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Summary. A conducting slab of finite thickness divided into three segments 
of different conductivities and overlying a perfect conductor is proposed as a 
suitable two-dimensional 'control' model for testing the accuracy of the 
various numerical modelling programs that are available for calculating the 
fields induced in the Earth by an external, time-varying magnetic source. An 
analytic solution is obtained for this control model for the case of the 
magnetic field everywhere parallel to the conductivity boundaries (B-polariza
tion). Values of the field given by this solution for a particular set of model 
parameters are calculated at selected points on the surface and on a horizontal 
plane inside the conductor, and are tabulated to three figure accuracy for 
reference. They are used to check the accuracy of the results given by the 
finite difference program of Brewitt-Taylor & Weaver and the finite element 
program of Kisak & Silvester for the same model. Improved formulae for 
calculating the derived electric field components in B-polarization are first 
developed for incorporation in the finite difference program, and these give 
surface electric fields within 1 per cent of the analytic values, while all three 
field components inside the conductor are calculated to better than 96 per 
cent accuracy by the finite difference program. The results given by the finite 
element program are not quite so satisfactory. Errors somewhat greater than 
I 0 per cent are present and although the program requires much less disk 
space it takes rather more CPU time to complete the calculations. 

I Introduction 

There are many computer programs now available for calculating numerically the electro
magnetic response of a 2-D model of the Earth to an external, time harmonic magnetic 
source which is usually considered to be locally uniform and horizontal. The various 
programs have been developed quite independently and have been based on several different 
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264 J. T Weaver. B. V. Le Quang and G. Fischer 

methods - finite difference, finite element, integral equation and transmission line analogy, 
for example. An international project, designated COMMEMI, in which the numerical results 
given by these various programs applied to a number of standard models will be collected 
and compared, has recently been proposed and organized by Professor M. S. Zhdanov of 
Moscow. 

It is desirable to include among these standard models at least one 'control' model which 
can also be solved analytically. After all, if the numerical results given by different computer 
programs differ from each other there is no knowing which (if any) of the programs is giving 
the correct solution and even if two programs do yield the same numerical solution this does 
not prove conclusively that it is, in fact, an accurate one. A modelling program should at 
least give results in good agreement with the analytic solution of a simple control model 
before it is applied to more complicated structures and subjected to a comparison with other 
programs. 

Not a great deal of work has been done on developing such control models largely 
because of the paucity of analytic solutions presently available. To our knowledge the most 
detailed investigation of this type has been carried out by Khigel (1976). He compared the 
results given by a finite difference program (Losecke & Muller 1975) with the classical 
B-polarization solution of d'Erceville & Kunetz (1962) for the two-plate model - actually 
the thickness of the plates was taken to be several skin depths so that, in effect, the model 
investigated was the quarter-space shown in Fig. l(a). He also compared the corresponding 
£-polarization calculations with what can be called a 'quasi-analytic' solution of the two
plate model obtained by a method of successive approximations first proposed by Weidelt 
(1966). Recently Doucet & Pham Van Ngoc (1984) have also used the quarter-space model 
to compare the surface values of apparent resistivity and phase for a B-polarization field as 
given by their own program, by another finite difference program and by the analytic solu
tion of d'Erceville & Kunetz (1962). However, their investigation and conclusions were 
somewhat marred by the fact that they appeared to be unaware of algebraic errors in the 
finite difference program they were using in this comparison (Weaver 1985). 
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Figure l. (a) The quarter-space model; (b) the control model proposed in this paper; (c) the particular 
reference model used in the comparison of analytic and numerical calculations. 
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Results of a 2-D model in e/m induction 265 

In this paper we propose the use of a slightly more general control model in which the 
plate is divided into three, rather than two, different conductive segments overlying a 
perfect conductor. Such a model can be adapted to represent a variety of configurations 
which are useful for testing different computer programs, and we regard this greater flexi
bility as well worth the price of the increased complexity of the analytic solutions. The 
proposed model closely resembles the 'segmented overburden' model of Wait & Spies 
(1974) - also discussed by Wait (1982) - the only difference being that they took the 
basement to be a perfect insulator rather than a perfect conductor. Their method of solution 
is readily adapted to the proposed control model and the relevant analytic formulae are 
derived in Section 3 of this paper. Numerical values of the field components at selected 
points in a particular version of the control model have been generated by these formulae 
and are tabulated in Section 4 in the hope that they will provide a reference against which 
the B-polarization results of different computer programs may be checked. 

