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S U M M A R Y
A closed-form solution is given for a 2-D, transverse electric mode, magnetotelluric (MT)
problem. The model system consists of a finite vertical thin conductor with variable integrated
conductivity over a perfectly conducting base. A notable property of the solution is that the
frequency response possesses a single pole in the complex plane. Systems with finitely many
resonances play a central role in the 1-D MT inverse problem based on finite data sets, but
until now, no 2-D system of this kind was known. The particular model is shown to be just one
of a large class of thin conductors with same the property, and further examples are given. The
solutions of the induction problem for members of this family can often be written in compact
closed form, making them the simplest known solutions to the 2-D MT problem.

Key words: Electromagnetic theory; Magnetotelluric; Geomagnetic induction.

1 I N T RO D U C T I O N

In the 1-D inverse problem of magnetotelluric (MT) sounding based
on a finite set of response observations, one encounters conductivity
profiles with only a finite number of resonances in their response
functions (Parker & Whaler 1981). The resonances of a physical
system correspond to singularities in its frequency response; be-
cause the fields in the MT problem obey a diffusion equation, the
resonant frequencies are not real, but are located on the imagi-
nary axis of the complex frequency plane. Sturm-Liouville theory
Parker (1994) shows in the 1-D case that every positive conductivity
function with bounded integral must be associated with infinitely
many imaginary resonances which correspond to eigenvalues of
the differential operator. Therefore systems with a finite set must
be singular is some way, and the electrical profile with this be-
havior comprises a sum of delta functions in conductivity. In two
or three dimensions, we expect on the basis of a finite difference
approximation that systems of bounded conductivity in compact
regions will also be associated with infinitely many imaginary
resonances, although the author is unaware of a rigorous proof.
The question naturally arises, Are there any singular conductivity
distributions in higher dimensions associated with a finite set of
resonances?

We concentrate on the 2-D transverse electric MT problem.
Motivated by analogy with the 1-D situation, we study initially
a thin conducting strip, oriented vertically, with variable integrated
conductivity. We find a particular conductivity distribution yields a
very simple analytic solution with a single, purely imaginary, reso-
nance in its frequency response. That solution possesses two other
unusual properties, an observation that prompts an investigation of
other possible models with one of them, namely, that the electric
field in the conductor can be written as the product of a function

of position and a function of frequency, a kind of separation of
variables.

We discover a large class of models comprised of thin conductors
with longitudinal conductivity variation that share this property. We
show they also exhibit a single resonant frequency. Several explicit
examples are given, which we derive from solutions to Laplace’s
equation using complex variable theory, although other techniques
can be equally effective. These new results appear to be the simplest
complete solutions to a 2-D MT problem currently known.

2 T H E T H I N C O N D U C T O R

The first physical system to be studied comprises a thin vertical
conducting ribbon of length a with its lower end resting on a per-
fectly conducting half-space with boundary z = 0; Fig. 1. It could
be a primitive model for a dike intruded into a sedimentary matrix
or a mid-oceanic rise. We choose coordinates with z > 0 upwards,
y along the ribbon, which is infinite in both directions since this is a
2-D problem. The electrical conductivity varies with z: we assume
the conductance function

τ (z) =
∫ d/2

−d/2
σ (x, z)dx, 0 ≤ z < a (1)

which remains finite, as the thickness d tends zero and σ grows with-
out bound. An externally generated, time-periodic, spatially uniform
magnetic field in the form B0 = x̂B0eiωt drives electromagnetic in-
duction in the system; we will refer to ω as the frequency. This is
transverse electric, or TE, mode induction (Weaver 1994). We will
assume observations of electric and magnetic fields can be made on
the line z = h with h < a.

We ignore displacement currents in an idealized model, even in
the high frequency limit, where this approximation would obviously

980 C© 2011 The Author

Geophysical Journal International C© 2011 RAS

Geophysical Journal International
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Figure 1. Top: the physical system of a thin conducting ribbon over a perfect
conductor. Bottom: equivalent system in which an image conductor replaces
the perfect conductor.

