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A theory is described for the inversion of electromagnetic response data associated with one
dimensional electrically conducting media. The data are assumed to be in the form of a collection 
of (possibly imprecise) complex admittances determined at a finite number of frequencies. We first 
solve the forward problem for conductivity models in a space of functions large enough to include 
delta functions. Necessary and sufficient conditions are derived for the existence of solutions to the 
inverse problem in this space. The approach relies on a representation of real-part positive func
tions due to Cauer and an application of Sabatier's theory of constrained linear inversion. We find 
that delta-function models are fundamental to the problem. When existence of a solution has been 
established for a given set of data, actual conductivities fitting the measurements may be explicitly 
constructed for various special classes of functions. For a solution in delta functions or homogene
ous layers a development as a continued fraction is the essential idea; smoothly varying models are 
found with an adaption of Weidelt's analytic solution. 

INTRODUCTION 

When long-period fluctuating magnetic fields impinge 
upon the earth, they diffuse into the deep interior. A com
bination of observable electromagnetic fields at the surface 
is controlled by the electrical conductivity inside the earth 
and is quite independent of the physical mechanism causing 
the magnetic fluctuations. Therefore measurements of this 
quantity, which we shall call the admittance, can in princi
ple supply information about the conductivity structure of 
the earth; the task of extracting the information is the elec
tromagnetic induction inverse problem. The particularly 
simple variant in which the conductivity is assumed to vary 
only with depth (or radius in a spherical model) has 
received a great deal of attention in the geophysical litera
ture, but it would be fair to say that no entirely satisfactory 
solution has yet been found. for the practical case with 
imprecise and incomplete data. Considerable progress has 
been made, however, in the solution of an idealized prob
lem where the admittance is assumed to be known exactly 
at all frequencies: the work of Weidelt [1972] and Bailey 
[1970] provides answers to the questions of construction 
and uniqueness of solutions in certain classes of smoothly 
varying conductivity models. Weidelt's work lays the foun
dation for the investigations described here. 

In this paper we present solutions to the problems of 
existence and construction when the admittance data con
sist of a finite collection of (possibly imprecise) complex 
numbers, which is the form that results from time-series 
analysis of the actual field measurements. Simply put, this 
means that we can determine whether a particular set of 
data is compatible with the mathematical model of elec
tromagnetic induction in a one-dimensional conductivity 
structure, and if it is, we can produce a profile fitting the 
data. Each observation may be exact or it may be specified 
as lying within a definite range of values; alternatively, the 
measurements may be associated with estimates of their 
statistical uncertainty, and in that case it is ascertained 
whether a solution exists at a specified confidence level. 
When the data set is compatible with the mathematical 
model, explicit conductivity profiles can be constructed 
fitting the data in the appropriate way. It is important to 
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understand that the method of construction is not by trial 
and error but that it is a direct solution whose accuracy is 
limited only by the resolution of the discrete representation 
in the computer and by the precision of the computer arith
metic. 

The key to these results is an extension of the class of 
admissible conductivity profiles. Elementary differential 
equation theory and most work on geophysical inverse 
problems restrict attention to spaces of relatively smooth 
functions; for example, Weidelt's conductivity profiles are 
confined to those that are continuously differentiable with 
respect to depth, and other treatments require at least 
piecewise continuity. We find that the natural setting for 
studies with finite data sets is a space permitting delta func
tions in the conductivity. First we show that the forward 
problem always has solutions for any element in an 
appropriately large space of models. Then we obtain a 
representation of the admittance data as linear functionals 
with convex constraints. This enables us to apply the 
infinite-dimensional form of linear programing developed 
by Sabatier [1977] and thereby to derive necessary and 
sufficient conditions for the existence of solutions to the 
inverse problem. It is found that if there are any solutions 
to the problem, there must be one in terms of delta func
tions, a result that indicates how central the role of distri
butions is to this problem. Finally, we consider means of 
explicitly calculating profiles: this can only be done for cer
tain special classes of conductivity functions including 
delta-function models arid continuously differentiable 
models. When the data are imprecise, the best-fitting 
model in the least-squares sense can be found by quadratic 
programing techniques, and it too consists of a finite 
number of delta functions in conductivity. 