We have begun this exercise here by comparing the tabulated values with the output given 
by (i) the finite difference program of Brewitt-Taylor & Weaver (1976) and (ii) the finite 
element program of Kisak & Silvester ( 197 5) for the same control model. An improved 
method for calculating the derived fields in (i) has been incorporated in the program and 
is fully described in Section 5. 

The derivation, by a method of successive approximations, of the quasi-analytic solution 
for the same model with an E-polarization field is a very much more involved exercise. Con
sequently we defer a comparison of the corresponding E-polarization calculations to a 
subsequent paper in which the development of the quasi-analytic solution will also be 
presented. 

2 The control model 

The model we have chosen is illustrated in Fig. l(b). Referred to a rectangular coordinate 
system (x, y, z) it consists of a conducting plate of thickness d occupying the region 
0 < z < d with an underlying perfect conductor at z = d. The plate is divided into three 
segments y < - a, IY I< a and y >a of conductivities ai, a2 and a3 respectively. The half. 
space z < 0 is taken to be a perfect insulator and vacuum permeability µ 0 is assigned every
where. The field vectors are assumed to be independent of the variable x and to have a time 
dependence exp (iwt) where w is sufficiently small that displacement currents can be 
neglected. Then for the B-polarization field under consideration in this paper the spatial 
parts of the electric and magnetic fields may be written in the component form 

E(y, z) = (0, V, W), B (y, z) = (X, 0, 0). 

In a medium of conductivity a these components satisfy the Maxwell equations 

iwX = a v/az - a w/ay. (1) 

from which it can be deduced that for constant a 

(2) 

where a:2 = wµ 0a. A subscript j (j = 1, 2, 3) on the field components and the parameters a: 
and a will be used to denote their different values in the three different segments. 

The control model described above offers the following advantages: 

(i) It includes such well-known models as the dyke ( a 1 = a3), the vertical fault ( a2 = a3), 

and the quarter-space (a2 = a3 , d-+ 00) as special cases. 
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(ii) the effect of both high and low conductivity contrasts can be examined in the same 
model choosing (say) a2 /a 1 >JO, I< a2 /a 3 < 5. 

(iii) Programs which can only deal with 'anomalous' regions of finite horizontal extent 
embedded in a 'normal' 1-D structure can also be tested by putting o 1 = a3 in the control 
model. 

(iv) With a1 < a2 < a3 (or a 1 > a2 > a3) and 2a chosen small so that it equals the node 
separation in a numerical grid, the control model can be used to check the accuracy of the 
numerical solution for a model in which the conductivity changes gradually from one value 
(o1) to the next (a3) over a transition zone comprising three successive cells - normally only 
simple conductivity contrasts can be considered. 

(v) The perfect conductor at finite depth d provides a clean cut-off to the numerical 
model and permits the use of a reasonably small grid (with consequent savings in CPU time) 
when testing programs against the control model. 

3 The analytic solution 

The method of solution is so similar to that of Wait & Spies (1974), which was itself a 
straightforward extension of the solutions of d'Erceville & Kunetz ( 1962) and Rankin 
(1962), that it will be only outlined here. We note first that equations (1) give the familiar 
result X = B0 (a constant) in the non-conducting region z < 0. Thus Xi (j = 1, 2, 3), must 
satisfy (2) (with a= ai) in the jth segment subject to the boundary conditions: 

(i) Xi = B0 on z = O; 

(ii) axi/az=O on z = d; 

(iii) X1 = X 2 and 02aX1/ay = 01aX2(ay on y =-a; 

(iv) X2 = X 3 and a3aX2/ay = a2 aX3 /ay on y =+a. 

These follow directly from the continuity of the tangential electric and magnetic fields at a 
boundary and the vanishing of the tangential electric field at the surface of a perfect 
conductor. 

