
On galvanic distortion of regional three-dimensional
magnetotelluric impedances

Hisashi Utada andHiroshiMunekane
Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku Tokyo, 113-0032, Japan. E-mail: utada@utada-sun.eri.u-tokyo.ac.jp

Accepted 1999 September 10. Received 1999 September 7; in original form 1998 October 12

SUMMARY
In magnetotelluric (MT) studies, the observed response function (the MT impedance)
usually su¡ers from galvanic distortions due to near-surface inhomogeneities. Removal
of these e¡ects is essential to obtain an accurate model of the subsurface electrical
conductivity structure. Galvanic distortion is usually expressed by a simple real tensor
multiplying the undistorted regional impedance. The problem still remains of how to
solve the ensuing linear equations in order to determine the distortion tensor and then
to obtain the undistorted impedance. The methods presented and widely applied in
previous works assume two-dimensionality for the undistorted impedance. This paper
proposes a method that employs a relationship between the spatial derivatives of the
horizontal electric ¢eld and the vertical geomagnetic component, which can be directly
derived from Faraday's law. The identity derived from the relationship is written using
the vertical magnetic transfer function, the impedance, and the spatial derivatives of the
impedance and horizontal magnetic transfer functions. The present method determines
the real distortion tensor so that the identity is satis¢ed. Therefore, the method has two
major advantages: (1) galvanic distortion that is to be removed from the impedance
tensor is clearly de¢ned, and (2) the method is applicable even when the regional
structure is 3-D.

Key words: Faraday's law, galvanic distortion, geomagnetic transfer functions,
induction e¡ects, MT impedance, tensor decomposition.

INTRODUCTION

The magnetotelluric (MT) method is widely used to explore
electrical conductivity structures on both local and regional
scales. In recent years, remarkable progress has been made
in instrumentation, data processing and data interpretation
schemes. In interpreting the observed response functions (the
impedance tensor) in terms of the conductivity distribution
of the Earth, 2-D inversion schemes have been widely and
successfully applied (e.g. Pedersen & Rasmussen 1985; Smith
& Booker 1991; Uchida 1993). In order to obtain a reliable
model re£ecting the regional resistivity structure, it is usually
necessary to separate the e¡ect of galvanic distortion from the
observed impedance tensor.
Galvanic distortion can be recognized as a superposition

of regional and locally distorted electromagnetic (EM) ¢elds
(Groom & Bahr 1992). Regional EM ¢elds are thought simply
to re£ect the background regional structure that is either 1-D
or 2-D, while distorted ¢elds are assumed to be due to non-
inductive (galvanic) scattering by local, near-surface inhomo-
geneities. Assuming that this is the situation, several methods
have been presented to recover 1-D or 2-D responses from the
observed impedance tensor.

Bahr (1988) ¢rst described the electric ¢eld distortion
due to 3-D local heterogeneity in a 2-D regional structure,
and applied the method to discriminate the distortion e¡ects
from ¢eld data. Meanwhile, Groom & Bailey (1989) derived a
physical parametrization of the electric distortion tensor and
developed a scheme to decompose the observed impedance
tensor into distortion parameters and undistortedMTresponses.
This approach, hereafter referred to as GB decomposition, is
the most widely used for interpreting magnetotelluric data. In
recent years, the GB decomposition method has been regarded
as part of the common procedure for obtaining a highly
objective 2-D resistivity model combined with sophisticated
2-D inversion schemes (e.g. Ogawa & Uchida 1996).
However, a 2-D conductivity model can only approximate

the actual 3-D structure of the Earth. It is not uncommon that
3-D e¡ects, not only of local scale but also of regional scale,
are too strong to be ignored. Meanwhile, rapid progress in
numerical modelling schemes has made it quite feasible to
interpret the ¢eldMT data for 3-D structures either by forward
modelling or by inversion (e.g. Mackie et al. 1993; Zhdanov &
Fang 1996; Avdeev et al. 1997). To estimate the correct 3-D
structure, regional MT response functions are needed. In
other words, galvanic distortions must be removed from the
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observed raw MT response to extract the undistorted part that
is re£ecting the 3-D regional structure.
This paper aims to re-examine and clarify the physics of

galvanic distortion when the background regional structure
is 3-D and to propose a new mathematical condition to deter-
mine the distortion parameters by using not only the observed
impedance tensor but also the observed geomagnetic transfer
functions. Zhang et al. (1993) also proposed a method to
separate galvanic distortion e¡ects from those of induction
by using vertical magnetic ¢eld data, but a di¡erent approach
will be taken here.