PRELIMINARIES 

We study electromagnetic induction by a uniform hor
izontal magnetic field with periodic behavior in time eio>'; 
the conductivity U' varies only with z, the vertical coordi
nate (positive upward); the conducting layer lies between 
Z - h at the surface and z = 0 at the bottom, where there is 
a perfect conductor. Weidelt [1972] has shown that the 
equations for this system can be readily transformed to 
give solutions to the problem of global induction in a 
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spherical earth or that of induction over a half space with 
horizontally varying fields. His notation will be followed 
approximately in the initial development. The electric field 
is horizontal and is perpendicular to the magnetic field. 
The differential equation for the complex electric field 
E(z, w) in the medium is 

lJ2E . 
- - IW/J.OU E (1) 
lJz2 

with boundary conditions E(O, w) = 0, lJE/lJz 10 = Eo' ¢ 0. 
Measurements are made of the electric and magnetic fields 
E(h, w), B(h, w) as functions of frequency. We define the 
ratio 

() E(h, w) E(h, w) 
c Cd - - 7-::~':'" 

iwB(h, w) lJE/lJzlh 
(2) 

to be the admittance. In the inverse problem it is assumed 
that c is known at a finite number of frequencies: 

Cj - c(Wj) j - I, 2, ... N (3) 

or that other (e.g., statistical) information is available about 
C at these frequencies. 

As stated in the introduction, we will need conductivity 
profiles consisting of delta functions as well as ordinary 
functions. Delta-function conductivities are already fami
liar to geophysicists through the work of Price [1949] and 
they have been introduced in a primitive manner into the 
inverse problem [Parker, 1972]. It is convenient to be able 
to deal with pathological functions and regular ones in a 
unified way so as to be able to define a distance between 
any pair of conductivities, for example. Probably more 
important, a general treatment enables us to demonstrate 
that an admittance is defined for any model that we might 
encounter. Indeed, a proper theory of existence must be 
based in a well-defined class of models. Only fairly ele
mentary methods will be used throughout; the reader will 
find any unfamiliar mathematical terms clearly explained in 
Korevaar's [1968] excellent book. 

We introduce the Banach space NBV(O, h) of real func
tions of bounded variation on the interval (0, h); for every 
element T E NBV, T(O) - 0, and the norm is defined by 

I iTll - V8IT] 

the total variation of T on the interval and every valid ele
ment must have a finite norm. This defines a complete 
normed vector (Banach) space with Stieljes integrals as 
linear functionals: 

F[T] - J I(z) dT(Z) 
o 

where I is a (possibly complex valued) continuous func
tion. Then we have 

IF[T] I ~ I/lma.IITII 
In our application, T is to be thought of as the conductivity 
integrated from the bottom, so that if u is an ordinary 
integrable function, 

z 

T(Z) - J u(y) dy 
o 

Defined this way, T is of course continuous, but more gen
erally, it will exhibit discontinuities; in particular, a simple 
jump in T corresponds to a delta function in conductivity. 
When T E NBV, we say u E S. Since u ~ ° in physical sys
tems, all realizable T are nondecreasing functions, and we 
then say u E s+; the set s+ is called a positive cone in S 

[Luenberger, 1969, p. 214]. If, in addition, u is an ordinary 
function, the norm of T is simply the integral of u through 
the layer. 

The forward problem must be entirely reformulated in 
terms of T. In place of (1) we obtain an integral equation 
by integrating twice and integrating by parts; then the 
remaining integral is replaced by the general linear func
tional over NBV, a Stieljes integral: 

z 

E(z, w) - Eo + zEo' + iW/J.oJ (z - y) E(y, w) dT(y) (4) 
o 

Here Eo and Eo' are identified as the boundary conditions 
applied at z - 0, which will be left arbitrary for the time 
being. The derivative lJE/lJz is not defined at every point; 
therefore we must define one by integration of (1): 

z 

E'(z, w) - Eo' + iW/J.oJ E(y, w) dT(y) (5) 
o 

which is defined everywhere. Obviously, for ordinary con
ductivities, (4) is equivalent to (1) with the corresponding 
boundary conditions. Now we show that (4) has a solution 
for every T E NBV, that is, u E S. 

Rewrite (1) in its double-integral form: 
Z Y. 

E(z, w) - I(z) + I' J dy I E(x, w) dT(X) 
o 0 

or 

E-I+I'T[E] (6) 

where I(z) - Eo + zEo', which is clearly continuous, and 
I' - iw/J.o. Imagine for the moment that I' is fixed; a solu
tion to (6) is developed by successive approximations in 
the usual way [Riesz and Sz.-Nagy, 1965, p. 146]: 

E - I + f I'n 1"'[f] (7) 
n-I 

where 1'" denotes n applications of the linear operator T. 
First we show the series converges for every finite 1'. 

Z Y. 

IT[f](z)I-IJ ely II(x) dT(X) I 
o 0 

Z Y. 

~ J dy II I dTI 
o 0 

z 

~ J I/lmax·IITII dy - z I/lmax·IITII 
o 

By repetition of this reasoning it is easily seen that 

I 1"'[f](z) I ~ z~ IITlln.l/lmax n. 