Now the general solution of (2) in the jth segment can clearly be written in the form 

cosh [(d - z)aivf] 
Xi= B0 r: + fj(y, z), 

co sh ( d aiv i) 
(3) 

where the particular integral represented by the first term is a 1-D solution of (2) that 
already satisfies boundary conditions (i) and (ii). Thus fj is a solution of (2) which can be 
found by separation of the variables and which satisfies fj = 0 on z = 0 and afil az = 0 on 
z = d. The z-dependent part of fj can therefore be expressed as a Fourier sine series in z, and 
the full solution takes the form 

= 
/ 1 (y, z) = 2: Pm exp (Y'Y~)) sin (kmz) (4) 

m=O 

= 

f2(Y, z) = L [Qm exp (YI'~))+ Rm exp (- Y'Y~l)] sin (kmz) (5) 
m=O 

= 
f3(y,z)= L Smexp(-Y'Y~l)sin(kmz) (6) 

m=O 
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where Pm• Qm, Rm and Sm are coefficients to be determined and 

km= (2m +I) rr/2d, 'Y~) = Vk~ + icxJ. 

267 

(7) 

The key to applying the remaining boundary conditions (iii) and (iv) at y =±a rests with 
the possibility of finding the Fourier series expansion 

cosh [(d - z)o:;VZ] 

cosh (do:;VZ) 

for j = 1, 3. The standard integration formula for calculating Fourier coefficients gives 

( .) 2ikm (o:~ - o:j) 
K' =-----

m d ( 'Y2)'Y~/)2 . 

(8) 

(9) 

Thus when the boundary conditions (iii) and (iv) are applied to the solutions (3), and the 
substitutions ( 4), ( 5), ( 6) and (7) are made, four equations are found which specify that four 
different Fourier sine series are identically vanishing. Equating the coefficients in these series 
to zero we obtain four equations which can be solved for the four unknowns Pm, Qm, Rm 
and Sm. These are then substituted back into (4), (5) and (6) and after some algebraic 
rearrangement the solution (3) can be put into the form 

X; cosh [(d - z) o:; VZ] ~ (j) . 
-= + L... Fm(y)sm(kmz) 
B0 cosh(do:;VZ) m=o 

where 

Fg)(y) = 13g) Ag) exp [(a+ Yh~Pl 

p(~)(y) =(Ag) - C~>) exp [(a+ y) 'Y~)J +(A~) - C~>) exp [(a - y) 'Y~)J 

F~)(y) = 13~) A~) exp [(a - y)'Y~)]. 

Here we have defined for j = I, 3 

(j) 2 exp (- 2a'Y2>) -c;·) (j" c2) -c;·) c2) 
Am = D [Km - Kni [cosh (2a"fm) + 13m sinh (2a'Ym )]], 

where 

(2)/ 
(j) _ 'Ym 02 

13m - (j)/ ' 
'Ym a; 

and 

m 

K (l)K(3) 
-(j) _ m m, 
Km - Ci) 

Km 

Dm = (1+13g))(l + 13~>)- (1 - 13g>)(l - 13~)) exp (- 4a'Y2>). 

(10) 

( 11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

The electric field components are obtained from (10) by differentiation according to the 
Maxwell equations ( 1 ). Thus we have 

~.· w [Vi sinh [(d - z) o:;VZ] 1 ~ ,..,(;) ] 
-=-- . -- L... kmr;n(y)cos(kmz), 
B0 o:; cosh (do:;VZ) o:; m = o 

(18) 

(19) 
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268 J. T Weaver, B. V. Le Quang and G. Fischer 

where 

4 A particular reference model 

The solutions (10), ( 1 8) and ( 19) have been programmed for numerical calculation and we 
present here the field values obtained at selected points for the particular model shown in 
Fig. I ( c) in the hope that these will serve as at least an initial standard against which the 
results given by various computer programs can be compared. As shown in the figure the 
parameters used in this calculation were T=2n/w=300s, a=lOkm, d=50km, 
a 1 =0.1Sm-1,a2 =1.0Sm-1 and a 3 =0.5Sm-1

. Note that the skin depths in the three 
regions from left to right are respectively 27 .6, 8.7 and 12.3 km. This makes the width of the 
central segment just over two skin depths while the thickness of the left segment is just 
under two skin depths. 

Since the magnetic field is constant and the vertical electric field is vanishing along the 

Table I. Values of the field components calculated from the analytic solution for selected points on the 
surface z = 0 and the interior plane z = 15 km of the reference model shown in Fig. l(c). The values of 
V/Bo and W/B0 are given in units of V m-1 T·-1. 

