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The ocean-coast effect re-examined 
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Summary. The Wiener-Hopf technique is used to obtain an analytic solution 
in closed form for an oceancoast model that was studied in a recent paper 
with the aid of a numerical method of solution. The model consists of a 
uniformly conducting half-space representing the solid Earth overlain by a 
perfectly conducting half-sheet representing the ocean, with the inducing 
magnetic field uniform and perpendicular to the edge of the sheet (E- 
polarization). The primary purpose of the investigation is to resolve a large 
discrepancy between the published values of the horizontal magnetic field 
over the land surface and those obtained by another more general numerical 
method applied to  a model in which the ocean is represented by a thin sheet 
of very large finite conductance. The analytic solution reveals errors in the 
previously published values of the horizontal magnetic field on the land 
surface but confirms the general accuracy of the results for the other field 
components. The errors are shown to be responsible for the abnormal behaviour 
of the Parkinson vectors in the previously published work. For reference the 
values of the surface field components obtained from the analytic solution 
are tabulated to three figure accuracy. 

1 Introduction 

Two recently published papers (Fischer, Schnegg & Usadel 1978; Green & Weaver 1978) 
have dealt with the mathematical solution of a two-dimensional problem in electromagnetic 
induction in which a local region of the Earth is represented by a uniformly conducting half- 
space overlain by a thin sheet whose conductance is variable in one horizontal direction, and 
in which the harmonic inducing field with time dependence exp(iwt) is horizontal and 
uniform. Fischer et ul. were primarily interested in examining the ‘coast effect’ and so 
restricted their analysis to a model in which the surface sheet consisted of a single half-plane 
Of perfect conductance, and considered only the (E-polarization) solution with the electric 
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Figure 1. Variations of the electric field E, the horizontal magnetic field Y and the vertical magnetic field 
Z over the surface of the oceancoast model according to Green & Weaver (1978) (solid line) and Fischer 
et al. (1978) (broken line). Real and imaginary parts of the dimensionless quantities E/2B0w6,  Y / 2 B ,  - 1 
and Z / 2 B ,  are plotted against distance from the coastline in units of skin depth. The fields E and Z vanish 
over the ocean (y > 0). 

field parallel to  the edge of the half-plane. It is of interest to compare their results with those 
obtained by the more general method of Green & Weaver where the (finite) conductance 
70.’) of the sheet may vary arbitrarily in the horizontal direction y .  In this latter method the 
model of Fischer et al. can be approximated by giving 7 some very large constant value for 
y > 0 and putting7 = 0 fory < 0. 

The results of such a comparison are shown in Fig. 1 (see also Green 1978). The value of 
r for y > 0 was chosen to be 10l2 in units of a6 where u is the conductivity and 6 the skin 
depth of the underlying medium. It can be seen that excellent agreement between the two 
methods of calculation is obtained for the electric and vertical magnetic fields and also for 
the horizontal magnetic field over the highly conducting sheet (the ocean) in the half-plane 
y > 0. However, over the half-plane y < 0 (land) there are quite large differences between 
the two sets of calculated values for both the real and imaginary parts of the horizontal 
magnetic field. I t  remains to be decided whether this is a result of a computational error in 
one of the solutions (and if so which one) or whether it represents some non-uniformity in 
the solution as 7 -+ 00 in y > 0. After all it is known that the finite jump discontinuity in the 
horizontal magnetic field at y = 0 becomes an algebraic singularity like (as y + to) 
when 7 is made infinite in y > 0 (Weidelt 1971). 

This question is best resolved by finding the analytic solution of the ocean-coast model in 
closed form, thereby avoiding the solution of an integral equation for the electric field by 
approximate numerical procedures as was necessary in the methods of both Fischer et al. 
and of Green & Weaver. Weidelt (1971) has already obtained an analytic solution of the 
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The ocean-coast effect re-examined 117 
closely related problem of E-polarization induction in two adjacent half-sheets of different 
finite conductances located in a region of free space, using a method of contour integration 
to solve the dual integral equations that describe the problem. It would be possible to adapt 
Weidelt’s method of solution to incorporate the underlying half-space of conductivity u, 
and also to modify his boundary conditions to account for the ocean of perfect conductance 
appearing in the model of Fischer et al. However, we shall follow the more traditional 
approach in which the region above the Earth is initially assumed to have a small non- 
vanishing conductivity so that the standard Wiener-Hopf technique can be applied to solve 
the problem. The required solution can then be found by letting this small conductivity tend 
to zero. 