fail for a physical system. We solve for Ey, the y component of the
electric field. In TE mode induction ∇2Ey = iωμ0σEy and the other
components of E vanish. Away from the conductors, ∇2Ey = 0.
The perfect conductor at the base provides the boundary condition
on z = 0 that ẑ · B = −∂ Ey/∂x = 0; far from the origin Ey →
iωB0z. We can satisfy the first boundary condition by replacing
the basement conductor with an image of the ribbon, as shown in
Fig. 1. We perform our calculations in the equivalent model, where
the extended thin conductor is called C. Now the system exhibits
the symmetry Ey(x, z) = −Ey(x, −z) and so the magnetic field of
the currents in z < 0 cancel vertical magnetic fields on z = 0 as we
require. The tangential component of B is discontinuous across C
but Bn, the normal magnetic field, is continuous. We relate Bn to E
with Faraday’s law

x̂ · ∇ × E = −iωx̂ · B = −iω(B0 + x̂ · BJ ), (2)

where BJ is the magnetic field due to induced currents inC. Applying
Ohm’s law and the Biot-Savart formula to (2) we obtain

−dE

dz
= −iω

[
B0 − μ0

2π

∫ a

−a

τ (z′)E(z′)
z′ − z

dz′
]

, (3)

where E(z) = Ey(0, z); the principal part of the integral is understood.
By integrating over z and exploiting the z symmetry we obtain a
Fredholm integral equation of the second kind for E on C

E(z) = iωB0z − iωμ0

2π

∫ a

0
ln

∣∣∣∣ z′ + z

z′ − z

∣∣∣∣ τ (z′)E(z′) dz′, 0 ≤ z ≤ a.

(4)

There are several ways to solve this kind of equation in addition to
purely numerical techniques (Porter & Stirling 1990). For our pur-
poses the spectral expansion, or Hilbert–Schmidt method, applied
after symmetrizing the kernel, has the advantage of exposing the
frequency behavior of the solution. By comparison with the case
τ = 1, it can be shown (Porter & Stirling 1990,Chapter 7) that when
τ is positive and bounded, the kernel in (4) has infinitely many real,

positive eigenvalues, and thus there are an infinite number of purely
imaginary resonances for E. This means that τ must be singular in
some way to achieve our goal.

3 A S I N G U L A R C O N D U C TA N C E
F U N C T I O N

We introduce the singular conductance function

τ (z) = aτ0√
a2 − z2

, |z| < a. (5)

To solve (4) with this profile in terms of elementary functions we
make a change of variables: let z = acos φ and z′ = acos ψ ; then
(4) becomes

f (φ) = cos φ − i	
∫ π/2

0
ln

∣∣∣∣ cos ψ + cos φ

cos ψ − cos φ

∣∣∣∣ f (ψ)dψ, (6)

where 	 = ωμ0τ 0a/2π , a dimensionless frequency which is the
sole parameter governing the system, and

f (φ) = E(a cos φ)

iωaB0
. (7)

Following the treatment of a similar problem by Porter and Stirling
(Example 7.8, 1990), we invoke the Hilbert–Schmidt methodology.
Consider the eigensystem

K un = λnun, n = 1, 2, . . . , (8)

where

K f =
∫ π/2

0
ln

∣∣∣∣cos ψ + cos φ

cos ψ − cos φ

∣∣∣∣ f (ψ)dψ. (9)

The Fourier series expansion

ln

∣∣∣∣ cos ψ + cos φ

cos ψ − cos φ

∣∣∣∣ =
∞∑

n=1

4

2n − 1
cos(2n − 1)ψ cos(2n − 1)φ

(10)

shows that the eigensystem (8) is satisfied by

λn = π

2n − 1
; un(φ) = 2√

π
cos(2n − 1)φ. (11)

This family of eigenfunctions is complete in L2(0, 1
2 π ) and or-

thonormal. It follows that we can expand the solution to (6) in the
basis

f (φ) =
∞∑

n=1

αnun(φ) (12)

which, upon substitution into the integral equation, leads to exactly
one nonzero coefficient, namely, α1 = 1

2

√
π/(1 + iπ	). Thus by

(11) and (12)

f (φ) = cos φ

1 + iπ	
(13)

from which we conclude that

E(z) = iωB0z

1 + iπ	
= iωB0z

1 + 1
2 iωμ0τ0a

, |z| < a. (14)

The current density and normal magnetic field are:

j(z) = τ (z)E(z) = iωaτ0 B0

1 + iπ	

z√
a2 − z2

, |z| < a (15)

Bn(z) = B0

1 + iπ	
, |z| < a. (16)
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982 R. L. Parker

Figure 2. Dimensionless E, j, and Bn on the conductor C. Here γ 1 = iωB0/
(1 + iπ	); γ 2 = B0/(1 + iπ	); γ 3 = iωaτ 0B0/(1 + iπ	).