DISTORTION MODEL

Fig. 1 provides a model of the galvanic distortion considered in
this paper. The earth is composed of a 3-D large-scale hetero-
geneous structure covered by a near-surface thin layer with a
plane interface consisting of smaller-scale 3-D inhomogeneities.
Since both structure size and layer thickness should be
scaled by the inductive scale length when considering electro-
magnetic induction, the actual size of a `large' heterogeneity or
actual thickness of a `thin' layer depends on the frequency of
interest (Zhang et al. 1993). In the following discussion, each
expression is derived in the frequency domain at a frequency u,
but the frequency dependence of each parameter is not
explicitly written in each equation.
Three-element vectors of the electromagnetic ¢elds are

denoted by bold type. In the MT method, vectors having only
the two horizontal components often appear in governing
equations. In this paper, the partitioned horizontal components
of a three-element vector uS are written as uSh , i.e.

uS~

uSx

uSy

uSz

0BB@
1CCA~

uSh
� � �
uSz

0BB@
1CCA .

A mathematical expression is employed that describes
galvanic distortion by a second-order tensor (e.g. Groom &
Bailey 1989; Groom & Bahr 1992; Chave & Smith 1994).
Namely, the distorted impedance ZD(r) observed at site r is
assumed to be described by

ZD(r)~C(r)ZU(r) , (1)

where ZU(r) is the regional undistorted impedance tensor and
C(r) is the distortion tensor. This corresponds to the case in
which the magnetic distortion terms are weak, as in the case
studied by Groom & Bailey (1989).
Although the distortion tensor C can be a complex quantity

in general (Jiracek 1990), the following discussion with electro-
magnetic scattering theory will demonstrate that it can be
treated as a real tensor. As shown in Chave & Smith (1994), the
electric ¢eld E(r) at an arbitrary position r in a 3-D hetero-
geneous medium can be described by an integral equation as
follows (Hohmann 1975):

E(r)~E0(r){iuk0

X
j

�
Vj

dV 0g(r, r0)dpj(r0)E(r0)

z+
1
p0

+ .
X
j

�
Vj

dV 0[g(r, r0)dpj(r0)E(r0)]

~E0(r)zeI(r)zeG(r) , (2)

where Vj refers to each scattering body, and k0 denotes the
magnetic permeability. The conductivity anomaly dpj(r0) is
expressed by

dpj(r0)~pj(r0){p0(r0) , (3)

where pj is the heterogeneous conductivity distribution and
p0 denotes either a uniform background or a background with a
1-D conductivity distribution for which an analytic expression
of the Green function g(r, r0) is available. The scalar uniform
whole-space Green function is given by

g(r, r0)~
e(ic0jr{r0 j)

4njr{r0j , (4)

where c0~
���������������
iuk0p0
p

, and the inductive scale length of the
background is de¢ned as

j0~
1

jRe [c0]j
. (5)

The ¢rst term of (2) corresponds to the ¢eld for the background
structure, while the second and third terms are the inductive
and galvanic scattered components due to each inhomogeneity,
respectively. A similar integral expression for the magnetic
¢eld can be obtained by applying Faraday's law to (2):

B(r)~B0(r)zk0+|
X
j

�
Vj

dV 0g(r, r0)dpj(r0)E(r0) , (6)

in which the galvanic component does not show up because of
the identity +|+t~0 for an arbitrary scalar function t.
Each scattered component contributes to the total ¢eld in

a di¡erent way. From (2), the contribution of the inductive
component from each body can be scaled by the ratio of the
size, Lj, to the inductive scale length, jj~1/jRe [cj ]j, where

Figure 1. A model of the galvanic distortion considered in this paper.
The Earth's electrical structure consists of 3-D heterogeneities of
regional scale (comparable with the inductive scale length of present
interest). The surface consists of a 3-D heterogeneous thin layer that
causes galvanic distortion.
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cj~
����������������
iuk0dpj

p
. This ratio is called the induction number of

each scattering body and may be expressed as

Mj~
Lj

jj

� �
. (7)