2 A closed form solution 

The z-axis is chosen to be vertically downwards and the electric field E (y, z) is assumed to 
be everywhere parallel to the x-axis. The half-space z > 0 represents the conducting Earth 
while the region z < 0 containing the source of the inducing magnetic field is assumed to be 
a poorly conducting medium with correspondingly large skin depth X (where h > 6). For our 
final solution we shall let X + 00. Vacuum permeability is assumed everywhere. 

With displacement currents neglected and a time dependence exp ( iwt)  understood, the 
electric field satisfies 

(2i/h2)E (z < 0) 

( 2 i / 6 2 ) ~  (z > 0) 
V 2 E =  { 
subject t o  the continuity of E across z = 0 together with the boundary conditions 

E’ 0, - 0) = E’ 0, t 0), (y < 0); E 0 , O )  = 0, (’y > 0). ( 2 )  
Here E‘ denotes the derivative of E with respect to z. In addition we require E - 0 as z --f 
t 00 and E 0, z) - E+ (z) as y -, +_ m where E, (z) are the appropriate one-dimensional solu- 
tions given by 

sinh [(l + i)z/h] (z < 0) 

(z 0) 
E+ (z)  = - wBoh( l  t i) 

and 

6cosh[(l  +i)z/h] -hsinh [(l +i)z/h], ( Z G  0) 
26 exp [--(1 + i)z/6] , (z 2 0) 

E- (z) = 

where the constant B,, is the amplitude of the source magnetic field (in the y-direction) 
measured on the surface z = 0. Now the function 

f @ , z ) = E O ,  2 ) - E + ( z )  (3) 

clearly satisfies equation (1) subject to the boundary conditions f- 0 as y -+ +m and as 
z --* kw, and 

f- 

as Y -+ -a. Clearly f is continuous across z = 0 and the surface boundary conditions (2 )  
become 

f b , - 0 ) = 2 i o B o + f ’ ( y , t 0 ) , ~ <  0); f @ , O ) = O  @ > O ) .  (4) 
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118 
The solution of (1) subject to mixed boundary conditions on z = 0 can be obtained by 

the Wiener-Hopf technique. We shall only sketch the method of solution here (see Dawson & 
Weaver 1979 for a complete treatment of the method applied to a similar induction problem). 
Defining f = f+ + f- where f+ = 0 for y < 0, f- = 0 for y > 0, and introducing the Fourier 
transform 

U. Raval, J. T. Weaver and T. W. Dawson 

1 
F(f, z) =- 

where { = t iq ,  we find that the solution of (1) withn the strip - l / h  < q < 0 in transform 
space is 

where r(f,a) = (f’ t 2i/a2)”’. The functions F+ and F- ,  the Fourier transforms off+ and 
f- , are analytic in the half-planes q > - l / X  and q < 0 respectively. The solution above auto- 
matically satisfies all the boundary conditions except the first condition in (4) which in 
transform space becomes 

FI_ (5 ,  - 0) = FI_ (f , t 0) + A/( (6)  

where A = oB, (2/7r)”’. Differentiating (5) at z = f 0, substituting from (6) and rearranging 
we obtain 

where K +  ({) and K -  (5 )  are non-vanishing and analytic in the respective half-planes 
7) > - l / X  and q < 0, with 

K+ ( O K -  (5 )  = Y ( f ,S )  + Y (f, = K (0. (8) 

The usual arguments based on analyticity and Liouville’s theorem show that each side of 
equation (7) vanishes, whence by equation (5) and Fourier inversion 

where 0 < a < l /h and we have defined 

R (5 )  = K (fM (01, R+ (0 = K+ (OK+ (0) * (10) 