Thus (7) is mlijorized by the series 

f (zll'I·I)Tll)n I/lmax 
n-I n. 

which is absolutely and uniformly convergent for all finite z 
[Whittaker and Watson, 1962, p. 581]. Hence by the M 
test, (7) is uniformly convergent, and therefore by substi
tuting E into (6) we verify that it is a solution. Each of the 
terms in (7) is absolutely continuous in z; it follows from 
the uniform convergence of the series that E is a continu
ous (even an absolutely continuous) function of z. 

The above arguments have considered I' - iw/J.o to be 
fixed. With z fixed instead, we see that (7) also represents 
a Taylor series in W for E(z, w), which is convergent in the 
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finite complex w plane; thus E is an entire function of w. 
By substituting the series solution (7) into (5) it is easily 
seen that E' is an entire function of w as well. From this it 
follows that the only singularities of c are those at the zeros 
of E'(h, w) and a possible essential singularity at infinity. 
The singularities may be characterized much more sharply 
as follows: consider 

h 

l(w) = I E'(y, w)E'*(y, w) dy 
o 

h 

+ iw#£oI E(y, w)E*(y, w) dT(y) 
o 

(8) 

For u E s+ it is clear J(w) cannot vanish unless w is on the 
positive imaginary axis. Because E is an absolutely continu
ous function of z the first term may be written as a Stieljes 
integral [Korevaar, 1968, p. 4111, and (5) may be used to 
define dE' (y ); then 

h h 

J(w) = I E' dE* + I E" dE' 
o 0 

The first term is integrated by parts [Korevaar, 1968, p. 
409], and the boundary condition that Eo = 0 is then 
applied; this yields 

l(w) = E'(h, w) E"(h, w) 

This shows that there are no singularities (or zeros) of c 
unless w is on the positive imaginary axis. 

There is still more to be learnt from l(w). Obviously, 
from (2), 

c(w) = 1*(w)/IE'(h, w)1 2 

Together with (8) this shows that if w is in the lower half
plane (1m w ~ 0), the real part of c (w) is positive, and the 
imaginary part is negative in the right half-plane 
(Re w > 0). The theory of real-part positive functions plays 
an important role in the study of electrical networks 
[Wohlers, 1969], and we draw upon that powerful theory. 
The critical result for our purposes is a theorem of Cauer's 
[1932] illustrated extensively by Wohlers [1969, pp. 48-62]: 
for any analytic function g of a complex variable w with the 
property that Re g(w) > 0 when Re w > 0, 

f= 1- iWA . 
g(w) = _= w _ iA db(A) + Ibo + wb l Rew > 0 

where b is a real non-decreasing function of bounded varia
tion on the real interval -00 < A < 00 and bo, bl are real 
constants with bl ~ o. To be consistent, w should be 
dimensionless in this representation; alternatively, a con
stant with dimensions of frequency squared should replace 
the one in the numerator. To apply the representation, let 
g = ic. Then 

() f= l-iwA () . c w = , + . db A + bo - lwb l 
-00 A lcrJ 

Rew > 0 

For our admittances the representation can be somewhat 
simplified as follows. The lower limit of the integral can be 
made zero. To see this, note that unless the contribution 
from A < 0 vanishes identically (i.e., b (A) is constant when 
A < 0), c(w) would not have a positive real part every
where in the lower half-plane. The symmetry 
c(-w*) = c*(w) shows that this representation holds in the 
left and right half-planes and, by analytic continuation, also 
on the negative imaginary axis. Further, c has only poles 
on the positive imaginary axis, and therefore b has all its 

variation at jumps that correspond to simple poles in c with 
positive residues [Wohlers, 1969, p. 53]. We can also show 
that bl is zero. For large Iwl the integral is O(lwl-I), and 
therefore, unless bl vanishes, c will grow without bound. 
Physically, I c(w) I is the apparent skin depth for fields vary
ing with frequency w, so that we should expect c to 
decrease with frequency. A proof of this can be con
structed by considering c(-i"y), where "y is real and positive; 
then c is real, and by an argument given by Weidelt 
(appropriately extended to u E s+) we can show dc/d"y < 0, 
that is, c decreases down the negative imaginary w axis. 
Since c > 0, we must conclude that c is bounded and so 
bl = o. Thus we have shown that for any u E S+ the 
admittance c may always be written 

c(w) = bo + j 1 - i~A db(A) (9) 
o A +IW 

except at the poles of c on the positive imaginary axis. 
Finally we show the connection of (9) with other more 

familiar representations. Weidelt gives a Mittag-LeIDer 
expansion whose integral form is 

c(w) = j do (~) 
o A +lw 

(10) 

The relationship to (9) is clear if we perform a simple rear
rangement 

c(w) = bo + j { ~ + ~ 2 
- A} db (A) 

o 1\ + lW 
(11) 

Provided the integrals of the two terms in braces converge 
separately (which is not in general guaranteed), the two 
equations correspond, except for different measure 
functions and the absence of a constant term in (10). 
There is no constant in (10) because such terms arise from 
a zero-conductivity layer at the surface, which is forbidden 
in Weidelt's treatment. 