When the scattering body is so small that the induction number
Mj is substantially less than unity, the contribution due to the
inductive scattered term may be neglected (Chave & Smith
1994; Smith 1997). For smaller Lj, the inductive scattered term
in the electric ¢eld can be roughly estimated as O(M2

j ), while
that in the magnetic ¢eld can be estimated as O(Mj) because of
the rotation operator. On the other hand, the contribution
of the galvanic scattered component from each scattering
body does not depend greatly on Mj ; rather, it depends on the
distance from each body and the conductivity contrast (Groom
& Bahr 1992). This is because the galvanic scattered ¢eld can be
regarded as a potential ¢eld whose source is of delta function
type due to the term dp(r0) in (2) (Jiracek 1990).
Using the scattering theory described above, we next examine

the characteristics of the spatial distribution of scattered ¢elds
in the situation shown in Fig. 1. Because of the nature of the
EM scattering, the scattered components in E and B have
di¡erent dependences on the spatial wavenumber at a given
frequency. The electric ¢eld is composed of small-wavenumber
(long-wavelength) components due to large structures and
large-wavenumber (short-wavelength) galvanic components
originating from small-scale near-surface heterogeneities,
while the magnetic ¢eld tends to contain the inductive scattered
¢eld components with smaller wavenumbers due to larger
heterogeneities (Fig. 2). The large-wavenumber components

in the electric ¢eld will serve as `noise' in the determination
of regional conductivity structures. It is not impossible to
describe all the spatial features of the ¢eld components and
to remove the large-wavenumber terms from structures that
are not of interest in the further interpretation by, for example,
numerical modelling. However, it becomes impossible to describe
such e¡ects only by the observed data when site spacing is small
enough to describe the scattered components due to the large
structures but not small enough for the galvanic scattered
components by near-surface small heterogeneities (Fig. 2), as is
often the case in actual ¢eld surveys. This e¡ect causes an error
in MT data interpretation, which is called galvanic distortion.
If the site spacing is too large to describe even the inductive
scattered ¢elds, the observed data set will contain not only
galvanic distortion but also magnetic distortion (Chave &
Smith 1994). In this case, however, the distortion tensor C can
no longer be real due to the nature of the EM induction.
The galvanic distortion model considered here is caused

purely by the galvanic scattered components in the electric ¢eld.
The observed electric ¢eld E can be separated into regional
undistorted (including inductively scattered components) and
galvanic distorted components as follows:

E(r)~EU(r)zeG(r) , (8)

where EU~E0zeI.When the size of each scattering body in the
inhomogeneous thin layer is su¤ciently small that the electric
¢eld inside can be regarded as uniform, the horizontal vector of
the galvanic scattered ¢eld eGh can be related to the undistorted
horizontal electric ¢eld EU

h as follows:

eGh (r)~aEU
h (r) , (9)

where a is a second-order real tensor (Chave & Smith 1994;
Smith 1995).
Comparing this with an expression of the impedance tensor

of (1), we obtain the simple relation

C~Iza , (10)

where I is the second-order identity tensor. Thus, the distortion
model described above justi¢es a simple treatment of the
distortion tensor as a second-order real tensor.

CONSTRAINTS BY FARADAY'S LAW

In order to decompose the observed MT impedance into
galvanic distortion and the undistorted impedance shown in
(1), some constraints must be imposed to reduce the degrees of
freedom to solve the equation for C (Groom & Bahr 1992;
Smith 1995). The approach of Bahr (1988) or GB employed the
constraint that the undistorted impedance is a 2-D response.
However, in order to extract the 3-D regional undistorted
impedance, another independent mathematical constraint is
necessary. In this study, we propose a constraint that not only
allows for a 3-D undistortedMT response but also is physically
plausible by returning to the fundamentals of EM induction.
MT observations are used to obtain frequency charac-

teristics and spatial distributions of three components of the
magnetic ¢eld and two horizontal components of the electric
¢eld. These ¢eld components should satisfy the pre-Maxwell

Figure 2. Typical spatial distribution of amplitudes of electro-
magnetic ¢eld variations. In the electric ¢eld (upper diagram), there
exist components of shorter wavelengths (solid line) superimposed
on the regional ¢eld with longer wavelength (dashed line) because of
galvanic scattering. Such short-wavelength components barely exist in
the magnetic ¢eld (thick line, lower diagram). In other words, the
electric ¢eld is spatially aliased, whereas the magnetic ¢eld is not. This
is a signature of galvanic distortion.
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equations