X/B 
0 

V/B 
0 

W/B 
0 

y(km) Re Im Re Im Re Im 

z = 0 km 

-52 0 -308 -292 0 0 

-25 0 -322 -287 0 0 

-15 0 -348 -303 0 0 

-10- 0 -379 -366 0 0 

-10+ 0 -37.9 -36.6 0 0 

- 7 0 -59.4 -85.1 0 0 

0 0 -83.4 -99 .1 0 0 

0 -82.1 -92 .8 0 0 

10- 0 -74.6 -75.3 0 0 

10+ 0 -149 -151 0 0 

15 0 -138 -130 0 0 

30 0 -129 -128 0 0 

50 0 -129 -129 0 0 

z = 15 km 

-52 .461 - .311 -247 -66 .6 .363 -2.88 

-25 .443 -.298 -250 -56 .8 15.8 -2 .66 

-15 .412 -.300 -253 -44.9 37 .o 7 .69 

-10- .383 - .307 -252 -30.5 55 .2 17.7 

-10+ .383 -.307 -25.2 -3.05 55 .2 17.7 

- 7 .205 -.341 -23. 2 6 .30 39 .2 2.06 

0 8.50xl0- 4 - .302 -19 .6 16 .0 9.81 -6 .46 

-3 .82 xlQ- 3 -.263 -20.0 16. 7 -7.54 -2.21 

10- 3.64x10-2 -.257 -21.8 14 .6 -13 .8 -1.54 

10+ 3 .64x10-2 -.257 -43. 7 29 .1 -13.8 -1.54 

15 7.07xl0-2 -.256 -46. 5 25 .6 -8.32 .847 

30 .104 - .271 -48.5 22. 9 -.746 1.34 

50 .104 -.279 -48.9 22 .6 .152 9 .02 xlO- 2 
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Results of a 2-D model in e/m induction 269 

surface z = 0 we have computed the values of all the field components at points along the 
surface z = 15 km inside the conductor as well as values of the horizontal electric field along 
the surface z = 0. Table 1 gives the 'field for various values of y on the two surfaces. 
Although the series were summed until adding an extra term gave a relative change of less 
than 10-6 per cent, the values in Table 1 are given to three significant figures only since this 
is the best that can be reasonably expected from the results obtained by the numerical 
methods discussed in Section 6. 

5 Improved derivative formulae for finite difference calculations 

In Section 6 we shall compare the analytic solution of the reference model just discussed 
with the corresponding results given by the finite difference program of Brewitt-Taylor & 
Weaver ( 197 6). In their original program the derived field components were calculated by 
central differences at the centre of the cells in the numerical mesh rather than at the nodes 
themselves. This certainly preserved the accuracy of the calculations but was an undesirable 
feature of the program since different components of the same electromagnetic field were 
then computed at separate points. For example it would clearly be inconvenient to make the 
sort of comparison envisaged in this paper if the values of the electric field were not 
obtained at the same points as those of the magnetic field. 

One way round this difficulty, of course, is simply to obtain the nodal values of the 
derived field by three-point interpolation, but problems with this procedure arise at con
ductivity boundaries where the normal electric field is discontinuous. Instead we have 
developed a method for computing the electric field components at the nodes themselves 
using nothing more than the same central difference approximations that were required in 
the derivation of the B-polarization finite difference equations for the magnetic field. The 
method is briefly outlined in this section and the final formulae are stated in a form that is 
easily coded for inclusion in a computer program. 

We remind the reader that Brewitt-Taylor & Weaver (1976) showed that in a 1-D model 
the central difference formula for the magnetic field at a node between two layers of 
different resistivities was the same whether the node was assumed to be on a sharp boundary 
between the two layers or in a transition zone in which the resistivity varied from one value 
to the other in such a way that the resistivity at the node itself was a weighted average of the 
values in the two layers. The latter interpretation is particularly useful for the extension to 
higher dimensions because it is obvious how to make the appropriate generalization of the 
weighted average resistivity at the nodes of a 2- or 3-D grid. We stress, however, that the dual 
interpretation remains valid. Thus in a 2-D model where the resistivity varies in both they
and z-directions. it matters not whether we regard a grid pointy= Ym· z =Zn as lying (i) on a 
sharp boundary y = Ym with the resistivity varying across a transition zone in the z-direction, 
or (ii) on a sharp boundary z =Zn with variable resistivity in they-direction, or (iii) in a 
2-D transition zone with the appropriately weighted average resistivity assigned to the node. 
The same finite difference equation for the magnetic field X is obtained in each case. For 
reasons discussed at length by Brewitt-Taylor & Weaver ( 1976) it is not possible to regard 
bothy= Ym and z =Zn as sharp boundaries simultaneously. 