The infinite-sum form of (10) can be obtained as an 
eigenfunction expansion of (1). Suppose u > 0 and that it 
is twice differentiable. Consider the eigenvalue problem 

1 (j2Un ----=-A U 
#£ou (jZ2 n n 

with boundary conditions un(O) = un'(h) = o. Also consider 
G(z, zo), the Green's function for the inhomogeneous 
form of (1) with the same boundary conditions: 

(j2G 
- - iw#£ouG = 1Hz - zo) (jz2 

It can be shown [Parker, 1977] that c(w) = -G(h, h). But 
G can also be expanded in Un, which form an infinite set of 
orthonormal functions complete on L2[O, hI: 

( ) 
_ -1 ~ Un (z)Un * (zo) 

G z, Zo - () L. . 
#£ou Zo n-I An + lW 

Hence 

Thus the points of discontinuity of b are the eigenvalues of 
(1), and even in the general problem we shall refer to this 
set of points as the spectrum of the system. Spectral 
expansions like this are used a great deal in the general 
theory of scattering [Newton, 19661, of which electromag
netic induction is a simple example [Raiche, 1974]. 
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EXAMPLES 

A few special types of conductivity profile constitute all 
the important cases of geophysical and theoretical interest. 
The most fundamental to this paper is the subset of models 
D+ C S+, in which U consists of a finite comb of positive 
delta functions. More precisely, u E D+ if the correspond
ing T is of the form 

k 

dz) = L TI Zk ~ Z < Zk+l 
1-0 

where TO = 0, Tlo T2. • •• TK > 0, and ° < ZI < Z2 ••• < ZK ~ h. In familiar notation, 
K 

u(z) = L TI 8(z - Z/) 
I-I 

Zo = 0, 

This type of model is the exact analog of the beads-on-a
string system used by Krein [1952] and &rcilon [1975] to 
study the eigenvibration problem. From (4) and (5) with 
Zk ~ Z ~Zk+" we see that E is in the form fk + zgko where 
fk. gk are complex constants depending on frequency. 
Define Ck(w) = E(Zk. w)/E'(Zko w); then 

Ck - Zk+1 - Zk + . 1 
IWlLoT k + 1/ Ck - I 

~pon concate~ation of expressions like these for every 
mterval we arnve at the continued fraction solution to the 
forward problem: 

c(w) = h - ZK 

+--------------~-------------- (12) 
iWILOTK + ------....!...------

ZK - ZK-I + ----~----
iWlLoT K-I + ... 

ZI - Zo 

Rationalized, the continued fraction represents a function 
of w that is the ratio of two polynomials of degree K, so 
that ~here are exa~tly K poles of c on the positive imaginary 
w axlS correspondmg to the K points of discontinuity of b; 
hence the system has a finite spectrum. Conversely, it will 
be shown that when b consists of only a finite number of 
jumps, u E D+. Because (9) comprises a finite sum of con
tributions from the discontinuities in b, a finite expansion 
similar to Weidelt's form exists: 

K a 
c(w) = ao + L ___ n_._ ao ~o. an > ° (13) 

n-I An + 1W 

A quite different analog for u E D+ is the electrical ladder 
network shown in Figure 1; the impedance of that network 
is 

Z(w) = RK+I + ---------'~....,-----
iwCK + ----....:....--,----

RK +---...!....---
iwCK_ I + 1 

RI 

Comparing this continued fraction with (12) we see that 
the resistances Rk correspond to the separations between 
the conducting sheets and the capacitances Ck to the 
integrated conductances ILOTk. 

When the conductivity profile is an ordinary function, the 
electrical analog is a 'distributed' RC network rather than a 
'lumped' element network (the relationship to transmission 
lines has been noted before; see Madden and Swift [1969], 
for example). We now examine a class of conductivity 
profiles chosen in such a way that the theory of transmis
sion line synthesis can be borrowed. In geophysics a popu
lar model for modeling almost anyone-dimensional system 
has been a stack of homogeneous layers; here we take a 
finite pile of uniform slabs of conductivities Uk and 
thicknesses hk such that the product Ukh; is constant. We 
name the set of conductivity models of this type H+. 
Seismologists have used similar structures in which the 
travel-time is the same in each of a series of homogeneous 
layers [Goupillaud. 1961]; note that the dimensions of the 
product lLoUkh; are those of time. Consider the admittance 
Ck measured at the top of the k th slab (the one with con
ductivity Uk). Application of the standard boundary condi
tions that E and fJE/fJz be continuous (because T is a con
tinuous function for U e n+) yields 

c _ sinh Okhk + OkCk lcosh Okhk 

k - Okcosh Okhk + 01Ck_ l sinh Okhk 

where Ok = (iwlLoUk) 'h. Following the treatment of distri
buted RC lines given by Ghausi and Kelly [1968, p. 213], 
we define d = ~oukhl)'h, which is constant throughout the 
system, and P = cosh d(iw)'h, which depends only on d and 
the frequency. Also we introduce a modified admittance: 