+|E~{iuB , (11)

+|H~j , (12)

in which j denotes the ohmic current, and the displacement
current is ignored. However, even an ideal observation with
site spacing small enough to evaluate the ¢eld gradients by
¢nite di¡erences accurately cannot fully describe all six com-
ponents of (11) and (12), because vertical gradients are not
usually measurable. Practically, only the vertical component of
Faraday's law (11) can be fully described by the observed ¢eld
components.
The vertical component of (11) can be written as

+|E(r)jz~+|

Eh(r)

� � �
Ez(r)

0BB@
1CCA
��������
z

� ÿiuk0Hz�r� . (13)

The horizontal electric ¢eld Eh and vertical magnetic ¢eld
component Hz at each observation site r can be expressed
in terms of the impedance and vertical geomagnetic transfer
function relations with the horizontal magnetic ¢eld Hh(r) as

Eh(r)~Z(r)Hh(r)

~
Zxx(r) Zxy(r)

Zyx(r) Zyy(r)

 !
Hx(r)

Hy(r)

 !
(14)

and

Hz(r)~Th(r) .Hh(r)~A(r)Hx(r)zB(r)Hy(r) , (15)

where

Th(r)~
A(r)

B(r)

 !

is the vertical transfer function or the tipper (Vozo¡ 1972).
Substituting (14) and (15) into (13) yields

LZyx(r)
Lx

{
LZxx(r)

Ly

� �
Hx(r)z

LZyy(r)
Lx

{
LZxy(r)

Ly

� �
Hy(r)

z Zyx(r)
LHx(r)

Lx
{Zxx(r)

LHx(r)
Ly

� �

z Zyy(r)
LHy(r)

Lx
{Zxy(r)

LHy(r)
Ly

� �
~{iuk0[A(r)Hx(r)zB(r)Hy(r)] . (16)

The left-hand side of (16) involves theMT impedance and hori-
zontal magnetic components and their horizontal gradients.
The horizontal magnetic component anomaly at each site can
be expressed by the horizontal geomagnetic transfer function
V (r) as

Hh(r)~V (r)Hh(r0)

~
Vxx(r) Vxy(r)

Vyx(r) Vyy(r)

 !
Hx(r0)

Hy(r0)

 !
, (17)

where r0 stands for a reference site. Horizontal gradients of
the horizontal magnetic components in (16) can then be written
in terms of horizontal gradients of the horizontal transfer
functions, e.g.

LHx(r)
Lx

~
L
Lx

(Vxx(r), Vxy(r))
� � Hx(r0)

Hy(r0)

 !

~
L
Lx

(Vxx(r), Vxy(r))
� �

V{1(r)
Hx(r)

Hy(r)

 !
, (18)

where V{1 denotes the inverse of V. Thus, (16) results in an
expression that relates the vertical transfer function to the MT
impedance and horizontal gradients of the impedance and
horizontal transfer functions.
The electromagnetic ¢elds observed with an ideal site distri-

bution should satisfy the vertical component of Faraday's law
(16). However, in actual experiments, the ¢nite di¡erence
approximation of the horizontal gradients of the electric ¢eld
often yields large errors, as shown in Fig. 2, because the actual
site distribution is too sparse to describe the ¢eld variations
due to small scattering bodies. Removal of this error is possible
either by spatial ¢ltering (Torres-Verdin & Bostick 1992) or by
measuring a long-line electric ¢eld (Uyeshima et al. 1999). Of
course, one can obtain a data set that is perfectly consistent
with Faraday's law by performing an in¢nitely dense MT
survey. In such a case, a solution can be found that explains all
the features of the response functions, although the modelling

Figure 3. The 2-D electrical model used in the ¢rst test of the
decomposition. Black dots in the plan view are observation sites where
synthetic EM responses are calculated.
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capability may remain a problem. The necessity of removing
galvanic distortions arises only when the site spacing is
insu¤cient to describe the spatial features of the galvanic
scattered ¢elds. On the other hand, this indicates that such
a measurement will be able to estimate accurately the ¢nite
di¡erence of the horizontal gradients of the undistorted regional
electric ¢eld, provided that the site spacing is su¤ciently small
for this purpose. Therefore, the observed data should be con-
sistent with Faraday's law, if the impedance tensor in (16) is
replaced by the undistorted impedance tensor