For its evaluation on the surface z = 0 it is convenient to transform the integral in (9) by 
closing the contour at infinity with excursions along the hyperbolic branch cuts Eq = - 1/X2 
and Eq = - 1/6’ from T i.0 to the branch points at f (1 - i)/h and f (1 - i)/6 respectively (see 
Dawson & Weaver 1979). When y > 0 the closed contour C1 is in the lower half-plane; when 
y < 0 the closed contour Cz is in the upper half-plane. Around C1 the integral vanishes by 
Cauchy’s theorem whereas around C,, which encloses the pole at f = 0, the value of the 
integral is unity by the residue theorem. The substitutions u = (q’ - l/X4q’)”’ and u = 
(q2 - l/64q2)1’2 for the portions of the contours along the respective branch cuts, permit 
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The oceancoast effect re-examined 119 
the solution for the electric field in z < 0 to be written, with the aid of (3), in the separate 
forms for positive and negative y as follows: 

fory > 0, 

and fory < 0 

- hsinh ~ 

(1 t i ) z  [ 6 cosh x 
+ f [ { ug [u,y ,  y (up 611 exp [- izy (up 0)1 

( l  i)zl EO,z)  - h(1 +i) 
o B o  h t 6  A 
c_-- 

- g [ u , y , r ( u , h ) ]  [ucoszu -i.y(u,i0)sinzu]) d u  (12) 

where = h6/(hz - 
field components, Y horizontal and Z vertical, are given at once by the Maxwell equations 

and g(u, y, a) = u exp @a)R+ (ia)/az. The associated magnetic 

YO,z)=(i/w)aECv,z)/az, ZO,z)= -(i/o)aEO,z)/au. (13) 

A standard procedure (see, e.g. Noble 1958, p. 16) for decomposing the function R ({) 
gives 

and 0 < b < l/h. The integrand in (15) i s R ' ( { ) / { ( {  - w ) R  ({)> obtained from (8) and (10). 
The integral can be transformed with the aid of Cauchy's theorem by closing the contour in 
the lower half-plane cut along the line { =rexp(-'/4ni) from r to the branch point at 
r=&X and passing through the other branch point at r =&ti. Note that between infinity 
and its branch point the function 7 has a negative sign on the side of the cut facing the 
imaginary axis, and a positive sign on the other side. Thus the product r({,A)y ( { , 6 )  changes 
sign from one side of the cut to the other only between the branch points r = f i / h  and r = 
@ / 6 .  The substitution sin6 = /3('/zr2 - 1/Xz)"2 simplifies the integral further so that (15) 
becomes 

If we now let h -, 00, so that 0 --* 6 and y (u, A) -f Iu I ,  then (1 1 )  and (12) reduce to the 
solutions for the electric field in a nonconducting region z < 0. If we differentiate this 
solution according to (13) and then set z = 0 we finally obtain the desired expressions for 
the surface electromagnetic field. The non-vanishing components of this field are 
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120 U. Raval, J. T. Weaver and T. W. Dawson 

In the second equation (18) we have noted that R +  (- iu) = R (iu)/R+ (iu) since R is an even 
function (Noble 1958, p. 17). The limiting form of (16) as X -f 00 can be integrated exactly 
to give 

which, substituted in (14) and simplified by the change of variable 6 w d%-= - 2s/( 1 t s2) 
gives R+ (I) in the form 

where 

For the functions R+ (iu) and R+ [iy (u, t i ) ]  appearing in the integrands of (17), (18) and 
(19) we note that 

1 /2(1 - i ) 6 y ( u , 6 )  1 
/2 (1 - i )6u 

1 + 6 u f i -  
h (iu) = h t iY@,  611 = 

1 t (1 t 7 2 i 6 2 u 2 ) ' / 2  ' 

so that as u varies from 0 to 00, h (iu) and h [iy (u, t i)] range from 0 to - i and from 1 to 
- i respectively with their moduli always less than unity. Thus the contour of integration in 
(21) can be chosen such that 1s I < 1 ,  allowing us to expand the integrand as an infinite series 
and then to integrate term by term. The result is 

{ h ({)I 2n+ * m 

d s  = logh (I) arctanh (I) - C (- 1)" 
n= 0 (2n+  1)2  . 