Ck = [d(iw)'hsinh d(iw)'h]·Ck 

and we define c t~ be the admittance at the top of the sys
tem, so that c - CK • After a little algebra we obtain 

(14) 

Clearly this relationship can be used to build a continued 
fraction similar to (12), in which P plays the part of w. A 
representation like (13) exists, but because of the proper
ties of c it takes a special form: Ghausi and Kelly [1968, p. 
215] show 

c ~ ~ K ~ 
p2 _ 1 = P - 1 + P + 1 + L P _ n (15) 

k-I yk 

where II. 12• qk ~ 0, and -1 < Pk < +1. This approach to 
RC transmission line synthesis is called O'Shea's [1965] 
transformation. The perfect conductor at the bottom of 
the layer is equivalent to a short-circuit termination of the 
line, which has two important consequences: the constants 
Pk occur in pairs +Pk. -Pk, each associated with the same 
qk; and the coefficients II. 12 both vanish. These facts are 
most easily ascertained from (14) directly. From the con-

... 
Fig. 1. Equivalent e!ectrical ladder network giving an impedance identical to the admittance of a conductivity 
model of delta functIOns. 
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nections between t and P to C and W it follows that the 
spectrum of the system is set of values A = 'lT2(rk + 2n)2/d2 

where n takes on all integer values from -00 to 00 and 
there are K values of rk in the range -1 to +1. We shall 
see later that the pairs of equations (12), (13) and (14), 
(15) form the basis of a direct solution to the problem of 
construction. 

The final special class is that of twice-differentiable, 
strictly positive functions: u E C2+. Weidelt's [1972] 
thorough treatment relieves us of any obligation to go into 
details. We have already mentioned the special expansion 
of the admittance (10) and the fact that (I) possesses an 
infinite spectrum of simple eigenvalues, whose eigenfunc
tions are complete. The general element of s+ does not, of 
course, exhibit these properties, as D+ demonstrates. 

EXISTENCE 

Initially we discuss the inverse problem with exact data as 
in (3). By the representation (9) when a solution in s+ 
exists, it is always possible to find a constant bo ~ 0 and a 
nondecreasing function b of bounded variation such that 

J~ 1- iWJA 
Cj - bo + . db (A) j = 1 2 ... N (16) 

o A + IWJ ' , 

This equation represents 2N real linear constraints on an 
unknown element restricted to lie in a positive cone of an 
appropriate vector space; the self-consistency of these con
straints can be determined by looking at the problem as an 
infinite-dimensional version of linear programing [Sabatier, 
1977; Luenberger, 1969]. Our treatment will be elementary. 
Consider the approximation of the Stieljes integral by a real 
finite sum [Korevaar, 1969, p. 40S]: 

L 
bo + 1: Gmillbi = dm m = 1, 2, '" 2N (17) 

I-I 

where 

d2j_1 + id2j = CJ j = 1, 2, ... N 

the Gmi are real and Ilbl = b(A/+I) - b (AI) with 
A/+I = AI + IlA, AI = b(O) = 0 and IlA a positive constant. 
We consider the limits of L becoming large, IlA becoming 
small in such a way that L IlA grows without bound. In 
addition to (17) we have bo, Ilbl ~ O. The fundamental 
theorem of linear programing [Luenberger, 1973] states that 
when the matrix Gml has rank 2N, if there is any set of 
numbers bo, Ilbl satisfying these constraints, then there 
must be a set in which at most 2N of them are nonzero 
the rest vanishing. This holds of course no matter ho~ 
large L is, that is, no matter how well (17) approximates 
(16). It suggests that a necessary condition for the 
existence of a solution u E s+ is that there must be a func
tion b consisting of at most 2N jumps. 