The solutions for E, j and Bn possess a single resonant frequency
at ω = 2i/μ0τ 0a. Another unusual aspect is the fact that on C
(though not elsewhere, as we will see) these fields retain the same
geometrical form whatever the frequency; Fig. 2. A third peculiarity
is that each term in (4) is proportional to the same function, z. We
will show that these three properties are related. But first we will
extend the solution from the ribbon into the whole domain and thus
obtain the MT frequency response.

4 T H E F R E Q U E N C Y R E S P O N S E

In practice the MT response of a geological system is found from
a ratio of the horizontal electric and magnetic fields at sites on the
Earth’s surface, which would be a horizontal line above the ribbon.
Eq. (14) gives the electric field only on C, so we need to calculate
Bx and Ey for points with x 	= 0 and z > a. Although we restricted
z to be less than a in (4) for the purpose of setting up an integral
equation, the equation remains valid for z > a as well. So first we to
compute the electric field on the remainder of the z-axis using (4).
Inserting (5) and (14) we find:

E(z)

iωB0
= z − i	

1 + iπ	

∫ a

0
ln

∣∣∣∣ z′ + z

z′ − z

∣∣∣∣ z′
√

a2 − z′2 dz′, |z| > a

(17)

= z − iπ	

1 + iπ	
(z −

√
z2 − a2). (18)

Eqs (14) and (18) can be combined into a single equation that gives
Ey everywhere on the z-axis

Ey(0, z)

iωB0
= z − iπ	

1 + iπ	
(z − Re

√
z2 − a2). (19)

Recall that the electric field Ey surrounding C is harmonic because
in general ∇2Ey = iωμ0σEy and σ = 0 outside C. So Ey can be

expressed in terms of an analytic function of a complex coordinate
ζ = x + iz, Needham (1999). Suppose we write

Ey(x, z)

iωB0
= z − iπ	

1 + iπ	
Re g(x + iz). (20)

To find g we focus on the behavior on the imaginary axis; we make
the identification that Re g(iz) = z −Re

√
z2 − a2, which when ζ =

iz suggests

g(ζ ) = i
√

ζ 2 + a2 − iζ. (21)

With a straight branch cut running between ±ia on the top sheet,
if the positive sign is taken for the square root with real ζ , g tends
to zero for large |ζ |. Then it can be verified that on the imaginary
ζ axis (20) agrees with (19) on the z axis, and also matches Ey far
from the origin. By a uniqueness theorem for Laplace’s equation
(Kellogg 1953,chap VIII) two harmonic functions that agree on a
boundary enclosing a region must be identical within: so (20) with
(21) is identical to Ey everywhere.

Eq. (20) provides a convenient way to compute the electric field
in the system. The magnetic fields are readily found by taking the
curl

Bx (x, z)

B0
= 1 + iπ	

1 + iπ	
Im g′(x + iz) (22)

Bz(x, z)

B0
= iπ	

1 + iπ	
Re g′(x + iz), (23)

where

g′(ζ ) = dg

dζ
= iζ√

ζ 2 + a2
− i. (24)

Notice that the functions in (20), (22) and (23) are not analytic
functions in the complex ζ plane. The fields are illustrated in Fig. 3
for the parameter 	 = 1/π . These plots may also interpreted as
magnetic field lines.

Figure 3. Contours of Ey/aωB0 for 	 = 1/π . Distances scaled by a. The
field Ey is the stream function for iωB, and so level lines of Ey are lines of
force for B with real and imaginary parts interchanged.
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Now we can calculate the c frequency response (the admittance)
at a site with coordinates (x, z)

c(ω, x, z) = Ey

iωBx
= z + iπ	[z − Re g(x + iz)]

1 + iπ	[1 + Im g′(x + iz)]
. (25)

We see from this expression that c(ω) also has a single pole on the
imaginary axis in the complex ω plane, but it is not generally at
	 = i/π : the resonant frequency for c varies with the location of
the measurement. One would expect there to be a single resonance
for the physical system independent of position. This is so if the
frequency response is defined with respect to the driving field B0,
but traditionally in MT one uses the local magnetic field Bx(x, z) at
each site as though it were the source term in constructing responses
like c(ω) or Z(ω).

5 A N A LT E R NAT I V E D E R I VAT I O N

At the end of Section 3 we remarked that the solution obtained for
the conductance model given in (5) exhibits three unusual attributes
including that of a possessing a single resonance. We will show that
the three properties are related and that a large class of models share
them. We focus on the characteristic that the current density and
fields in the thin conductor always have the same geometrical form
independent of frequency, and we look for a conductance function
τ that is consistent with that condition.