Retaining the notation of Brewitt-Taylor & Weaver (1976), we define p = l/o?, which is 
proportional to the resistivity, and note that if the conductivity in Maxwell's equations ( l) is 
a function of position rather than a constant, then instead of (2) we have 

a2 x a2x 1 a P ax 1 a P ax i 
--+-+---+-- -=-X. 
ay 2 az 2 p ay ay p az az p 

(20) 
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(m. n-1) 

o-m-1 /2. n-1 /2 o-m+l/2.n-1/2 

h 
m 

(m. n) (m+ 1. n) 

(m. n+ 1) 

Figure 2. The general node (m, n) in the numerical grid for finite difference calculations. 

The node at the point (Ym· zm) is labelled (m, n), the distances to neighbouring nodes to the 
left, right, top and bottom of (m, n) are denoted by hm _ 1, hm. kn_ 1 and kn respectively, 
and the conductivities in the four adjacent cells are am±l/2• n±l/2 as shown in Fig. 2. The 
corresponding parameters p are labelled likewise. The weighted average values of p at the 

points (Ym· Zn - kn_ if2), (Ym• Zn+ kn/2), (Ym - hm _ i/2, Zn) and (Ym + hm/2, Zn) are 
written as Pm, n _ 112 , Pm, n + 112 , Pm_ 112, n and Pm+ 1; 2 , n respectively, where 

hm-lPm-1/2,n± 1/2 +hmPm+l/2,n±l/2 
Pm,n±l/2=----- h +h 

m m-1 

kn-lPm±l/2,n-1/2 +knPm±l/2,n+l/2 p ------ --------------
m ± 1/2, n - k k 

n + n-1 

and the value at the node (m, n) itself is taken to be 

Pm,n 
_ knPm.n+l/2 +kn-lPm,n-1 

(21) 

(22) 

(23) 

The required finite difference expressions for the electric field components are obtained 
by expanding X in a Taylor series (up to and including second-order terms) horizontally and 
vertically about the node (m, n). For an expansion parallel to they-axis the planey = Ym is 
treated as a sharp boundary (interpretation (i) above) across which the normal electric field V 
is discontinuous whenever Pm_ 1;2 , n i=- Pm+ 1; 2 , n. The two one-sided values of this field are 
denoted by V m -. n and Vm +, n respectively; the other field component Wm, n is, of course, 
uniquely defined on y = Ym because it is tangential to the boundary. It is the normal com
ponent of the current density j = E/wµ 0 p which is continuous across y = Ym, and the 
uniquely defined value of (jy)m, n ony = Ym is related to the two values of the discontinuous 
electric field by the equations 

(24) 

On the other hand we have Uz)m -, n i=- (jz)m +, n in general because the continuity of W 
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Results of a 2-D model in e/m induction 271 

requires that 

Pm - 1;2.nU z)m -, n =Pm+ 1;2,nU:Jm +, n =Pm, nUz)m, n (say). (25) 

The last term in (25) serves as a suitable definition of Uz)m, n when we switch to interpreta
tion (ii) in which z = z n is the sharp boundary and the resistivity varies smoothly in the 
y-direction across a transition zone about y == Ym· In this case, corresponding to (24) and 
(25 ). Wand iy are discontinuous across z =Zn in such a way that 

Wm, n .. /Pm, n -1/2 =Wm, n +f Pm, n + 1/2 = wµo(jz)m, n 

and 

Pm. n -1/2 (iy)m, n =Pm, n + 1/2 (jy)m, n + =Pm, n (iy)m, n (say). 

(26) 

(27) 

Thus the pair of equations (24), (25) are used with interpretation (i), and the pair (26), (27) 
with interpretation (ii), while the definitions of (i y)m, n and Ciz)m, n in (27) and (25) provide 
the connection between the two interpretations. 