ZU(r)~C{1(r)ZD(r) , (19)

where C{1 denotes the inverse of C.
By applying ¢eld data to the identity (16), the distortion

tensor or its inverse at each observation site ri can be determined

so as to minimize the objective function Q1:

Q1~
X
i

jj+|[C{1(ri)E(ri)]jz{[{iuk0Hz(ri)]jj2 , (20)

where jj . jj2 is the two-norm. Alternatively, the object function
may be expressed as

Q1~
X
i

jjTcal
h (ri){Tobs

h (ri)jj2 , (21)

where Tcal
h (ri) and Tobs

h (ri) are the calculated and observed
vertical transfer functions, respectively. From the expressions
of (16), (18) and (19), it is seen that Tcal

h (ri) is composed of
the inverse of the distortion tensor C{1(ri), the observed
MT impedance tensor ZD(ri), and the horizontal gradients of
the impedance and horizontal transfer functions. Thus, the

Figure 4. Real and imaginary components of the 2-D undistorted MT impedance tensor at a period of 100 s. Each element of the impedance is
plotted with dark and light shading corresponding to positive and negative values, respectively. Each impedance value is normalized by iuk0.
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equation inside the norm in (20) contains four degrees of
freedom at each site, thereby enabling us to determine C{1(ri)
uniquely using the observed data. In actual practice, the fre-
quency dependence of C{1 must be penalized to produce a
stable solution.

FORWARD MODELLING

In the previous section, we proposed a method to remove
galvanic distortion from the observed MT impedance. In this
section, the result of a numerical experiment using forward
modelling will be described in order to examine the method's
performance. For simplicity and comparison, ¢rst we present
an example with 2-D regional structure that has previously been
studied in other works. The result of 3-D modelling will then
be shown for a simple case with a regional 3-D conductivity
heterogeneity.

Fig. 3 shows the model of regional 2-D geoelectric structure
to be considered. The strike direction was taken as coinciding
with the X -direction. The ¢nite di¡erence method (FDM) was
employed to solve the frequency-domain induction equation
in 2-D space (Smith & Booker 1991) for three periods: 80, 100
and 120 s, and the EM responses were calculated at each
observation point and distributed with 5 km spacing, whereas
the horizontal grid spacing of the model is 1 km. Since there is
no near-surface heterogeneity to cause galvanic distortion in
the model, the calculated vertical magnetic components and
¢nite di¡erence approximations of the electric ¢eld rotation are
consistent with Faraday's law due to smooth lateral variations
of the regional electromagnetic ¢eld. The resulting spatial distri-
bution of the MT impedance is shown in Fig. 4 for a period
of 100 s. Since the structure is purely 2-D, only o¡-diagonal
elements of the impedance tensor take non-zero values, with a
smooth lateral variation only in the Y -direction.

Figure 5. Real and imaginary components of the distorted MT impedance tensor calculated from the impedance elements in Fig. 4.
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Galvanic distortion was randomly assigned to the impedance
tensor at each observation site using the expression of Groom
& Bailey (1991):

C~gTSA , (22)

where g is a scalar parameter for the static shift, and T , S andA
are the twist, shear and anisotropy tensors, respectively. The
distortion tensor C was assumed to be constant for the narrow
frequency band of present interest. A random number was
assigned to each of the scalar parameters and elements of
operators in (22) at each site. The resulting synthetic data were
heavily distorted (Fig. 5).
Using calculated vertical and horizontal geomagnetic

transfer functions, we determined the inverse of the distortion
tensor by a ¢nite di¡erence Levenberg^Marquardt method

to minimize the objective function (21), and obtained the
undistorted MT impedance at each site as shown in Fig. 6.
Comparing Fig. 6 with Fig. 4, a good agreement can be
recognized between the values of Zxx and Zxy, whilst a large
discrepancy exists in the distributions of Zyx and Zyy. In other
words, the present scheme can recover the E-polarization but
not the H-polarization responses. As will be shown below,
however, this result is quite natural given the assumption of a
purely 2-D regional structure.
As is well known, the electromagnetic ¢elds in 2-D induction

decouple into two modes, the E-polarization andH-polarization
modes. Field gradients exist only in the direction perpendicular
to the electric ¢eld in the E-polarization, while they exist
only parallel to the electric ¢eld in the H-polarization. The
present method constrains the impedance relation by use of