The above argument depends upon the rank of Gml being 
full, and this is hard to verify in general. To get a valid 
scheme which is also computationally more practical, we 
modify the problem slightly. First we obtain an integral on 
~ finite interval, for example, with a mapping like 
A = (AO + A)-I, where AO > O. Next we set up a form of the 
system for which a solution is guaranteed to exist even 
when (16) is incompatible with the constraints on bo and b. 
To do this we relax the equality constraint in (16) and (17) 
and merely seek a solution that minimizes the disagree
ment in some sense. An easy way to do this is with the 
system of inequalities 

-A ~ Gm[bo, Ilb/] - dm ~ +A m = I, 2, ... 2N (IS) 

where A ~ 0 and Gm is an abbreviation for the left side of 
(17) suitably mapped onto a finite interval. Now we 
minimize A, which is the sup norm of the misfit. The 
linear program for this problem is an elementary exercise 
in the use of slack variables [Luenberger, 1973], whose 
introduction ensures that the matrix of coefficients is not 
rank deficient. If there is an exact solution (that is, one 
with A = 0), then an application of the fundamental 
theorem shows that there will be one with no more than 
2N nonvanishing elements in the variable vector' linear 
programing algorithms will always find such a sol~tion if 
one exists. We imagine systematically improving the 
approximation by finer sampling: Sabatier's analysis shows 
that A tends (rapidly) to a limit; if that limit is nonzero 
this implies that no solution exists to the original problem: 
Conversely, we shall show in the next section that if A 
tends to zero and hence a suitable function b and constant 
bo satisfying (16) can be found, we can always construct a 
corresponding u E s+; that u will be in D+ with no more 
than 2N delta functions. Actually, in practical computa
tions, when a solution exists, it is invariably observed that 
A becomes exactly zero very quickly (Sabatier's 'satura
tion'); there is no need to continue refining the approxima
tion, because (17) then represents a particular exact solu
tion to (16). 

Another way to characterize the existence result is the 
following: if there is any solution to the inverse problem in 
s+ corresponding to a given data set, then there must be 
one in D+. Because the solutions are not normally unique, 
we expect an infinite variety of conductivities to be associ
ated with a particular set of data, and some of them ought 
to be ordinary functions rather than distributions. As we 
shall see, there is a systematic way of finding solutions in 
H+, but a question that naturally arises is whether there are 
data sets connected with a solution in delta functions but 
not associated with any ordinary function. There are such 
peculiar data, as we now show with an example. Suppose 
that C has been exactly determined at two frequencies and 
that the admittances CI, C2 are consistent with a function b 
that has only one point of discontinuity (which corresponds 
to a model in D+ with only one delta function). In these 
circumstances the model fitting the data is unique. We use 
distributions here because the Stieljes integral notation is a 
little cumbersome. Abbreviating the kernels by f J , (16) 
becomes 

CJ = bo + j fJ(A) Ilb l 8(A - AI) dA j = 1, 2 
o 

where A I is the point at which b is discontinuous with a 
positive jump Ilb l • The assumption that there is another 
pair bo, b satisfying the data leads to a contradiction as fol
lows. Writing b' for the (distributional) derivative of b, we 
have 

where b' ~ O. Subtract the equations with j = 1 and also 
subtract those with j = 2, then weight the resulting expres
sions by the complex constants ai, a2 and add: 

o = (bo - bo)(al + a2) + 

j [alfl(A) + a2f2(A)] [Ilb l 8(A - AI) - b'(A)] dA (20) 
o 
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The form of the functions f l' f 2 makes it possible to 
choose ai, a2 with these properties: Re {aq + a21 = 0 and 
the function Q = Re {alfl + a2f21 is positive except at 
A = Al where it vanishes. Some actual values, which are 
not particularly illuminating, are al = 2AI + iWI + Al/iw\, 
and a2 = -2AI - iW2 - Al/iw2, where WI > W2 > o. With this 
choice of constants the real part of (20) becomes 

0= j Q(A) b'(A) dA 
o 

Since Q > 0 except at A = Al and b' ~ 0, this equation is 
impossible to satisfy together with (I9) unless b' has its 
only support at A = AJ, in which case it is easy to see that 
b = b. The argument, which can be generalized to cases 
with more than two data, is very similar to the one used in 
ideal body theory [Parker, 1975]. The key factor is that the 
number of constraints (in this example four real numbers) 
exceeds the number of parameters describing the model 
(here the three numbers bo, dbJ, AI). It is conjectured that 
only when N admittances can be fitted with a model of 
fewer than N delta functions in conductivity, the solution is 
unique and, further, that these are the only cases for which 
there are no ordinary function solutions. 

Finally, we consider the theory for data that are not 
exact. When c(w) is specified as lying between strict limits 
(say, inside a rectangle in the complex c plane), the 
corresponding linear program is easily set up, and the treat
ment proceeds along the lines already given. If a statistical 
description of the data uncertainty is prescribed, the ques
tion of existence becomes one of a confidence level, for at 
a sufficiently low probability there will always be a solution 
associated with any noisy data set. The traditional misfit 
statistic is x2 when the errors are normally distributed (as 
we shall assume). Now we need to find the model con
sistent with the constraints that makes x2 smallest. Sup
pose the best-fitting model has an unacceptably low proba
bility of being compatible with the data; then every other 
model will be worse, and we may reject the hypothesis that 
there is any model at all. Finding the best-fitting model by 
varying b is a quadratic programing problem of a well 
known type [Lawson and Hanson, 19741. It can be shown 
that when there is no exactly fitting solution (with x2 = 0), 
there is a unique optimal function b consisting of a finite 
number of discontinuities, and once more U E D+. This 
fact explains the observed 'numerical instability' of linear
ized iterative schemes for the best fitting model: the algo
rithms gravitate toward wildly oscillatory functions in their 
attempt to approximate delta functions with smoothly vary
ing ones. 