Taylor expansions of X to the left and right of (m, n) with its (discontinuous) first deriva
tive in y related to j z through the second of Maxwell's equations (1) and equation (26), and 
its second derivative in y eliminated with the aid of (20) in which ap/ay = 0 (since y = Ym is 
being regarded as a sharp boundary separating two regions whose resistivities are locally 
independent of y) yield two equations each containing a term involving (a2X/az 2 )m, n- When 
this term is eliminated we obtain a single equation which. after considerable algebraic 
simplification, gives the result 

(
.) _Pm+ I/2,nPm-I/2,nLm, n 
lz m, n 2 

µo(hm + hm -1 )Pm, n 
(28) 

where 

hm hm - I ( kn kn - I ) 
Lm,n =-h-- Xm - I,n --h--Xm+l,n- Mm, n -k-- Xm, n-i--k-Xm, n+I 

m-I m n-I n 

(29) 

and 

M = hmhm-I [Pm-1/2,n+l/2-Pm-l/2,n-I/2 

m, n (kn+ kn_ 1)2 Pm -1/2, n 

_Pm+ 1/2, n + 1/2 - Pm+ 1/2, n - I/2]. 

Pm+ 1/2, n 
(30) 

Similarly, expansions of X up and down from the node (m, n) lead to the result 

(31) 

10 
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272 J. T Weaver, B. V. Le Quang and G. Fischer 

with 

kn-1 kn (hm-1 hm ) N =--X ---X -0 --X ---X _ m, n k m, n + 1 k m, n - 1 m, n h m + 1, n h m I, n 
n n-1 m m-1 

x ( 
1 

-
1 

)] Xm n• 
Pm,n-1/2 Pm,n+l/2 ' 

(32) 

O = knkn-1 [Pm+l/2,n-1/2 - Pm-1/2,n-l/2 _ Pm+l/2,n+l/2 - Pm-1/2,n+l/2]. 

m,n (hm+hm-1) 2 Pm,n-1/2 Pm,n+l/2 

(33) 

Formulae (28) and (31) are used in conjunction with (24) and (26) to compute the com

ponents of the electric field at each interior node (m, n). If Pm_ 112 ,n =Pm+ 1;2,n the two 
one-sided values of V become identical, i.e. Vm -. n = Vm +,n = Vm, "' and likewise if 

Pm, n _ 112 =Pm,n+ 1;2 it follows from (26) that Wm, n _ = Wm, n +=Wm, n· 
The nodes on the surfaces z = 0 require special consideration because for B-polarization 

modelling they are at the top of the numerical grid and only downwards Taylor expansion is 
possible. On the surface itself we know from boundary condition (i) in Section 3 that 
Xm, 1 = B0 , a constant, for all values of m. Thus the downwards expansion of the field 
together with substitution from the first Maxwell equation (1) and the differential equation 
(20) gives 

"k2 
Xm, 2 =(1+ 

1 1 
)Bo+µok1Uy)m,1 

2Pm, 3/2 

(34) 

all other terms, which involve y-derivatives of the field, having vanished because X is 
constant along the surface. It follows from (24) that 

Vm -, I 

Pm -1/2,3/2 

Vm+, 1 w iwk 1 Bo 
---- = - (Xm, 2 - Bo) 
Pm+ l /2, 3/2 k I 2Pm, 3/2 

(35) 

This agrees with the special formula derived by Brewitt-Taylor & Weaver ( 1976) except that 
they took the weighted average value 

V: _hm-1Vm-,1+hmVm+,l 
m, 1 - h h 

m + m-1 

for the electric field at (m, 1). 
Formula (26) for the vertical electric field is, of course, replaced by Wm, 1 = 0 at the 

surface, a result which follows at once from the second of Maxwell's equations (1) and the 
constancy of X on z = 0. 

6 Numerical calculations 

The particular reference model described in Section 4 has been used to test two numerical 
modelling programs. Field values have been calculated at the same selected points shown in 
Table 1 using (i) the finite difference program of Brewitt-Taylor & Weaver (1976) modified 
to include the improved derivative formulae developed in the preceding section, and (ii) the 
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Figure 3. Triangulation of the region z > 0 for finite element calculations. 

finite element program of Kisak & Silvester (1975) which is obtainable from the CPC 
Program Library at Queen's University in Belfast. 

For the finite difference calculations a 35 x 16 numerical grid was used with nodes at 
y=-130, -110, -90, -80, -70, - 61, - 52, - 43, - 34, - 25,-19,-15, -12, - JO. 
- 8.5, - 7, - 5, - 2.5, 0, 2.5, 5, 7, 8.5, 10, 12, 15, 18, 22, 26, 30, 34, 38, 43, 50, 60km. 
and z = 0, 1.5, 3, 5, 7.5, 10, 12.5, 15, 17.5, 20, 24, 28, 32, 40, 45, 50km. The triangulation 
of the region z > 0 for the application of the finite element program is shown in Fig. 3. Two 
nodes were taken along the sides and one in the centre of each triangle in addition to those 

Table 2. As in Table I except that the field components are calculated by the finite difference program of 
Brewitt-Taylor & Weaver (1976). 