From equations (21), (22) and(23) the required numerical values of R+ are readily computed 
for substitution in (17), (18) and (19), from which the solutions for the surface electro- 
magnetic field can be evaluated by numerical integration. 

3 The horizontal magnetic field over the land surface 

The expression for Y o , O ) ,  0, < 0), given by the first of equations (18) is of particular 
interest because it represents one of the field components that is commonly recorded near a 
coastline - the horizontal magnetic field over the land surface - and it is in this component 
that the discrepancy between the calculations of Fischer et aZ. (1978) and Green &Weaver 
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The ocean-coast effect reexamined 121 

(1978) occurs. It is possible to  transform the integral in this expression into a simpler form 
that is not only more convenient for numerical calculation but also obviously real at y = 0. 

The substitution u = y(u,S) in the first term of the integral transforms it into 

where the contour of integration I? runs from (1 t i ) / S  to +m along the half-branch of the 
rectangular hyperbola joining these points in the complex plane. The contour of integration 
for the second term can now be displaced from the real axis to run along the radial line from 
0 to (1 t i)/S in the complex plane and thence to t m  along the hyperbolic contour r. When 
the two terms are combined in equation (18) the integrals along r exactly cancel leaving 
only the integral from 0 to (1 f i ) / S  of the second term. Thus, rearranged so that ‘ / t i  u (1 -i) 
is the variable of integration, the expression for the surface magnetic field in the region y < 0 
becomes 

-- Y@? 0)  (1 - u2)1/2S(u)exp [(l t i )yu/S]  du 
2BO 

where S ( u )  = R ,  [(l - i) u/S] . By (21) we see that S (u) is purely real because 

h [(i - l)u/S] = (1 - (1 - u2)1/2l /u.  

It  follows that 

is also rea1,so that ImY (-0,O) = 0. A Gauss-Legendre evaluation of (25) gives Re Y(-O,O)/ 

Both of these results agree with the curves in Fig. 1 based on the Green & Weaver (1978) 
calculations. Fischer et al. (1978) claim that a detailed investigation of the behaviour of the 
field asy + - 0 shows that the real and imaginary parts of Y (-0, 0)/2B0 approach 1.14 and 0 
respectively, but it is not clear how these limiting values could be reached by the broken line 
curves in Fig. 1,  both of which appear to be leading towards large negative values asy  + - 0, 
without the horizontal gradient of the field undergoing unreasonably large and sudden 
changes close to the origin. In any case their value of 1.14 for the limiting value of the real 
part of the field does not agree with the results obtained from (25). 

2Bo = 0.650. 

4 Numerical results 

A Gauss-Legendre numerical integration was used to evaluate the surface field components 
from equations (17), (191, (24) and the second of equations (18), for various values of y .  
The electric and vertical magnetic field values so obtained were indistinguishable, when plotted 
graphically, from the Green & Weaver values depicted by the solid line graphs in Fig. 1. The 
plotted values of the horizontal magnetic field were also coincident with the solid line graphs 
for y < 0, but for y > 0 they tended to follow more closely the broken line graphs of Fischer 
et al. as the field approached its singularity at y = + 0. A detailed examination of the asymp- 
totic behaviour as y + - 0 of the integrals in equations (18) and (19) shows that this 
singularity, and also that in Z ,  is algebraic and of order y-’”. 

The values of the real and imaginary parts of the dimensionless field components 
E12Bow6, Y/2Bo, and Z/2Bo aregivenin Table 1 to three figure accuracy for selected values 
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122 U. Raval, J. T. Weaverand T. W. Dawson 
Table 1. Surface field values obtained from the analytic solution. 
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2 . 0  
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2.75 

