M.L. RICHARDS, U. SCHMUCKER, E. STEVELING "Entzerrung der Impedanzkurven von magnetotellurischen Messungen in der Schwäbischen Alb"

In den Jahren 1978 und 1979 wurden Messungen zur erdmagnetischen Tiefensondierung und Magnetotellurik in der Schwäbischen Alb durchgeführt, um die Struktur der elektrischen Leitfähigkeit in der Umgebung der geothermischen Anomalie Urach zu untersuchen. Die Lage der Registrierorte geht aus Abb.1 hervor.

Abb.1: Vereinfachte geologische Karte der Schwäbischen Alb mit Angabe der Registrierorte (aus: RICHARDS et al., 1982).

Der Gang der Datenanalyse wird bei RICHARDS et al.,(1982) beschrieben. Als ausgezeichnetes Koordinatensystem minimaler Schiefe und maximaler Anisotropie der magnetotellurischen Impedanz ergibt sich ziemlich einheitlich für alle Stationen und Perioden ein um 32° gegen geographisch Nord nach Westen gedrehtes System (rotierte Nordrichtung N' = N 32° W, rotierte Ostrichtung E' = N 58° E). In diesen Koordinaten erweisen sich auch die magnetischen Übertragungsfunktionen als näherungsweise 2-dimensional, und zwar so, daß nur in der neuen Ostrichtung linear polarisierte magnetische Variationen ein anomales magnetisches Variationsfeld liefern. Die auf dem Meßprofil angetroffene Leitfähigkeitsverteilung besteht aus langgestreckten Strukturen von SE nach NW, also senkrecht zum Verlauf der Schwäbischen Alb. In diesem Sinne sollen die Tensorelemente $Z_{N'E'}$ als Impedanzen für E-Polarisation und $Z_{E'N'}$ als Impedanzen für H-Polarisation betrachtet werden.

Um einen Überblick über Eindringtiefen und Widerstände zu erhalten, werden die Impedanzen als komplexe Funktionen der Periode T in scheinbare Widerstände ρ^* (T) als Funktion der Tiefe z^* (T) übertragen:

$$Z_{N'E'}/i\omega = C(T) = g(T) - ih(T)$$

$$\rho_{a}(T) = \omega\mu_{o} \left[g(T)^{2} + h(T)^{2}\right]$$

$$tg\phi(T) = g/h$$

$$z^{*}(T) = g(T)$$

ρ× (Ωm) 500 700 1000 2000 3000 5000 7000 70 100 200 10 20 30 50 300 MOE RUD HBG 2 KBG BOE TOW 3 NID TUE 5 7 T=12.5 5 10 z* 25 20 30 (km)60 50 FDW MOE 25° 70 80 RUD-100 150 >35° -18G (macn FDV 12° 500 200 HRG WID 35° 300 TUE a=27° 2000 500 E - pol. 700 1000

<u>Abb.2</u>: Scheinbarer Widerstand p^{*} als Funktion der Tiefe z^{*} für verschiedene Stationen mit Angabe des Rotationswinkels α nach Swift.

An den untersuchten Stationen ist (mit Ausnahme der langen Perioden) h>g. Dann gilt für den scheinbaren Widerstand ρ^* und die integrierte Leitfähigkeit τ einer gutleitenden Deckschicht:

$$\rho^*(T) = \rho_a/2 \sin^2 \phi$$

 $\tau(T) = (h-g)/\rho_a$.

Abb.2 zeigt die $\rho^*(z^*)$ -Darstellung für E-Polarisation an neun Stationen des Profils. Fast von der Erdoberfläche bis tief in den Mantel hinein nimmt an allen Stationen der Widerstand einheitlich mit zunehmender Tiefe ab. Irgendwelche gutleitenden Zwischenschichten, etwa im Grenzbereich Kruste-Mantel, fehlen.

Für die 10 Stationen mit magnetotellurischen Daten wurde eine eindimensionale Inversion der Daten mit dem von SCHMUCKER (1974) angegebenen Algorithmus durchgeführt. Eingegeben wurden, mit Ausnahme der Stationen IMD, FDW und KBG, die logarithmischen Impedanzen für die E-Polarisation in rotierten Koordinaten und die mit dem $\rho^*(z^*)$ -Verfahren ermittelten integrierten Leitfähigkeiten τ einer dünnen Deckschicht.

Die so berechneten Schichtmodelle sind längs des Profils in Abb.3 zusammengestellt. Im Rahmen der untersuchten Perioden und Fehlergrenzen war eine Unterteilung in maximal 3 Schichten möglich. Mit Ausnahme von IMD sind alle Modelle vom gleichen Typus. Einer oberen Schicht mit mittleren Widerstandswerten (±100 Ohm \cdot m) folgt eine schlechter leitende Schicht und abschließend wieder ein besserer Leiter. Es gibt keine Hinweise auf eine gutleitende Zwischenschicht. Das Gebiet um BOE (Schwäbischer Vulkan) fällt nicht durch anomale Widerstandswerte auf. Ein besonders hochohmiges Gebiet liegt nordöstlich des Vulkangebiets bei TUE.