X/B
0 

V/B
0 

W/B 
0 

y(km) Re Im Re Im Re Im 

z = 0 km 

-52 0 -307 -291 0 0 

-25 0 -320 -287 0 0 

-15 0 -346 -302 0 0 

-10- 0 -376 -362 0 0 

-10+ 0 -37 .6 -36.2 0 0 

- 7 0 -58.9 -86.6 0 0 

0 0 -82.8 -100 0 0 

0 -81.5 -94 .1 0 0 

10- 0 -74.0 -75 .3 0 0 

10+ 0 -148 -151 0 0 

15 0 -137 -131 0 0 

30 0 -129 -129 0 0 

50 0 -128 -130 0 0 

z : 15 km 

-52 0.462 -0 .308 -247 -65.6 0.514 -2.74 

-25 0.444 -0 .296 -250 -56 .3 16.4 -1.88 

-15 0.413 -0 .298 -253 -45.0 37.3 8.38 

-10- 0.384 -0.306 -252 -31.0 55 .3 18.3 

-10+ 0.384 -0 .306 -25 .2 -3.10 55.3 18 .3 

- 7 0.206 -0.340 -23.4 6.12 39 .3 2.62 

0 2 .46 xlQ- 3 -0.300 -19.9 15 .6 10 .1 -6.24 

-2.73xlQ-3 -0.262 -20.3 16 .2 -7 .37 -2 .26 

10- 3.68xlQ- 2 -0.255 -22.1 14 .2 -13 .6 -1.63 

10+ 3.68xlQ- 2 -0 .255 -44.2 28.3 -13 .6 -1.63 

15 7 .06 xlO- 2 -0.255 -46.9 24 .9 -8 .27 o. 745 

30 0.103 -0.270 -48.9 22 .3 -0. 798 1.31 

50 0.104 -0. 277 -49.3 22 .o 9.20xlQ-2 0.239 

10* 
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at the vertices, making a total of 580 points at which the field was calculated. The CPU time 
required for these calculations on a V AX-780 computer was 50 s with the finite difference 
program and 90 s with the finite element program. 

The values obtained by these two methods are tabulated in Tables 2 and 3 respectively in 
the same format as the analytic solutions given in Table I. For a visual comparison of the 
results, the variations of the real and imaginary parts of V/ B0 across the surface z = 0. as 
given by the three different methods of calculation. are depicted in Fig. 4. The similarity 
between the finite difference curves and those based on the analytic solution is quite 
remarkable; in fact a comparison of the numerical values for z = 0 in Tables 1 and 2 indicates 
that the errors in the finite difference results are extremely small - maximum 1.5 per cent 
and generally under 1 per cent relative to typical electric field values in the region (i.e. the 
field at the left edge of the model for y < - I 0 km, at the right edge for y > I 0 km, and the 

Table 3. As in Table 1 except that the field components are calculated by the finite element program of 
Kisak & Silvester (1975). Where two values of the electric fi~ld on z = 0 are given. the point is at a 
common vertex of two of the triangular clements shown in Fig. 3, and the two values are derivatives 
associated with the two triangles. The values of the electric field components on the interior plane 
z = 15 km are not given by the finite element program. 

z = 0 km 

z = 15 km 

y(km) 