Figure 6. Real and imaginary components of the decomposed MT impedance tensor recovered by minimizing the objective function Q1. Note the
good agreement with Fig. 4 for Zxx and Zxy.
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a rotation operation on the electric ¢eld, as shown in (13),
and this operator consists only of spatial derivatives in the
direction perpendicular to the electric ¢eld. Consequently, this
mathematical condition cannot constrain the H-polarization
electromagnetic ¢eld at all. The unsuccessful decomposition of
H-polarization impedance elements can be simply ascribed to
a decoupling of the two modes in 2-D induction, as will be
discussed in the following section.
Although this would not seem to be a serious problem so far

as general 3-D structures are concerned, it would be better
to present a possible solution for recovering the undistorted
H-polarization impedance in the case of 2-D structures. The
discussion in the above paragraph indicates that this problem
might be overcome by introducing mathematical constraints
involving spatial derivatives along the electric ¢eld direction.

One possible way to introduce such constraints is by means of
the conservation law of the current density,

+ . j~0 , (23)

which involves such spatial derivatives and could provide an
additional mathematical condition to constrain the impedance.
However, it is impossible to apply this condition directly to the
observed data, because this condition includes the vertical
gradient of jz, which is not usually measured in an MT survey.
Thus the gradient Ljz/Lzmust be evaluated numerically with an
appropriate model. In this paper, an iterative procedure com-
bined with inversion is proposed as a means of determining the
distortion tensor. The exact formulation is not shown here, but
will be given in a later paper (Munekane & Utada 2000, in
preparation).

Figure 7. Real and imaginary components of the decomposed MT impedance tensor by minimizing the objective function Q1zQ2. Note improved
agreement with Fig. 4.
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Fig. 7 shows the distribution of the undistorted impedance
tensor elements obtained by using the inverse of the distortion
tensor determined by simultaneously minimizing

Q2~
X
i

L[p(ZxxHxzZxyHy)]
Lx

��������
z

L[p(ZyxHxzZyyHy)]
Ly

z
Ljz
Lz

��������2 (24)

and Q1 (see 21), that is, minimizing the objective function
Q1zQ2. In this example, Ljz/Lz values calculated in the
forward modelling were used to evaluate the objective function
Q2. Few discrepancies can be recognized between the responses
in Fig. 7 and those in Fig. 4. The forward modelling was made
for periods of 10 to 1000 s, but no signi¢cant di¡erence was
observed, as shown in Fig. 8, in which the root mean square

mis¢t rms is de¢ned as

rms~
1
N

XN
i~1

X
j,k~x,y

jZcal
jk (ri){Z0

jk(ri)j2X
j,k~x,y

jZ0
jk(ri)j2

2664
3775
1=2

, (25)

where Z0
jk(ri) denotes the undistorted impedance element and

Zcal
jk (ri) is either the distorted or the decomposed impedance

element at a site ri.
The next numerical result shows that the present decom-

position scheme is applicable for an actual 3-D case. Synthetic
data were calculated for a period of 40 s at sites over a con-
ducting body embedded in a homogeneous half-space (Fig. 9)
using the 3-D algorithm of Mackie et al. (1993). In the same
procedure as in the 2-D case, the synthetic distorted impedances
were decomposed by minimizing the object function Q1 in
(20). Figs 10, 11 and 12 show spatial distributions of syn-
thetic impedance elements for the undistorted, distorted and
decomposed impedances, respectively. Note that the vertical
axis is exaggerated in Figs 10 and 12 to show lateral variations
more clearly. Decomposition reduced the rms mis¢t from 2.87
to 0.074 in this case.

DISCUSSION

The 2-D forward modelling results shown in the previous
section should be useful in clarifying our understanding of the
proposed method. The method is intended to be applied to a
general 3-D regional structure, in which the electromagnetic
¢elds may not be decoupled into independent modes. In the
3-D case, it is convenient to represent each component of the
electromagnetic ¢elds consisting of poloidal magnetic (PM)
and toroidal magnetic (TM) modes, as can often be seen in the
theory of EM induction in a horizontally strati¢ed conducting
medium with a spatially non-uniform source ¢eld (Chave &
Luther 1990). Such an expression can be found more often in
global induction studies (Schultz & Zhang 1994). Thus, the
undistorted ¢eld EU(r) in (8) may be rewritten as

EU~EPM(r)zETM(r) . (26)

Figure 8. Rms mis¢ts between elements of the distorted and
undistorted impedance tensor (black dots) and between elements of the
decomposed and undistorted impedance tensor (crosses). Mis¢ts are
partly due to numerical errors and to site spacing ¢ve times greater
than the computational grid spacing. Calculations were performed for
¢ve periods: 10, 30, 100, 300 and 1000 s.