Im oberen Kasten sind die integrierten Leitfähigkeiten τ in Siemens angegeben. Mit 10 Siemens wird das kleinste τ bei TUE und die höchste integrierte Leitfähigkeit 200 Siemens im Nördlinger Ries (MOE) erreicht.

Die aneinandergereihten eindimensionalen Modelle zeigen auch im Tiefenbereich 50-100 km starke laterale Widerstandsänderungen. Da man erwarten sollte, daß in diesen Tiefen die Widerstandsverteilung unter der Schwäbischen Alb homogener sein sollte, kann man eine Verfälschung der Impedanzen durch oberflächennahe Verzerrungen vermuten.

Abb.3: Aneinandergereihte eindimensionale Widerstandsmodelle ermittelt aus einer Inversion für E-Polarisation. Die integrierten Leitfähigkeiten τ im oberen Kasten stammen aus der $\rho^{\star}(z^{\star})$ -Bestimmung. Die Werte im Widerstandsmodell haben die Einheit Ωm .

Diese Vermutung wird stark durch den Verlauf der $\rho^*(z^*)$ -Kurven in Abb.2 unterstützt. In der gewählten doppelt-logarithmischen Darstellung scheinen die Kurven parallel zueinander verschoben zu sein. Punkte gleicher Periode lassen sich näherungsweise durch Geraden verbinden, so daß die eingezeichnete Schar von Parallelen entsteht. Dies bedeutet folgendes: Die sehr unterschiedlichen Eindringtiefen C(T) einer Periode lassen sich durch einen für alle Perioden etwa gleichen Faktor A ineinander überführen. Sei also $C_N(T)$ die komplexe Eindringtiefe einer zur Norm gewählten Station, so gilt für die Eindringtiefe C(T) einer anderen Station (Subskript m)

$$C_{m}(T) = A \cdot C_{N}(T),$$

und falls A reell ist: '

 $g_m(T) = A \cdot g_N(T)$ und $h_m(T) = A \cdot h_N(T)$.

Trägt man in diesem speziellen Fall log g gegen log h auf, so liegen für eine gewählte Periode T die Wertepaare (log g, log h) aller Stationen auf einer unter 45⁰ geneigten Geraden. Wie Abb.4 am Beispiel von T=1000s zeigt, ist dies auch tatsächlich näherungsweise der Fall.

<u>Abb.4</u>: Logarithmen von Real- und Imaginärteil der beobachteten Eindringtiefen C = g-i·h für 2 Perioden. Durch die gestrichelt gezeichneten Verschiebungsbeträge $\Delta \log g$ (1000s) und $\Delta \log h$ (1000s) wird der Unterschied der normalen Eindringtiefen für T = 1000s und T' = 30s angezeigt.

Für eine zweite Periode T' (in Abb.4 ist T' = 30s) sollten dann die Stationen in gleicher Anordnung auf einer parallel verschobenen Geraden liegen mit identischen Verschiebungsbeträgen

$$\Delta \log g (T,T') = \log [g_m(T)] - \log [g_m(T')]$$

$$\Delta \log h (T,T') = \log [h_m(T)] - \log [h_m(T')]$$

für alle Stationen. Für das Beispiel in Abb.4 ist:

$$\Delta \log g (1000s, 30s) = \frac{1}{M} \sum_{m=1}^{M} \{ \log[g_m(1000s)] - \log[g_m(30s)] \} = 1,23\pm0,09$$

$$\Delta \log h (1000s, 30s) = \frac{1}{M} \sum_{m=1}^{M} \{ \log[h_m(1000s)] - \log[h_m(30s)] \} = 0,73\pm0,06$$

Dabei ist M = 10 die Anzahl der Stationen. IMD scheint ein Sonder-
fall zu sein und wurde nicht berücksichtigt. Die kleinen rms-Fehler

sind ein Zeichen dafür, daß die Stationen auf beiden 45⁰-Geraden in nahezu gleicher Anordnung liegen.