-52 

-25 

-15 

-10-

-10+ 

- 7 

0 

10-

10+ 

15 

30 
50 

-52 

-25 

-15 

-10-

-10+ 

- 7 

0 

10-
10+ 

15 

30 

50 

X/8
0 

Re Im 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.530 -0.281 

0.504 -0 .277 

0.468 -0.284 

0 .437 -0.295 

0.437 -0.295 

0.246 -0.346 
l.30x1Q-2 -0. 317 

-4.22xlQ- 3 -0. 271 

3.36xl0-2 -0 .261 
3.36xl0-2 -0.261 

6.71x1Q-2 -0. 259 

0.102 -0.270 

0 .103 -0.278 

V/8
0 

W/B 
0 

Re Im Re Im 

-271 -280 0 0 

-289 -278 0 0 

-318 -300 0 0 

-344 -325 0 0 

-34.9 -35.4 0 0 

-57. 7 -87.0 0 0 
-57.4 -85.3 

-82.7 -97 .9 0 0 
-83.0 -99.9 

-82.3 -94.0 0 0 
-93 .2 

-74.8 -78.9 0 0 

-150 -151 0 0 

-138 -130 0 0 

-130 -128 0 0 

-129 -129 0 0 
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"NAL YTIC FINITE DIFFERENCE FINITE ELEMENT 

100 

iC 

~ reol 

' "' -U'.10 

' imo9 
> 

~ 
-200 

~ 

u 
~ imo9 

u -3f2H2l 
w 
~ 
w 

-4121121 
-60 -30 30 

"BSC I SS" Y (KM) "SSC I SS" y (KM) "SSC I SS" Y <KM) 

Ca) (b) (c) 

Figure 4. Comparison of the variations of the real and imaginary parts of the horizontal electric field V 

across the surface z = 0 of the model shown in Fig. 1( c ), as given by (a) the analytic solution (b) the finite 
difference program of Brewitt·Taylor & Weaver (1976), and (c) the finite element program of Kisak & 
Silvester (1975). 

field at y = 0 for I y I < 10 km). The finite element calculations are not quite so satis
factory. The field values for y > - 10 km are in reasonably good agreement with the analytic 
solution but larger discrepancies occur over the plate of smallest conductivity in the region 
y < - 10 km. The less smooth variation of the field depicted in Fig. 4( c) is a result of the 
finite element program giving two values for the derived field at those nodes which are at a 

common vertex of two triangles - one value for each triangle. In regions of uniform conduc
tivity these two values should be the same but this did not always turn out to be the case in 
these particular model calculations. The different values obtained at some of the selected 
points are given in Table 3, where it will also be seen that errors somewhat greater than 10 
per cent are present in the finite element calculations. 

Only the calculated values of the derived field V can be compared on the surface z = 0. In 
order to test the accuracy of the magnetic field X, which is of course the component 
actually calculated by the finite difference and finite element programs, it is necessary to go 
to the interior of the conductor. In Fig. 5 the variations of all three components along the 
interior plane z = 15 km are depicted. Only the finite difference results for the electric field 
components are plotted alongside the analytic solutions because it is not possible, without 
modifying the program, to obtain the derived fields inside the conductor with the finite 
element program supplied by Kisak & Silvester (1975). The agreement between the two sets 
of curves is again visually quite striking; the behaviour of the fields as given by the analytic 
solutions plotted on the left is faithfully reproduced in every detail by the finite difference 
calculations. Reference to the numerical values given at the selected points in Tables I and 2 
confirm that the errors in the magnetic field are less than I per cent (relative to B0 ), and that 
the errors in the electric field components relative to typical values in the region are always 
less than 4 per cent and generally much less. Once again the finite element calculations (in 
this case for the magnetic field) are not so accurate with errors around 10 per cent occurring 
in the left segment. 

We conclude that the finite difference program of Brewitt-Taylor & Weaver ( 1976), 
together with the improved derivative formulae developed in this paper, gives excellent 
results when applied to our control model and can therefore be used with some confidence 
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Figure S. Comparison of the variations of the real and imaginary parts of the horizontal magnetic (X), 
horizontal electric ( V) and vertical electric ( W) fields along the plane z = 15 km inside the conducting slab 
shown in Fig. l(c). The curves on the left were obtained from the analytic solution and those in the 
centre from the finite difference program of Brewitt-Taylor & Weaver (1976). Only the variation of Xis 
given by the finite element program of Kisak & Silvester (197 5) and is shown on the right. 
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in the numerical modelling of B-polarization induction problems. The finite element 
program of Kisak & Silvester ( 1975) is also acceptable but is less accurate. requires more 
CPU time (although less disk space). and is actually less convenient to use because the task of 
designing the numerical model is more time-consuming than for finite difference calculations. 
The real advantage of the finite element method lies in its ability to handle sloping conduc
tivity boundaries, but such complications have not been considered in this paper. 

More serious discrepancies between the two programs arise when they are applied to 
E-polarization models. A full discussion of these problems will be deferred to a subsequent 
paper in which the quasi-analytic £-polarization solution of the control model will also be 
developed. 
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