Figure 9. The 3-D electrical model used to test the decomposition scheme. EM responses are calculated at the observation sites shown by black dots.
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Since theTMmode does not have a vertical magnetic component
at the surface, the vertical component of Faraday's law,

+|ETM(r)jz~0 , (27)

is automatically satis¢ed for this mode. This indicates that the
present method uses only the consistency of the PMmode with
Faraday's law to determine the distortion tensor. Because the
PM and TM modes are always coupled in a 3-D situation, a
qualitative consideration predicts that a problem of inde¢nite
TM mode decomposition does not occur in the general case.
The 3-D modelling result in the previous section has shown an
example supporting this prediction with a simple case study.
More detailed 3-D forward modelling studies will be made in a

later paper (Munekane & Utada 2000, in preparation), which
should provide useful information for the application of this
method to ¢eld data.
More ¢eld e¡orts are required to apply this method to actual

data, because the method requires 2-D spatial derivatives
of the EM response functions in order to remove galvanic
distortions. It is obvious that all elements of the response
functions must be accurately estimated, and thus that the use
of a highly reliable method for time series analysis will be
indispensable. In addition to being highly accurate estimates,
all the EM responses must be obtained in a 2-D array with
appropriate spacing. Accordingly, we are currently conducting
an experiment in which the present method will be applied to
the study of the electrical conductivity distribution beneath a

Figure 10. Real and imaginary components of the 3-D undistorted MT impedance tensor calculated from the model shown in Fig. 9 at a period of
40 s. Note that all components are non-zero due to 3-D induction.
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volcanic area in Japan (Munekane et al. 1998). However, there
are few previous ¢eld examples to which the present method
can be fully applied; in many cases this is because the hori-
zontal transfer functions were not obtained, even though the
MT impedance and vertical transfer function were obtained in
a 2-D array (e.g. Takasugi et al. 1992).
A slight simpli¢cation of the mathematical constraints (16)

by neglecting gradients of the horizontal magnetic ¢elds may
be useful to widen the applicability of the method and also to
clarify its physical meaning. This corresponds to the assump-
tion of a uniform horizontal magnetic ¢eld, which may be
acceptable in many cases. Neglecting the horizontal gradients

in (16) gives

A(r)~
{1
iuk0

LZyx(r)
Lx

{
LZxx(r)

Ly

� �
, (28)

B(r)~
{1
iuk0

LZyy(r)
Lx

{
LZxy(r)

Ly

� �
. (29)

We see from these two equations that the vertical transfer
function can be expressed by the horizontal gradients of the
MT impedance. In other words, these gradients give an explicit
expression of the well-known nature of induction arrows that
point to the conducting side when there is a horizontal variation

Figure 11. Real and imaginary components of the distorted MT impedance tensor calculated from the impedance elements in Fig. 10.
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of electrical conductivity structure (Parkinson 1962; Vozo¡
1972). In magnetovariational (MV) studies, subsurface con-
ductivity structures are investigated by means of this property
of the induction arrows (e.g. Porath & Dziewonski 1971; Cerv
et al. 1997). It is easy to derive the linear relation between the
transfer function and MT impedance given by Zhang et al.
(1993) using a linear approximation of the horizontal gradients
in (28) and (29).
When the horizontal magnetic components are assumed to

be laterally uniform, decomposition of the MT impedance can
be performed based on the constraints (28) and (29); that is,
determining the distortion tensor by matching the horizontal
gradients of the MT impedance with the vertical transfer
function at each site. However, it should be noted that this
simpli¢cation results in a distortion tensor that is non-unique.
The absolute value of each impedance element cannot be

constrained, because the impedance values themselves do not
appearörather only their spatial gradients appearöin (28)
and (29). As a result, any combination of impedance elements
that satis¢es (28) and (29) can be a solution. When this
simpli¢cation is applied, each of four impedance elements must
be ¢xed for at least one site in order to control the absolute
value. It may be possible to choose the least distorted site as a
reference. However, the static shift parameter will still remain
undetermined, but should be obtainable by any of a number of
approaches proposed to date (e.g. Sternberg et al. 1988; Jones
1988; Bahr 1991; Ogawa & Uchida 1996).
Although it is most appropriate to apply the present

method to a situation with severe 3-D induction e¡ects, there
may still exist some advantage in applying it to a case where the
regional structure is nearly 2-D. This is because the present
methodwith constraints (16) completely recovers the undistorted