Diese als <u>stationsunabhängig</u> gefundenen Verschiebungsbeträge deuten wir als Verschiebungsbeträge der "normalen" Eindringtiefe

$$C_n(T) = Z_n(T) / i\omega = g_n(T) - ih_n(T).$$

Wir gehen dabei von den linearen Ansätzen aus, durch die in guter Näherung nicht nur die beobachteten Feldkomponenten verbunden werden dürfen (z.B. $E_x = Z_{xx} B_x + Z_{xy} B_y$), sondern auch deren normale und anomale Anteile. Die Übertragungsfunktionen, die diese Beziehungen herstellen, schreiben wir so:

$$E_x = a_{11} E_{nx} + a_{12} E_{ny}' E_{ny} = a_{21} E_{nx} + a_{22} E_{ny}$$

 $B_{x} = (1+h_{H})B_{nx} + h_{D}B_{ny}, B_{ny} = d_{D}B_{nx} + (1+d_{D})B_{ny}.$

Die Komponenten des Normalfeldes beziehen sich auf einen geschichteten Untergrund mit der Eindringtiefe C_n; es gilt also

$$E_{nx} = Z_n B_{ny}' E_{ny} = -Z_n B_{nx}.$$

Um nun die Normalanteile des Magnetfeldes durch die beobachteten Felder ausdrücken zu können, bilden wir die Kehrmatrix

mit R = $(1+h_H)(1+d_D) - h_D d_H$ und $h'_H \approx h_H$, $h'_D \approx h_D$,... für schwache Anomalien h_H , h_D ,... << 1. Dann ist

$$B_{nx} = (1-h_{H}^{\prime}) B_{x} - h_{D}^{\prime} B_{y}, B_{ny} = -d_{H}^{\prime} B_{x} + (1-d_{D}^{\prime}) B_{y},$$

 $E_{x} = -Z_{n} \{a_{11} d_{H}' + a_{12}(1-h_{H}')\}B_{y} + Z_{n} \{a_{11}(1-d_{D}') + a_{12}h_{D}'\}B_{x}$ Die aus den Beobachtungen nach dem Ansatz

 $E_x = Z_{xx} B_x + Z_{xy} B_y$ abgeleiteten Impedanzen erhalten die Form

 $z_{xx} = -z_{n} \cdot \{a_{11} \ d_{H}^{\dagger} + a_{12} \ (1 - h_{H}^{\dagger})\}$ $z_{xy} = z_{n} \cdot \{a_{11} \ (1 - d_{D}^{\dagger}) + a_{12}h_{D}^{\dagger}\}$

mit entsprechenden Ausdrücken für die Impedanzen z_{yx} und z_{yy} . Die 3-Dimensionalität von Anomalien wird durch nichtverschwindende Übertragungsfunktionen a_{12} (a_{21}) und d_{H} , h_{D} ausgedrückt, sie ist also in unserer Formulierung voll berücksichtigt.

In den Impedanzen aller Stationen ist für eine gewählte Periode T die normale Impedanz $Z_n(T)$ als gemeinsamer Faktor enthalten, in ihren logarithmischen Impedanzen als gemeinsamer Summand. Betrachten wir daher entsprechend unseren Beobachtungen die Übertragungsfunktionen a_{11} , a_{12} , h'_H usw. als reell und periodenunabhängig, so ist

mit

 $\log \{g_{m}(T)\} = \log \{g_{n}(T)\} + \log \{A_{m}\},\$ $A_{m} = a_{11} (1 - d_{D}') + a_{12} h_{D}'$

als Verzerrungskoeffizient für die Station m. Die Verschiebungsbeträge

> $\Delta \log \{g(T,T')\} = \log \{g_m(T)\} - \log \{g_m(T')\}$ = log {g_n(T)} - log {g_n(T')}

mit einem entsprechenden Ausdruck für h_m werden also ausschließlich durch die Periodenabhängigkeit der normalen Impedanz bestimmt und sind so, wie beobachtet, für alle Stationen etwa gleich. Wäre also die normale Impedanz für eine Periode bekannt, so könnte man mit Hilfe dieser Verschiebungsbeträge die gesamte normale Impedanzkurve rekonstruieren, d.h. die beobachteten Impedanzen bezüglich ihrer durch laterale Inhomogenitäten bedingten Anteile entzerren. Die Verschiebungsbeträge Alog g(T) und Alog h(T) wurden für 8 Perioden T zwischen 7.5s und 2000s, bezogen auf die Gerade für T' = 30s, bestimmt und als Kurve 'relativ' in Abb.5 dargestellt. Der Bezug auf die Gerade für T' = 30s ist völlig willkürlich. Die Kurve darf daher in der (Alog g,Alog h)-Ebene um die Beträge Alog g_n bzw. Alog h_n zur 'normal'-Kurve parallel verschoben werden. Für die Schwäbische Alb wurde die Verschiebung

 $\underset{n}{\text{Alog }} g_n = 0.94$ $\underset{n}{\text{Alog }} h_n = 1.37$

gewählt. Der Grund für gerade diese Verschiebung wird in Zusammenhang mit der 2-dimensionalen Modellrechnung deutlich werden.

<u>Abb.5</u>: Die mit 'relativ' gekennzeichnete Kurve ist eine Darstellung der nach dem Muster in Abb.4 ermittelten Verschiebungsbeträge ($\Delta \log g, \Delta \log h$) für 8 Perioden T bezogen auf T' = 30s. Durch Parallelverschiebung um $\Delta \log g_n$ und $\Delta \log h_n$ wird daraus die Kurve 'normal'.

