+I 2

4r2

1+r2 .
(3) 3a) and 3b) (3-D/2-Dtwist) and (3-D/2-D1-D): µ = η =

0, κ = f (r , I 5) and � = f (r , I 3, I 4, I 5). 3a and 3b are non-
distinguishable using the Bahr method because it is not possible to
know which of I 7 and Q is null.

(4) 3-D/2-D: η = 0 and κ , µ and � take the values corresponding
to the general expressions)

(5) 3-D: κ , µ, η and � take the values corresponding to the
general expressions (eqs 1a–1d).

From these relations some important points arise that change the
Bahr criteria given in Table 1:

(a) If the regional structure is 1-D or 2-D, parameter µ must be
null.

(b) κ �= 0 and µ �= 0 conditions are not necessary for three-
dimensionality.

(c) Parameter η vanishes, as long as the structure is not 3-D.

5 T H R E S H O L D VA L U E S

Given that in real situations data are affected by noise and that
geoelectric structures do not fit exactly the assumed ideal cases, in-
variant values are never precisely zero. Weaver et al. (2000) address
this problem by introducing a threshold value (τ WAL) beneath which
invariants I 3−I 7 are considered to be zero.

In this section we present the relations between WAL and Bahr
thresholds values, and redefine the ones used in Bahr method in a
way that the dimensionality criteria considering the threshold is the
same for Bahr and WAL methods.

We performed an statistical approach: For each dimensionality
case, random values of the invariants, above or below their cor-
responding threshold range, τ WAL, were generated, and Bahr pa-
rameters computed using the analytical relations in eqs (1a)–(1d).
The value of r was chosen as r = 1, which is a valid approximation,
since for experimental data I 1 and I 2 are of the same order of magni-
tude (r represents the relation between the imaginary and real parts
in the magnetotelluric tensor components). Thus, it was possible to
define the new thresholds for Bahr parameters, τ K , τ µ, τ η and τ � ,
and the new dimensionality conditions. This development was made
for different values of τ WAL.
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The results show the following:

(1) Thresholds τ K and τ � can easily be related to τ WAL using the
approaches τκ ≈ τWAL√

2
and τ � ≈ τ 2

WAL. The threshold τ K differen-
tiates 1-D and 2-D from the rest of the cases, excepting 3-D, which
can take any value of κ . Values of � greater than τ � indicate that
the structure is not 1-D, but 2-D, with or without galvanic distortion
(cases 2–4). 3-D cases can have any value of �.

(2) The dependence of τ µ on τ WAL is more complex, since these
parameters become more sensitive on the value of r, and the approx-
imation r = 1 is not always appropriate.

In order to distinguish between cases 1–3 from case 4, there is
a statistical value of threshold τ µ, although sometimes there is an
overlap of values among these different cases.

(3) In the case of parameter η, in order to differentiate between
cases 4 and 5, it is necessary to consider also WAL parameter Q,
which controls if I 7 is meaningless or not. This is accomplished
assuming that the condition η > τ η is valid only if Q is not mean-
ingless, for which case we define the threshold τ Q . The value of Q is
also useful to differentiate case 3a from 3b, as in the WAL criteria.

Weaver et al. (2000) suggest a threshold value τ WAL = 0.1. Since
WAL invariants I 3 –I 7 and Q represent the sines of angles related
to Mohr circles, this threshold is the sine of 5.7◦, which, in relation
to a circle, 90◦, represents a 6 per cent error.

The threshold values of Bahr’s parameters that correspond to r =
1, τ WAL = 0.1 and τ Q = 0.1 are: τ K = 0.06, τ µ = 0.34, τ η = 0.12
and τ � = 0.01. These thresholds, especially τ � , differ significantly
from the thresholds proposed in Bahr (1991).

6 B A H R - Q M E T H O D

From the threshold values for Bahr parameters obtained, we can
redefine the appropriate dimensionality conditions. In order to over-
come the limitation produced by the use of only four parameters
compared to the five of the WAL method, we extend the Bahr method
to be internally consistent with WAL invariants.