Quadratic programing is not as flexible as the linear kind; 
for example, it is not easy to apply a quadratic constraint to 
a problem. Therefore another misfit statistic is sometimes 
preferable to x2 because it requires only the solution of a 
linear program: the sum of the magnitudes of the misfits 
normalized by the standard errors [Gass, 1975, p. 3161. 
Confidence and probabilty tables have not been available 
for this statistic and it has been necessary to use an asymp
totic approximation based on the normal distribution 
[Banks et al., 1977]; recently, however, precise tables have 
been calculated [Parker and McNutt, 19801. In the rest of 
the paper we shall treat only the case of exact data unless 
the appropriate generalization is not straightforward. 

CONSTRUCTION 

Before taking up the problem of finding the conductivi
ties, we make some remarks about the determination of 

the layer thickness h. In the global induction problem for 
the earth, we may assume that even the longest period 
magnetic variations do not penetrate appreciably into the 
core· therefore at the base of the mantle there is an 
effe~ive perfect conductor whose depth is well known. 
After applying the earth-flattening transformations of 
Weidelt a value of h can be supplied. This is simply done 
because: as (4) and (5) show, c(0) = h, and therefore the 
provision of an additional admittance at zero frequency 
serves to fix the layer thickness. Similarly, in global induc
tion in other planets without a known core, the earth
flattening mapping takes the center of the planet to the 
base of the flat layer, with the perfect-conductor boundary 
condition. For studies at higher frequencies, when the 
whereabouts of a base is not known ahead of time, the 
value of h need not be restricted. 

Except for certain singular cases of a kind already noted, 
a finite set of measurements does not define a unique con
ductivity. Nonetheless, it is often useful to be able to exhi
bit some of the solutions satisfying given data. First we 
will describe how this is done for each of the special classes 
D+, H+, C2+ defined earlier. 

The first class D+ is the most important because 
existence of a solution here is a necessary condition for 
there to be any solution at all. Assume that bo, b have 
been found satisfying (16) (or the equivalent constraints 
corresponding to nonexact data) by the linear programing 
methods developed in the previous section; the function b 
will have at most 2N points of discontinuity. Therefore 
using the rearrangement (11), we can put c into the form 
(13) where K ~ 2N. The sum may now be rationalized 
into a ratio of two polynomials in iw with real coefficients 
each of degree K (unless ao = 0, in which case the numera
tor will be of degree K - 1). By a straightforward manipu
lation the rational function can be converted into a contin
ued fraction in the form of (12), and so the parameters 
defining a model in D+ can be identified directly. This pro
cedure is due to Krein [1952]; Barcilon [1975] also reviews 
the essential material in English. As these authors state, 
the positivity of the determined parameters can be esta
blished with a theorem of Stieljes [Bender and Orszag, 1978, 
p.406]. 

A continued fraction is also used for finding conductivi
ties in H+. A value for the electrical thickness parameter 
d = <JLoukhj)'h must be chosen, and the modified admit
tance c(w) must be calculated from the values of c) and w)" 
Now the representation (15) is invoked, but the sum over 
k is replaced by a Stieljes integral on the real interval 
o ~ p ~ 1: 

c (w) = II 21'; dq (p) 
P} - loP} - p2 

The expression has been simplified to account for the sym
metry about p = 0 and the vanishing of IJ, 12 mentioned 
earlier. The existence of a model and some appropriate 
parameters Pk, qk can be determined by a linear program 
which applies the constraint that the function q is non
decreasing. Having obtained constants for the sum (15) 
(there will be 2N or fewer terms in the sum), we rearrange 
it into a continued fraction based upon (14); Ghausi and 
Kelly [1968, chapter 6] run through a number of explicit 
examples of this and other similar manipulations. From 
the continued fraction the value of hk is determined in each 
layer and, because d is constant, Uk is known also. In the 
case of exact data, solutions will exist for some d and not 
for others. As the parameter d tends to zero, C -+ [iwd2]·c, 
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P - 1 - iwd2/2 and (15) approximates (13); thus the 
models in H+ come to approximate those in D+ with thin, 
highly conductive layers separated by relatively thick, 
highly resistive layers. We infer from this that if d is small 
enough there is always a solution in H+ provided the data 
are not of the singular kind. 