Durch Interpolation längs der Normalkurve in Abb.5 werden für alle 25 Perioden der Analyse von 7.5s bis 2000s Normalwerte $(\log g_n, \log h_n)$ festgelegt. Nun werden durch Differenzbildung

$$\Delta \log g_{s}(T) = \log g_{n}(T) - \log g_{s}(T)$$

$$\Delta \log h_{s}(T) = \log h_{n}(T) - \log h_{s}(T)$$

die gemessenen (log g_s , log h_s) der einzelnen Stationen miteinander verglichen. Die Periodenabhängigkeit von $\Delta \log g_s$ ist in Abb.6 wiedergegeben. Die Kurven für $\Delta \log h_s$ (ohne Abb.) sehen ähnlich aus. Wenn sich die Impedanzen der einzelnen Stationen nur wegen einer Verzerrung unterscheiden würden, müßten die $\Delta \log g_s$ (und auch $\Delta \log h_s$) periodenunabhängig sein. Näherungsweise scheint das am ehesten für die langen Perioden zu gelten. Deshalb wurden die $\Delta \log g_s$ und $\Delta \log h_s$ für die 4 Perioden T \geq 1000s gemittelt und als Verzerrung $\Delta \overline{\log g_s}$ und $\Delta \overline{\log h_s}$ in Abb.7 längs des Profils dargestellt.

- 34 -

telte integrierte Leitfähigkeit τ.

- 35 - .

Die Verzerrung der komplexen Eindringtiefe C = g-ih ist an allen Stationen im Real- und Imaginärteil nahezu gleich, also ist A reell. Auch in dieser Hinsicht ist also die in Abb.5 dargestellte Normierung gut gewählt. Die größte positive Verzerrung wird in TUE, die größte negative in MOE und die geringste in BOE beobachtet. Die Verzerrung scheint mit der integrierten Leitfähigkeit τ einer dünnen gutleitenden Deckschicht zusammenzuhängen. Wie Abb.7 im Vergleich zur Darstellung von τ in Abb.3 zeigt, verlaufen τ und die Verzerrung weitgehend antiparallel. Dies gibt aber nur die allgemeine Erfahrung wieder, daß die Verzerrung des tellurischen Feldes in Gebieten mit schlechter Leitfähigkeit der Deckschichten besonders groß ist. Die in Abb.7 gezeigten Verzerrungskoeffizienten werden sich keinesfalls nur auf 2-dimensionale, sondern ganz allgemein auf 3-dimensionale lokale Oberflächenstrukturen der Leitfähigkeit beziehen.

Wir kommen jetzt zur Berücksichtigung der Verzerrung in der 2dimensionalen Modellrechnung. Das nach vielen Versuchen bisher beste Widerstandsmodell ist in Abb.8 wiedergegeben. Es besteht aus einer 1,5 km mächtigen, relativ gutleitenden und inhomogenen Deckschicht mit darunterliegenden 3 homogenen Schichten und einem abschließenden Halbraum. Etwa bei Profilkilometer 75 liegt die Forschungsbohrung Urach. Die Modell-Widerstände bis in 3 km Tiefe stimmen hier gut mit den Widerstandsmessungen in der Bohrung überein. Mit dem Modell wurde versucht, die berechneten Übertragungsfunktionen für das anomale horizontale Magnetfeld möglichst gut an die gemessenen anzupassen. Wie Abb.8 zeigt, liegen die Meßpunkte im Frequenzbereich 9.6 bis 384 cph (375 bis 9.4s) meistens dicht bei den Kurven, die Anpassung ist verhältnismäßig gut.

Wie gut kann nun dieses aus Daten der erdmagnetischen Tiefensondierung abgeleitete Modell auch die Ergebnisse der Magnetotellurik erklären? Dazu wurden in E-Polarisation für das Modell in Abb.8 Real- und Imaginärteil der komplexen Eindringtiefe C = g-ih berechnet. In Abb.9 werden die Realteile von Rechnung und Messung und in Abb.10 die Imaginärteile miteinander verglichen. In den oberen Bildhälften sind die unkorrigierten gemessenen g_s bzw. h_s für 5 Frequenzen als gestrichelte Linien dargestellt. Das Modell kann nur ungefähr das mittlere Niveau der als durchgezogene Linien gezeichneten Eindringtiefen erklären. In der Profilmitte werden zu große Eindringtiefen, an den Rändern zu kleine Eindringtiefen beobachtet.

<u>Abb.8</u>: 2-dim. Widerstandsmodell in Streichrichtung der Schwäbischen Alb von SW (links) nach NE (rechts). Profilkilometer O gibt die Lage von IMD (vgl. Abb.1) an. Darüber sind die aus dem Modell berechneten anomalen horizontalen Übertragungsfunktionen des Magnetfeldes für 5 Frequenzen aufgetragen (ausgezogene Linien Realteil, gestrichelt Imaginärteil). Als Kreuze bzw. Rauten sind die gemessenen Übertragungsfunktionen angegeben.