To classify dimensionality it is necessary to take into account
parameters κ , µ, η, � and WAL invariant Q, which distinguishes

Table 3. Dimensionalities obtained from Bahr, WAL and B-Q methods for COPROD2 set, site
314. B-Q methods uses τ K , τ µ, τ η and τ � obtained from τ WAL = 0.1, and τ Q = 0.1 (Table 2).

Table 2. Bahr-Q method criteria to characterize the geoelectric dimension-
ality.

B-Q method

Parameter κ µ � η Q

Threshold τ 0.06 0.34 0.01 0.12 0.1

1) 1-D <τ κ <τ µ <τ � <τ η —
>τ η Q < τ Q

2) 2-D <τ κ <τ µ >τ � <τ η —
>τ η Q < τ Q

3a) 3-D/2-Dtw >τ κ <τ µ >τ � <τ η a) Q > τ Q

3b) 3-D/1-D2-D any value b) Q < τ Q

4) 3-D/2-D >τ κ >τ µ >τ � <τ η —
>τ η Q < τ Q

5) 3-D — — — >τ η Q > τ Q

the two subclasses of case 3, and the thresholds as defined in the
previous section. We call this new method Bahr-Q (B-Q), whose
conditions are summarized in Table 2.

The application of B-Q method on the previous example leads to
the same interpretation as WAL criteria: κ = µ = η = � = 0; � >

τ � and Q > τ Q , which indicates two-dimensionality.

7 T E S T W I T H R E A L DATA

To compare the dimensionality obtained using WAL, Bahr and B-Q
methods we used site 85 314 from COPROD2 MT dataset (Jones
1993), commonly used to test and compare 2-D inversion codes.
The data responses have in general a 1-D behaviour at short periods
(up to 10 s). From 10 to 1000 s the data displays a 2-D behaviour
with a NS strike direction (Jones et al. 2005), determined from the
multisite–multifrequency decomposition code of McNeice & Jones
(2001), based on Groom & Bailey (1989).

Table 3 shows Bahr and Q parameters related to the threshold
values and the dimensionality derived from the B-Q method and
compare to the ones obtained using WAL and Bahr classical criteria.
The results show how all methods coincide at short periods (1-D up
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to 10 s), whereas for T > 10 s, classical Bahr results differ from B-Q
and WAL methods. According to them, the longest periods have a
3-D behaviour, as can be derived from the non-zero values of the
diagonal elements of M tensor, and consequently from I 7.

When the data are affected by errors, which affect the computed
parameters, one of the consequences is that the dimensionality can
be undetermined if the error bars cross the threshold values, because
in these cases there are ambiguities in the classification. Another one
is the bias that can appear between the true values (computed directly
from the tensor components) and the statistical values (computed
as the mean of the different Gaussian generations) (Martı́ et al.
2004).

In this example, for a noise level of 1 per cent, a complete analysis
of the dimensionality using WAL and B-Q method would led to a
good determination of dimensionality of all the periods. When the
noise level is 10 per cent, there are some periods (up to 1.33 s) for
which I 7 has large error bars and it is not possible to distinguish if
its value is above or below the threshold value. For this reason, the
dimensionality results are different for these periods.

8 C O N C L U S I O N S

Compared to WAL, the Bahr method does not provide complete di-
mensionality interpretations. The reasons are that it uses only four
parameters (whereas WAL uses five), and because the thresholds
values suggested lead to ambiguities or to situations where the di-
mensionality cannot be determined.

The redefinition of Bahr values thresholds and the addition of
the invariant Q allowed the establishment of a new dimensionality
criteria (B-Q) consistent with WAL method.

The B-Q method was tested using a real example, obtaining the
same interpretation as WAL method. When the data are affected
by an important level of noise (10 per cent or higher), the errors
and biases of the invariants can be important and, consequently, the
dimensionality using any of both methods can be undetermined.
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