Let us write (4) compactly as

e = iω[ f − K (τe)], (26)

where K is the integral operator derived from the Bio-Savart law, and
τ is the real, positive conductance function, unknown at this point,
and iωf is the electric field associated with the external magnetic
field B0. In the limit of infinite frequency, the factor in brackets
must tend to zero, expressing the fact that the normal magnetic field
at the surface of the strip vanishes when the source field is exactly
canceled by the one generated by induced currents. The infinite-
frequency Ey in the conductor remains finite, as the solution in (14)
illustrates. The corresponding current density can found from the
solution to the Fredholm equation of the first kind

K ( j∗) = f. (27)

The function f and hence j∗ will generally be real valued and it
depends only on the shape of the thin conductor. By means of the
Hilbert–Schmidt process we can solve (27)

j∗(z) = 2B0z

μ0

√
a2 − z2

. (28)

Now we seek a solution for e at finite ω which has the same geomet-
rical form as f for all frequencies: in other words, it can be written
as the product of two factors, one depending on frequency only, the
other, f , on position only

e(z, ω) = β(ω) f (z). (29)

Here β may be complex. Inserting (29) into (27) we infer that

� K (τ f ) = f, (30)

where � = β(∞). We observe � is real. Substituting (29) and (30)
into (26) we find

β(ω) = iω

1 + iω/�
. (31)

Hence we see that the condition of geometrical similarity auto-
matically yields a single resonant frequency, and that frequency is
i� .

Since f is known we can solve for the conductance by looking at
the infinite-frequency limit

τ (z) = j∗(z)

� f (z)
= 2

μ0�
√

a2 − z2
(32)

from (28), which agrees with (5) when � = 2/μ0aτ 0. Eq. (32) can-
not yield a physical conductance if the ratio of f and j∗ changes sign
on the interval (0, a), but of course for the system we have chosen
this presents no difficulty. This derivation has generated a family
of conductivity models, related to each other by a multiplicative
factor, the constant � , a free parameter setting the scale for the
conductance.

In the foregoing analysis we have assumed a particular geometry
for the conducting sheet and by means of the factorization (29) we
have deduced the conductance in a kind of inverse problem. The
analysis does not in fact rely on the particular shape of the thin
conductor, and it can be applied to 2-D thin sheets of almost any
shape as we will discuss next.

6 G E N E R A L I Z AT I O N : T H E C L A S S S R +

Suppose that (26) applies to a thin sheet with a completely different
shape from that of our particular example. Then K will be different
in detail from the kernel in (4); in fact it must now be a line inte-
gral on the possibly curved conductor, and it will always be real.
The function f is found by integrating the normal component of B0

along the conductor; it is easily seen that f (s) = z(s)B0, where s is
the distance along the conductor. In the limit of infinite frequency,
currents flow to cancel the normal magnetic field and so j∗ can be
discovered by solving (27). We may interpret the infinite-frequency
case as a boundary value problem for Laplace’s equation in two
dimensions, the classic problem of inviscid flow around an im-
permeable obstacle (Keener 1988), or the elementary electrostatics
problem of a thin grounded conductor (Panofsky & Phillips 1962).
Once we have discovered the currents j∗ we compute the conduc-
tance function via (32). The electric field on the conductors for
finite ω follows as before from (29) and the electromagnetic fields
can be extended out into the rest of space by the Biot-Savart law
and analytic continuation. Thus any collection of thin conductors
is a candidate for this treatment, but a potential impediment to its
success is the requirement that τ be nonnegative. We call the family
of successful thin conductors SR+, for Single Resonance, Positive
conductors.

We will illustrate the process with some examples. Consider
some geometrical arrangement of thin conductors, which we will
continue to call C. We impose mirror symmetry across the line z =
0 as before to provide image currents that substitute for a perfect
conductor on that line. The perfect conductor simplifies the analysis
by providing a convenient boundary on which to set Ey = 0. For the
purposes of producing some concrete examples it turns out to be
more convenient to discard the integral equation formulation. The
first step is to solve the boundary value problem in the limit ω →
∞.

As ω increases, Ey away from C grows indefinitely (in contrast
to the field on C which remains finite), so we work instead with the
magnetic field and its vector potential A. Of course B = ∇ × A
but, since we have a 2-D system, A possesses only one component
A = ŷA. We choose the gauge condition ∇ · A = 0 and then it
is easily verified that in the interior ∇2A = 0, that is, A is also a
harmonic function. To match the driving magnetic field A → zB0

as z → ∞. The condition that Bn = 0 on C means that A = constant
there. We may solve the boundary value problem by any of the
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984 R. L. Parker

standard methods, although the most useful to us is the application
of complex analysis; see the next Section.