3 . 0  

3 .25  

3 . 5  

4 . 0  

5.0 
m 

E ( Y  .0)/2B01~6 

Re y < O  I m  

0 0 

0.058 0.137 

0 .084  0.190 

0.121 0.261 

0 .151  0.310 

0 .177  0.348 

0.200 0.377 

0.221 0.401 

0 .240  0.421 

0.258 0.437 

0.274 0.450 

0 .290  0 .461  

0 .323  0.482 

0 .352  0 .494  

0.372 0.501 

0 .390  0.506 

0.404 0.508 

0.416 0.508 

0 .426  0.508 

0.434 0.508 

0 .440  O . j O 7  

0 .445  0.506 

0 .454  O.jO5 

0 .464  0.503 

0.5 0 .5  

Re y < O  I m  

0.650 0 

0.658 0.0079 

0.666 0 .0152  

0.682 0.0286 

0 .698  0.0403 

0.714 0.0503 

0.729 0.0590 

0.743 0.0663 

0 .758  0 .0724  

0.771 0.0774 

0.784 0.0814 

0.796 0.0846 

0.825 0.0892 

0.849 0.0902 

0 .870  0.0888 

0.888 0 0856 

0.903 0.0814 

0.315 0.0766 
0 .925  0 0717 

0.934 0.0668 

0.941 0.0622 

0.947 0.0578 

0 955 0.0501 

0 966 0.0388 

1.0 0 

Re YDO I m  

m -m 

2.091 -0.555 

1.704 -0.382 

1.441 -0.258 

1.330 -0.203 

1.266 -0.170 

1.224 -0.147 

1.194 -0.131 

1.172 -0.118 

1.154 -0.107 

1.140 -0 .099  

1.128 -0.092 

1.106 -0.078 

1.090 -0.069 

1.079 -0.061 

1 070 -0.055 

1.063 -0.050 

1.057 -0.046 

1.053 -0.043 

1.049 -0.040 

1.045 -0.037 

1.042 -0.035 

1.037 -0.031 

1.030 -0.026 

1.0 0 

Z(Y.0)/2S0 
Re y < O  I m  

-m - 
-1.324 0.598 

-0.894 0 .438  

-0.574 0.327 

-0.424 0 .276  

-0.330 0.245 

-0.265 0.221 

-0.216 0.202 

-0.118 0 .185  

-0.147 0.171 

-0.122 0 .157  

-0.101 0 .145  

-0.063 0 .119  

-0.038 0.098 

-0 022 0.080 

-0.012 0.065 

-0.005 0.053 

-0.001 0 .043  

0.001 0 .035  

0.002 0 .028  

0.003 0.023 

0.003 0 .019  

0.003 0.014 

0.001 0.014 

0 0 

of Iy I /6. These exact results attest to  the accuracy of the general numerical method of Green 
& Weaver (1978) for E-polarization problems. They also reveal errors in the values of the 
horizontal magnetic field for y < 0 (land) obtained by Fischer ef al. (1979, but confirm the 
general accuracy of their results for the electric field, the vertical magnetic field and for the 
horizontal magnetic field in the region y > 0 (ocean). In this regard it is interesting to note 
that in a subsequent paper Fischer (1979) found that ‘something went wrong’ when calculat- 
ing the real and imaginary Parkinson vectors whose lengths are defined by u, = sine, and 
ui = sin B i  respectively, where 

His calculated variations of u, and ui over the land surface were clearly in error, especially u, 
which even went negative near the coastline. Fischer attributed this abnormal behaviour to 
the extreme features (i.e. the thin sheet and perfect conductivity) of the ocean model. Now 
the local field Y 01, 0) in definition (26)  is really only an approximation to the regional field 
2Bo because the existence of Parkinson vectors for real data recorded at any given site depends 
on an assumed linear relation between the induced vertical field and the regional horizontal 
field. When Fischer replaced Y b , O )  by 2Bo in (26) be obtained quite reasonably behaved 
Parkinson vectors. The explanation of this is now clear; the original errors in u, and ui were 
due not to any unrealistic features of the model but to the fact #at incorrect values for 
Y Q ,  0) were used in the calculation. When the accurate values of Y and 2 given in Table 1 
are substituted in equation (26)  it is found that both u, and ui vary in the expected manner, 
their magnitudes increasing steeply as the ocean coast is approached with u, positive and ui 
negative. Moreover it is apparent from columns 4 and 5 in Table 1 that Y 0, 0) /2Bo does not 
deviate too far from the regional value of 1 t i0 over the whole of land surface, so that it is 
indeed possible to approximate the regional field by the local field when defining the Parkinson 
vectors, even for this highly idealized model. 
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