Construction of twice-differentiable solutions is the sub
ject of Weidelt's [1972] study. His adaption of Gel'fand and 
Levitan's [1955] classic work shows that if a representation 
like (13) exists with ao = 0, K = 00, and constants such that 
as n - 00, an = 0(1) and An = 0(n 2), then there are solu
tions with u E C2+; these can be constructed through 
Weidelt's procedure. Therefore consider 

I~ da(A) ~ ~ 
c(w)= ~+. + I, -k2 . 

o 1\ IW k-I + IW 

where ~ > o. If a has all its variation at a finite number of 
steps, this is an admittance of the required form. Let us 
select an arbitrary positive e, put the sum on the left, and 
evaluate the equation at the frequencies w)" We now seek 
solutions for a with a linear program in such a way as to 
obtain those with a finite number of discontinuities. A suc
cessful solution of this kind for a guarantees a model for u 
that is smooth. Again we usually expect solutions if ~ is 
chosen small enough, for then the admittance approaches 
that for a conductivity in D+. 

A lack of uniqueness of solutions persists in the con
struction methods outlined above. For exact data there will 
normally be infinitely many valid solutions of the linear 
programs, and which particular one is discovered (when 
finding A = 0 is the minimum in (18), for example) 
depends upon unpredictable details of the approximation 
sequence and linear programing algorithm. Such a lack of 
definiteness is undesirable. One way to avoid it, once the 
existence of a solution has been established, is to set up a 
linear functional like 

~ 

W[b] = wobo + I W(A) db(A) 
o 

to be minimized, where w is a positive continuous bounded 
real function and Wo is a real positive constant. When a 
definite W has been selected, we can be assured the same u 
will always be obtained for a specific set of data. Unfor
tunately, the relationship between Wand the solution 
obtained (it will be in D+) is unclear because of the compli
cated nature of the mapping between the function b and 
the conductivity. 

Another approach to the problem of non uniqueness is 
that suggested by Backus and Gilbert [1967]; a solution is 
sought nearest in some sense to a preferred model. If the 
norm on T in NBV(O, h) is used as a basis for describing 
distances, finding the nearest element to a fixed element is 
a complex nonlinear problem, and one can hardly do better 
than the iterative procedures given by Backus and Gilbert, 
as most of the literature since their paper attests. How
ever, we have shown that for every u E S+, there is a pair 
(bo, b) in (9) and therefore we may choose to measure 
separation in the space of these objects: 

D(UI, (2) = Ilbl - b2 11 
where we define b = (bo, b) with b E NBV(O, 00) and 

Ilbll = Ibol + VO'[b] 

The functional D is a topological metric and it requires only 
a linear program to find the bl nearest to a fixed b2 subject 

to (19) and the other conditions. One problem remains, 
however: even when b is known, we may not know how to 
construct the corresponding u or even whether it exists. If 
the fixed model is restricted to the special classes discussed 
at length in this paper, it is not difficult to devise a scheme 
allowing the optimal element in S+ to be approximated 
arbitrarily well, at least in the sense of the metric of b. 
When the data are noisy and a solution nearest to some 
preferred model is desired, the problem should be set up to 
find the closest solution subject to the misfit being accept
ably low. In this case the misfit criterion is applied as a 
constraint rather than as the penalty function in the optimi
zation, which makes x2 less suitable as a statistic. 

SUMMARY 

Two mathematical questions have been treated: that of 
existence of solutions and that of their construction. The 
first problem has been completely settled, mainly because it 
can reduced to a linear problem with convex constraints. 
We have seen that the existence of solutions compatible 
with incomplete data depends on whether or not delta
function solutions exist, and we have mathematical 
machinery for deciding this question too. The matter of 
construction of models fitting the data is more complex 
because, among other things, the solutions are not nor
mally unique. When solutions have been shown to exist, 
however, we have the means of constructing models in 
three special classes of conductivity functions, and these 
may be assumed to cover most cases of geophysical 
interest. 

In a future paper I hope to explore the practical conse
quences of the theory set out here, in particular, develop
ing numerically stable procedures and applying them to 
actual measurements. The most important unanswered 
question is that of the valid inferences that can be drawn 
about the actual conductivity from a given collection of 
data. In a nonlinear problem like this one the most fruitful 
approach appears to be that of optimizing functionals of u 
using the data as constraints. A variational technique 
naturally suggests itself here, and it is encouraging that the 
data cj are in fact Frechet differentiable for all of S+. 
Recent work by Barcilon [1979] suggests that when linear 
functionals of u are minimized, the class of delta-function 
elements D+ may occur as the optimizing solutions; there
fore it seems likely that the framework set up for the 
results of the present paper may be a suitable one for the 
solution of this very important problem. 
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