- 37 -

Abb.9: Gleiches Modell und gleiche Frequenzen wie in Abb.8. Verglichen wird der aus dem Modell berechnete Realteil der kompexen Eindringtiefe C (ausgezogene Linien) mit dem gemessenen (gestrichelte Linien). Im oberen Bildteil sind die Messungen unkorrigiert, im unteren wurde die Verzerrung berücksichtigt.

Abb.10: Gleiches Modell und gleiche Frequenzen wie in Abb.8. Statt des Realteils von C (Abb.9) wird hier der Imaginärteil von C zwischen Modell und Messung verglichen.

In den unteren Bildhälften sind nun die in Abb.7 dargestellten Verzerrungen berücksichtigt worden:

 $\log g_{k}(T) = \log g_{s}(T) - \Delta \log g_{s}$ $\log h_{k}(T) = \log h_{s}(T) - \Delta \log h_{s}$

Hier kann nun auch erklärt werden, wie die Parallelverschiebung zur Normalkurve in Abb.5 gewählt wurde. Die Werte $\Delta \log g_n$ und $\Delta \log h_n$ wurden so festgelegt, daß für die Frequenz 9.6 cph die Niveaus von g_k und h_k in den Abb.9 und 10 möglichst gut mit der Modellrechnung übereinstimmen.

Die Entzerrung bewirkt, daß für diese tiefste Frequenz einheitlich für alle Stationen Eindringtiefen (Real- und Imaginärteil) um 100 km erreicht werden. Aber auch für die höheren Frequenzen ist die Modellanpassung nach der Entzerrung wesentlich besser geworden.

Das Modell kann also nun das beobachtete anomale horizontale Magnetfeld und die Impedanzen für E-Polarisation erklären. Eine ausreichende Anpassung des beobachteten vertikalen Magnetfeldes durch das Modell ist dagegen nicht gelungen. Gearbeitet wird noch an einer Entzerrung der Impedanzen für die H-Polarisation.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung unserer Messungen in der Schwäbischen Alb (Schm 101/8, 9). Weitere Einzelheiten über die Auswertung unserer Daten können dem Abschlußbericht zu diesem Vorhaben entnommen werden.

Literatur:

Richards, M.L., U. Schmucker and E. Steveling: Electrical Conductivity in the Urach Geothermal Area, A Geomagnetic Induction Study Using Pulsations. In: The Urach Geothermal Project, Edition R. Haenel, p. 301-311, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1982.

Schmucker, U.: Erdmagnetische und magnetotellurische Sondierungen mit langperiodischen Variationen. Protokoll Kolloquium "Erdmagnetische Tiefensondierung", Grafrath/Bayern, p. 313-342, 1974.

- 40 -

B. FLUCHE

"Magnetotellurik und Tiefensondierung in der Hessischen Senke"

Im Rahmen meiner Diplomarbeit habe ich im Jahre 1981 entlang eines 100 km langen Profils an sieben Stationen Messungen des erdelektrischen und erdmagnetischen Feldes durchgeführt. Die genauen Standorte und Bezeichnungen dieser Stationen zeigt Abb.1:

Abb.1: Meßprofil in der Hessischen Senke

Zur Geologie an den einzelnen Stationen:

- BAT: Liegt am Ostrand des Sauerlands, Vorkommen von Tonschiefer und Grauwacke mit Einschlüssen von Zechstein (Karbon)
- BGW-UST: Vorkommen von Sand- und Tonstein sowie Konglom. (Trias) Bei MZH größeres Gebiet von Löß und Lößlehm (Quartär) außerdem vulkanische Einsprengsel (Basalt, wahrsch. Ausläufer vom Vogelsberg)
- SET:

Liegt in der Rhön, Vorkommen von Kalk-, Mergel- und Sandstein, außerdem Tonstein und Quarzit (Trias), wenige Basalteinsprengsel. Das erdmagnetische Feld wurde mit Induktionsmagnetometern und Fluxgates registriert, davon wurden Pulsationen im Periodenbereich zwischen 12s und 600s und Variationen mit Perioden von 12 min bis 5 h ausgewertet. Das elektrische Feld wurde an allen Stationen und für alle Perioden mit FILLOUX'schen Ag-AgCl-Sonden und tellurischen Verstärkern registriert.

Aufgezeichnet wurde mit einer digitalen Kassettenaufzeichnungsapparatur KAP (RICHARDS et al., 1980). Die Taktrate At betrug bei der Aufzeichnung von Pulsationen 4s, bei Variationen 30s. Pulsationen wurden bei allen Stationen registriert, Variationen nur bei BGW und SET.