Once the solution for ∇2A = 0 has been found, the next step is
to calculate the current density in the thin conductor: by Ampère’s
law

μ0 j∗ =
(

∂ A

∂n

)
+

−
(

∂ A

∂n

)
−

(33)

that is, the jump in normal derivative across the sheet. Thus we
discover the lateral conductivity variation

τ (s) = j∗(s)

� B0z(s)
, (34)

where s is the distance along the curve of the conductor; recall �

is a free parameter. At this point we must check that τ ≥ 0.
If there are only positive values for τ we can proceed to solution

of the TE mode induction problem at finite ω, as follows. Let B∗
be the magnetic field associated with the current system j∗ (not just
on the conductor, but everywhere), easily found by B∗ = ∇ × A −
B0. Then the magnetic field at frequency ω is the complex linear
combination

B(ω) = B0 + iω

� + iω
B∗ (35)

and similarly

− Ey(ω)

iω
= zB0 + iω

� + iω
A∗, (36)

where A∗ = A − zB0 which is the y component of the vector potential
associated with currents in C. Evidently, these fields are associated
with a single resonance at ω = i� .

7 E X A M P L E S

To generate examples we return to the representation of a harmonic
function by an analytic function in the complex ζ plane. Our ap-
proach will be to begin with a vector potential and explore the
shapes of the potential conductors C that arise from it. To solve the
boundary value problem for Laplace’s equation at infinite frequency
we introduce a complex potential � such that

A(x, z) = Re �(ζ ) = Re �(x + iz). (37)

From B = ∇ × A and (37) we find that

Bz(x, z) + iBx (x, z) = d�

dζ
. (38)

Remember, in the limit ω → ∞, Bx and Bz are real: perfect conduc-
tors are not associated with phase shifts. The complex potential for
the ribbon studied in Section 3 is

�(ζ ) = −iB0

√
ζ 2 + a2 (39)

with the branch cut running directly between ±ia where Re � = 0;
the cut is identified with the conductor. In the following illustration
we employ the classic potential associated with fluid passing over a
hemicylindrical obstacle (Keener 1988):

�(ζ ) = −iB0ζ − iB0a2

ζ
. (40)

As shown in Fig. 4 this function causes the contour Re � = 0 to
form two parts, a circle of radius a centered on the origin and the line
z = 0. The circle encloses the singularity. For the first illustration
we will identify C with the zero-level contour. Then, because in the

Figure 4. Top: contours of Re �/aB0 given in (40). When the line Re � =
A = 0 is chosen to be C, the magnetic field at infinite frequency is ex-
cluded from the shaded region. Distances scaled by a. Bottom: scaled vector
potential, A�/aB0, associated with currents j� flowing in C.

high frequency limit C becomes perfectly conducting, the magnetic
field is excluded from the disc |ζ | < a, shown shaded in the Figure.
The vector potential inside is constant, and since A must be contin-
uous, the constant is zero. Thus the solution to the boundary value
problem for ∇2A = 0 that we need is not the real part of � in (40),
but of

�̂(ζ ) =
⎧⎨
⎩

−iB0ζ − iB0a2

ζ
, |ζ | ≥ a

0, |ζ | < a.
(41)

Contours of A are lines of force for B; we show them in Fig. 4. The
lower half of the Fig. 4 gives the vector potential A∗ of the currents
flowing in the conductor; A∗ can be used with (35) and (36) to find
the complete solution of the TE mode induction problem at any
frequency.

To specify the conductivity and verify that it is a physically
realizable model, we compute the normal derivatives of A and hence
the current density j∗: �̂ = constant inside the disc, and therefore
(∂A/∂n)− = 0. Outside we observe that (∂A/∂n)+ > 0 and so
(

∂ A

∂n

)
+

=
∣∣∣∣d�

dζ

∣∣∣∣ = B0

∣∣∣∣1 − a2

ζ 2

∣∣∣∣ , ζ ∈ C (42)

= 2B0 sin θ, (43)

where θ = argζ . Thus from (33) and (34) we find the conductance

τ = 2B0 sin θ

μ0 B0�a sin θ
= 2

μ0a�
= constant. (44)

There is no change of sign in τ so here is a new member of SR+, a
very simple one with constant conductance. In this case the conduc-
tance is bounded, unlike the behaviour we found in first solution,