Figure 12. Real and imaginary components of the MT impedance tensor recovered by the decomposition technique. Note the good agreement with
Fig. 10.
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E-polarization impedance including static shift and thus the
regional strike direction. This information should help to reduce
the number of unknowns in actual interpretations of MT data.
As pointed out in an earlier section, MT data collection must

be performed with an optimum site spacing in order to describe
the spatial features of the inductive electromagnetic ¢elds and
thereby fully apply the present method. This indicates that
appropriate site spacing depends on the frequency of interest.
If MT surveys are performed with wide-band instruments,
as they often have been in recent years, site spacing must be
optimized at the highest observation frequency. Optimized at
lower frequencies, responses at higher frequencies will su¡er
from not only galvanic but also magnetic (inductive) distortions,
which prevents a simple treatment of the distortion tensor.
This study, therefore, recommends that the design of

MT surveys be made in several narrow frequency bands
(each covering two decades or so of frequency) with di¡erent
site spacings optimized for each band, although, of course, a
wide-band survey in a wide area with ¢ne site spacing is ideal.
Once MT data are collected at a certain observation band
j0 > j > j1 [see (5) for a de¢nition of the inductive scale
length j] with optimal site spacing, galvanic distortion can be
removed by using the present method. The resulting undistorted
impedance will re£ect a conductivity distribution of the
Earth that is composed of a 3-D regional structure covered
by a thin layer (thickness l) with a smoothly changing con-
ductance (Fig. 13). Measurements at a higher frequency band
(j1 > j > j2) are necessary for resolving smaller structures
within the thin layer. The observation band must be chosen so
that j is comparable with the layer thickness l. The site distri-
bution must be much denser because the scale of the target
structure is smaller.
Throughout this paper, the distortion tensor C has been

assumed to be a second-order real tensor, which means that all
distortion e¡ects are of purely galvanic origin. This is not a
physical requirement, and therefore extension of the theory to
a case where the tensor C is complex is possible in principle.

This corresponds to a situation in which inductive scattered
components are not negligible in the distorted ¢eld, or in other
words, magnetic distortion exists. Thus it is indicated that a
problem of magnetic distortion decomposition can be solved
by simply letting the distortion tensor be complex in the
present approach. Although there remains a practical problem
of how to determine the second-order complex tensor C, this
approach may solve the problem in determining the magnetic
distortion tensor D (Chave & Smith 1994).

CONCLUSIONS

This paper re-examined the physics governing the e¡ects of
near-surface small conductivity inhomogeneities on the electro-
magnetic ¢eld variations, and presented a new idea for removing
galvanic distortions of the MT impedance in cases where the
regional structure is 3-D. Derivation of the mathematical
conditions necessary to determine the distortion tensor was
based on the simple electromagnetic theory represented in
Faraday's law. The physics of galvanic distortions were clari¢ed
through the derivation. A forward modelling with a regional
2-D/3-D structure with 3-D galvanic distortions implied the
potential applicability of this method to some extent. However,
only a simple case was considered in this study. Further
detailed numerical experiments in 3-D situations will be
needed to verify the e¤ciency and limitations of the present
method.
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Figure 13. Schematic diagram of the ¢eld design recommended by the present study. Black dots represent the MT observation sites. Left and right
diagrams show optimal site distributions for the lower and higher frequency bands, respectively. Each frequency band is indicated by the inductive
scale length j (left: j0 > j > j1; right j1 > j > j2), which is shown by a thick dotted bar in each diagram. In each frequency band, the present method
removes galvanic distortion due to the near-surface inhomogeneities. The surface structure can then be replaced by a thin layer with smoothly
changing conductance. Note that the thickness of the thin layer l for the lower band becomes of a regional scale (comparable with j) for the higher
band, as indicated by the thick solid bar.
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