Der erste Abschnitt der Meßkampagne von April bis Mai 1981 bestand aus Registrierungen an den Stationen BAT-MZH, da man hoffte, bereits entlang dieses Profils eine deutliche Änderung der Leitfähigkeitsstruktur des Untergrundes zu messen. Aus den Daten wurden Übertragungsfunktionen zwischen

- a) dem anomalen Vertikalfeld und dem normalen Horizontalfeld
- b) dem anomalen und dem normalen Horizontalfeld

c) dem tellurischen und dem normalen Horizontalfeld nach dem Göttinger Analyseverfahren (SCHMUCKER, 1978) bestimmt:

- 42 -

An den in Abb.2 gezeigten Effekten sieht man schon, daß sich die Stationen in Bezug auf das Magnetfeld kaum merklich unterscheiden. Allenfalls bei der D-Komponente läßt sich eine leichte Zunahme in Richtung Senkenmitte feststellen. Aus diesem Grunde wurde das Profil in südöstliche Richtung verlängert (Abb.1) und die Kampagne von Ende Juli bis Mitte September 1981 mit Messungen an den neuen Stationen GZN, UST und SET bei erneuter Mitregistrierung von MZH fortgesetzt.

Abb.3: Zwei Effekte der Sommerkampagne

Interessanterweise zeigt sich in SE-Richtung eine merkliche Zunahme von H und Z sowie eine deutliche Abnahme des E-Feldes. Besonders deutlich wird dies, wenn man die Fluxgateregistrierungen hinzunimmt. Sie zeigen an den beiden Stationen für best. Perioden einen gegenphasigen Verlauf von Z: (siehe Abb.4)

Bei den Pulsationsregistrierungen wurde MZH als Normalstation ge wählt und damit die Übertragungsfunktionen zwischen dem normalen und dem anomalen Magnetfeld nach dem SCHMUCKERschen Analyseverfahren bestimmt. Dazu einige Betrachtungen:

Der eben erwähnte Zusammenhang läßt sich ausdrücken:

 $\begin{pmatrix} H_{a} \\ D_{a} \\ Z_{a} \end{pmatrix} = \begin{pmatrix} h_{H} & h_{D} \\ d_{H} & d_{D} \\ Z_{H} & Z_{D} \end{pmatrix} \begin{pmatrix} H_{n} \\ D_{n} \end{pmatrix}$

(1)
$$\underline{B}_a = \underline{B} - \underline{B}_n$$

Abb.4: Zwei Fluxgate-Effekte

Dies soll an zwei Beispielen erläutert werden. Für einen homogenen Halbraum bzw. einen geschichteten Leiter, wo der spez. Widerstand ρ nur von der Tiefe z abhängt, ändert sich das Magnetfeld, auf eine Referenzstation bezogen, nicht. So ist (1) für zwei- bzw. dreidimensionale Leitfähigkeitsstrukturen von Bedeutung. Nehmen wir an, wir hätten einen langgestreckten guten Leiter in NS-Richtung innerhalb eines schlecht leitenden Mediums. Im zweiten Fall nehmen wir eine ebenfalls in NS-Richtung verlaufende Leitfähigkeitsgrenze an.

Das bedeutet, daß bei (1) nur d_D und z_D von Null verschieden sind. Für das anomale Horizontalfeld gilt:

$$\begin{pmatrix} H_{a} \\ D_{a} \end{pmatrix} = \begin{pmatrix} h_{H} & h_{D} \\ d_{H} & d_{D} \end{pmatrix} \cdot \begin{pmatrix} H_{n} \\ D_{n} \end{pmatrix}$$
(1a)

- 45 -

Fällt die Streichrichtung nicht mit der NS- bzw. EW-Richtung zusammen, so verschwindet keines der Elemente des sog. <u>Perturbations-</u> <u>tensors</u>. Im 2-D-Fall lassen sich durch Rotation des Perturbationstensors alle Elemente bis auf eines der Hauptdiagonalelemente zum Verschwinden bringen. Darüber später mehr!

Außerdem wurden an jeder Station die <u>Impedanztensoren</u> bestimmt, die gegeben sind durch:

$$\begin{pmatrix} \mathbf{E}_{\mathbf{N}} \\ \mathbf{E}_{\mathbf{O}} \end{pmatrix} = \begin{pmatrix} \mathbf{Z}_{\mathbf{X}\mathbf{X}} & \mathbf{Z}_{\mathbf{X}\mathbf{Y}} \\ \mathbf{Z}_{\mathbf{Y}\mathbf{X}} & \mathbf{Z}_{\mathbf{Y}\mathbf{Y}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{H}_{\mathbf{n}} \\ \mathbf{D}_{\mathbf{n}} \end{pmatrix}$$
(2)

Abb.5 und 6 zeigen für die drei ausgewählten Perioden 5 min, 60s und 20s den Verlauf von (1) und (2) entlang des Profils:

Abb.5: Verlauf des anomalen Magnetfeldes

- 46 -

Abb.6: Verlauf der tellurischen Impedanz

Mit Z_{xy} und Z_{yx} wurde eine <u>eindimensionale</u> Inversion nach dem SCHMUCKERschen ψ -Algorithmus durchgeführt. Abb.7 zeigt für einen angenommenen 3-Schichten-Fall die ermittelten spez. Widerstände ρ als Funktion der Tiefe z. Interessant ist, daß man einen guten Leiter im Untergrund unter einer relativ schlecht leitenden ersten Schicht sowohl für die H-Polarisation als auch für die E-Polarisation findet. (siehe Abb.7)

Abschließend wurde versucht, die gemessenen Daten mit Hilfe eines zweidimensionalen Modells zu reproduzieren. Dieser Versuch war trotz etlicher Versuche erfolglos. Zur vollständigen Interpretation ist eine zweidimensionale Leitfähigkeitsstruktur, wie man sie in einem Graben erwartet, nicht ausreichend. Da außerdem das elektrische Feld wahrscheinlich lokalen Verzerrungen unterworfen war, waren die nach dem SWIFT-Kriterium errechneten Winkel für eine Vorzugsrichtung sicher irreführend. Abb.8 zeigt einen Versuch, die gemessenen Daten zweidimensional zu interpretieren.

- 47 -

- 48 -

<u>Abb.7</u>: Eindimensionale Inversionsmodelle für H- und E-Polarisation Zahlen: spez. Widerstände in Ωm

2-D - Modell Sur Hessische Sinke (angen E-Polarisation) de - 14 4dz - 10,5 km (Block granden) GIN BAT 364 MEN ust SET 250 200 50 62-150 50 50 -100 - 250----62 -50 50-100 100 200 10-250 80 50 200 50 50 10 10 130 75 50 10 50 50 10 10 300 Widerstände in [Qn]

Abb.8: Versuchtes 2-D-Modell

Deshalb wurde ein neuer Weg beschritten, indem ein Kriterium entwickelt wurde, das die Brauchbarkeit von 2-D-Modellen allgemein und natürlich speziell für die Daten aus der Hessischen Senke testet. Dieses soll hier kurz vorgestellt werden:

Nach (1) bzw. (1a) läßt sich für zweidimensionale Leitfähigkeitsstrukturen ein Winkel α so bestimmen, daß gilt:

 $\begin{pmatrix} H_{a} \\ D_{a}' \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & d_{D}' \end{pmatrix} \begin{pmatrix} H_{n}' \\ D_{n}' \end{pmatrix}$ (3)

Dabei bezeichnet der Strich die Werte in rotierten Koordinaten (x',y'). Diese sind mit den Ausgangskoordinaten (x,y) über die Rotationsmatrix <u>T</u> verknüpft:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \underline{T} \begin{pmatrix} x \\ y \end{pmatrix} \text{mit} \quad \underline{T} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ & & \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
(4)

Die Perturbationsmatrix <u>W</u>' läßt sich also schreiben

$$\underline{\mathbf{W}}' = \underline{\mathbf{T}}^{-1} \cdot \underline{\mathbf{W}} \cdot \underline{\mathbf{T}}$$
(5)

Dabei bezeichnet W die Perturbationsmatrix in unrotierten Koordinaten. Für die einzelnen Elemente der Matrix W erhält man dann:

- 49 -

$$h'_{H} = h_{H} \cos^{2} \alpha + \cos \alpha \sin \alpha (h_{D} + d_{H}) + d_{D} \sin^{2} \alpha$$

$$d'_{H} = d_{H} \cos^{2} \alpha + \cos \alpha \sin \alpha (d_{D} - h_{H}) + h_{D} \sin^{2} \alpha$$

$$h'_{D} = h_{D} \cos^{2} \alpha + \cos \alpha \sin \alpha (d_{D} - h_{H}) + d_{H} \sin^{2} \alpha$$

$$d'_{D} = d_{D} \cos^{2} \alpha - \cos \alpha \sin \alpha (h_{D} + d_{H}) + h_{H} \sin^{2} \alpha$$
(6)

Diese Gleichungen benutzt man dazu, zwei Bedingungen zu formulieren, die für \underline{W}' im 2-D-Fall zutreffen. Diese sind im allgemeinen voneinander unabhängig und lauten (siehe (3)):

a)
$$|h_{\rm D}^{\prime}|^2 + |d_{\rm H}^{\prime}|^2 = \min.$$
 (7)

b)
$$|h_{H}'| / |d_{D}'| = extr.$$

tg

Aus (7) lassen sich <u>analytisch</u> folgende Gleichungen ableiten die wie folgt aussehen:

$$4\alpha = \frac{s_2^* D_1 + s_2 D_1^*}{|D_1|^2 - |s_2|^2}$$

(8)

zu b)
$$A_0 + A_1 \cdot tg 2\alpha + A_2 \cdot tg^2 2\alpha - A_3 tg^3 2\alpha = 0$$

Aus Platzgründen sind hier nur die Endresultate angegeben. Interessenten für eine ausführliche Herleitung verweise ich auf meine Diplomarbeit (Erscheinen vorauss. Ende 1982). Kurze Skizzierung des Lösungsweges: Bildung von $\frac{\partial}{\partial \alpha}$ (7a,7b) = 0 und Umformen mit Hilfe von Additionstheoremen für trigonometrische Funktionen.