C© 2011 The Author, GJI, 186, 980–986
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where τ (z) increases like (a − z)−
1
2 toward the tip of the conductor

at z = a.
The choice of the contour Re � = 0 in this example leads to a con-

ductor of finite length, like the one which began our investigation.
However, there is nothing special about that particular contour as
far as the infinite-frequency boundary value problem is concerned:
any line, Re � = constant may serve as a potential conductor, since
by definition Bn = 0 on every one. If we choose a contour with p =
Re � < 0 we find C is one of the closed contours inside the shaded
region. Those contours run right through the singularity at ζ = 0,
and give rise to non-integrable current densities and a discontinuous
vector potential. Such pathological behavior cannot be associated
with a physical model.

In contrast, when we select a level with Re � = p > 0 for C,
the normal derivatives of A and currents are well behaved. The
conductor becomes infinitely long, a smooth symmetrical hum-
mock that does not touch z = 0 and which obeys the cubic
equation

z3 − bz2 + (x2 − a2)z − bx2 = 0, (45)

where b = p/B0. The infinite-frequency boundary value problem
has the solution A = Re � above the curve, and A = p below it.
It is easily seen that, as before, (∂A/∂n)+ > 0 and that (42) still
applies, though not (43). Since z > 0 everywhere on C, we can
construct a member of SR+. For example, if we choose the line
p = Re � = 0.25aB0, the new C becomes the line labelled 0.25
in the top half of Fig. 4, and dashed in the lower plot. The new
B∗ remains a dipole field above the dashed line, and the uniform
magnetic field now fills the region below it. The current j∗ sustaining
A∗ is shown in Fig. 5, along with the corresponding conductance
of C.

We must not leave the impression that every arrangement of
thin conducting bodies leads to a member of SR+ by the process
of adjusting its conductance distribution. For example, consider a
complex potential with two poles in the ζ plane:

�(ζ ) = −iB0ζ − iB0a2ζ

ζ 2 + a2
(46)

Figure 5. Current density j�(x) in C shown in Fig. 4 when p = 0.25aB0 in the
infinite-frequency limit, and corresponding conductance, τ (x). Quantities
are scaled to be dimensionless.

which has the proper symmetry across z = 0. If we choose for
C the contour level p = Re � = 0.775702aB0 there is a closed,
almost circular, oval which might be a member of SR+. But to
expel the source magnetic field at high frequency from the interior,
current must flow in the conductor in both the positive and negative
y directions, and hence negative τ is required in (34), making the
model nonphysical.

For the purposes of creating a few simple examples we have cho-
sen to start with � and examine the shapes of potential members
of SR+. If, however, one wanted to specify the shape and to dis-
cover the associated complex potential, that boundary value problem
could be solved by means of the Schwarz-Christoffel transforma-
tion (Driscoll & Trefethen 2002). We will not pursue that approach
here.

8 D I S C U S S I O N

We have described SR+, a new class of special solutions to the
TE mode MT problem in which the frequency response is remark-
ably simple: there is single pole on the imaginary frequency axis.
The models are found by considering the infinite-frequency case
of induction in an arbitrary arrangement of thin conductors, when
the normal magnetic field vanishes on the conductors. Based on
the currents in the system, we adjust the conductance distribu-
tion in the thin conductors appropriately. Many of these solutions
can be written without approximation as finite expressions in el-
ementary functions and therefore they are easily calculated and
simple to analyze in detail. Singular models like these consist-
ing of thin conducting layers, are natural models for a number
of geophysically important systems, like fluid-filled cracks. Sys-
tems with a finite number of resonances play an important role
in the 1-D MT inverse problem with finite data sets, but whether
they are useful for inversion in two- and three dimensions is
unknown.

This work leaves open a number of interesting questions. For
example, How does one construct models with two resonant fre-
quencies, or with N of them? The approach of this paper offers no
clue. The only system with N ≥ 2 resonances that the author has
been able to devise is based on concentric cylinders, and there is
no obvious path to greater generality. Another question is whether
there are any models with a finite set of resonances for the trans-
verse magnetic mode induction problem of MTs, where the driving
magnetic field is parallel to the strike of the model. And of course,
one must also wonder about fully 3-D systems. The analogous pro-
cess in three dimensions to the one we have considered here leads
to anisotropic conductance in the conducting sheets, because the
electric current and the tangential electric field are vectors which
will not in general be parallel. That seems to be an unnecessary
complication. Clearly, we are far from a complete understanding of
this unusual class of conductivity models.
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