Die in (8) bez. Größen und Koeffizienten sind:

$$S_{1} = h_{H} + d_{D}$$

$$S_{2} = h_{D} + d_{H}$$

$$D_{1} = h_{H} - d_{D}$$

$$D_{2} = h_{D} - d_{H}$$
(8a)

sowie

$$A_{0} = A^{*}S_{2} + S_{2}^{*}A$$

$$A_{1} = B^{*}S_{2} + S_{2}^{*}B - A^{*}D_{1}^{'} - AD_{1}^{*}$$

$$A_{2} = C^{*}S_{2} + CS_{2}^{*} - B^{*}D_{1} - B \cdot D_{1}^{*}$$

$$A_{3} = C^{*}D_{1} + CD_{1}^{*}$$
(8b)

wobei

$$A = |d_{D}|^{2} \cdot h_{H} + |h_{H}|^{2} \cdot d_{D}$$

$$B = \frac{1}{2} \{ (|d_{D}|^{2} - |h_{H}|^{2}) \cdot s_{2} + d_{D} (h_{H}s_{2}^{*} + h_{H}^{*}s_{2}) - h_{H} (d_{D}s_{2}^{*} + d_{D}^{*}s_{2}) \}$$

$$C = \frac{1}{4} \{ s_{1} (|s_{1}|^{2} + |s_{2}|^{2}) - s_{2} (s_{1}^{*}s_{2} + s_{1} \cdot s_{2}^{*}) \}$$

$$(8c)$$

Außerdem muß α für (7a) noch die Bedingung erfüllen:

$$(|D_1|^2 - |S_2|^2)\cos 4\alpha + (S_2^*D_1 + S_2D_1^*)\sin 4\alpha > 0$$
 (9)

Je besser die nun aus (7a) + (7b) ermittelten Winkel α übereinstimmen, desto besser ist die Zweidimensionalität erfüllt. Daß dies nur bei den beiden westlichen Stationen für lange Perioden und bei SET für kurze Perioden der Fall ist, zeigt die folgende Abbildung 9:

----- |h_1|2+ |dy|2=min.

Abb.9: Auswertungsergebnisse für a

- 51 -

Fortsetzung der Abb.9

Analog zum elektrischen Feld kann man auch für das anomale magnetische Horizontalfeld einen <u>Skewness-Koeffizienten S</u> und eine <u>Ani-</u> <u>sotropie A</u> einführen. Dabei soll erfüllt sein

Struktur	S .	A		~	D ₂
1-D	≈0	≈ 1	ì	5 =	
2-D	≈0	+ 1		-	h _H +1
3 - D	deutl. >0	+ 1	2	A. =	

Abb. 10: S und A an allen Stationen

- 52 -

- 53 -

Fortsetzung der Abb. 10

Tur Zeit wird noch versucht, weitere Aufschlüsse über die Leitfähigkeitsstruktur der Hessischen Senke mit Hilfe des bei E. STEVE-LING in diesem Band beschriebenen Entzerrungskriteriums zu gewinnen. Die Untersuchungen sollen demnächst abgeschlossen sein. Fest steht schon jetzt, daß eine 2-D-Interpretation <u>nicht</u> ausreicht, denn die Leitfähigkeitsstruktur ist mehr oder weniger dreidimensional. Sicherlich ist eine wenn auch nicht sehr deutlich ausgeprägte Grabenanomalie von NW nach SE vorhanden. Hinzu kommt offensichtlich aber besonders im südöstlichen Teil des Profils ein möglicherweise als Bogen verlaufender gute Leiter, der die Abnahme des E-Feldes und die hohe Skewness des anomalen H-Feldes erklärt. Literatur:

Richards, M.L., U. Schmucker, E. Steveling und J. Watermann: Schlußbericht zum Forschungsprogramm "Erdmagnetische und magnetotellurische Sondierungen im Gebiet des mitteleuropäischen Riftsystems". Kommission der Europäischen Gemeinschaften, 126-76 EGD/ 317-77-11 EGD, Brüssel, 1980.

<u>Schmucker, U.</u>: Auswertungsverfahren Göttingen. Protokoll Kolloquium "Elektromagnetische Tiefenforschung", Neustadt/Weinstraße, 163-188, 1978.

Schmucker, U. und P. Weidelt: Electromagnetic Induction in the Earth, Lecture Notes, Aarhus, 1975.