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Summary. The 2-D model proposed in an earlier paper as a control on the 
accuracy of numerical modelling programs operating in the B-polarization 
mode, is used here to test the corresponding E-polarization calculations. The 
model comprises a conducting slab divided into three segments of different 
conductivities and overlying a perfect conductor. The control solution is 
obtained in the E-polarization mode by a 'quasi-analytic' method in which a 
1-D integral equation satisfied by the horizontal magnetic field on the surface 
of the conductor is solved by the method of successive approximations. 
Values of all the field components for a particular set of model parameters 
are calculated by this method at selected points on the surface of the 
conductor and on a horizontal plane inside the conductor. As in the previous 
paper, these values are used to check the accuracy of results given by (i) the 
finite difference program of Brewitt-Taylor & Weaver in which improved 
finite difference formulae for calculating the derived magnetic field 
components have been incorporated and (ii) the finite element program of 
Kisak & Silvester. The finite difference program gives results in remarkably 
close agreement with the analytic solution: relative errors in all the field 
components are generally less than 1 per cent. The finite element program 
does not perform as well. In particular it gives errors of around 10 per cent 
in the values of the vertical magnetic field near the segment boundaries. It 
appears that the finite element program is not suitable for models which have 
different 1-D conductivity distributions at infinity on the lhs and rhs. 

Key words: electromagnetic induction, E-polarization, electrical conductivity, 
numerical modelling 
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918 J. T. Weaver, B. V. LeQuang and G. Fischer 

1 Introduction 

In an earlier paper (Weaver, LeQuang & Fischer 1985) -- hereafter referred to as paper I - a 
simple control model was proposed for testing the accuracy of the various numerical 
modelling programs that have been devised for calculating the electromagnetic response of a 
2-D conductivity structure due to a locally uniform magnetic field varying harmonically in 
time. In paper I we considered a B-polarization field and solved the induction problem for 

the control model exactly by analytical methods. The analytic results were then compared 
with numerical values given by finite difference (Brewitt-Taylor & Weaver 1976) and finite 
element (Kisak & Silvester 1975) programs applied to the same control model. We believe 
that all numerical programs should pass an initial test such as this before they are applied to 
more complicated structures, or are compared with other programs for accuracy. In this 
regard it is worth noting that this model has now been added to the set of test models in the 
Comparison of Modelling Methods in Electromagnetic Induction Problems (COMMEMI), an 
international project established by Working Group 1-3 of the International Association of 
Geomagnetism and Aeronomy (Zhdanov & Varentsov 1985). 

This paper is a sequel to paper I; the same control model is used to make a similar 
comparison of results for an E-polarization field. Unfortunately it is not possible to find a 
strictly analytic solution of such problems, but the solution can he expressed in the form of 
an integral equation which can, in theory at least, be solved to any desired degree of 
accuracy by a method of successive approximations. We call such a solution 'quasi-analytic'; 
it is analytic in the sense that only closed-form integrals (in which the integrands are always 
known functions) require evaluation by quadratures, but it is non-analytic in the sense that 
each successive analytic calculation of this kind yields merely an improved approximation 
to the exact solution so that a whole series of such calculations are needed before the 
required level of accuracy is reached. This procedure is virtually analytic, however, when 
compared with a purely numerical approach in whjch the problem itself is first replaced by 
its discrete analogue with the aid of (for example) either finite difference or finite element 
approximations, and then the resulting large system of linear equations solved numerically. 

Although the use of successive approximations is a standard way of solving certain 
integral equations (see e.g. Vladimirov 1984, chapter IV), it was first formulated for the 
solution of a problem in electromagnetic induction by Weidelt (1966), and applied to the 
two-plate and quarter-space problems by Kluge! ( 1976, 1977) and to a problem in 
cylindrical geometry by Rodernann (1978). A slight variation of the method was also 
proposed independently by Mann (1970). 

In this paper a considerable simplication of the required numerical integrations is achieved 
by some further analytical development of the method. The penalty that must be paid for 
this reduced dependence on integration by quadratures is the extra burden of some rather 
tiresome algebra which arises from the analytical evaluation of certain integrals. However, 
we believe that the relative simplicity of the modified method is well worth the price of the 
additional manipulative algebra which, in any case, only has to be done once. The modified 
method is established in Sections 3-6, and is then used to generate the quasi-analytic 
solution for E-polarization induction in the same particular control model as described in 
paper I. In Section 8 the results obtained arc again compared with the corresponding 
numerical results given by (i) the finite difference program of Brcwitt-Taylor & Weaver 
( 1976) (including an improved procedure for calculating the derived fields which is described 
in Section 7), and (ii) the finite element program of Kisak & Silvester (1975). As in paper I 
the actual numerical values obtained at certain selected points both on the surface of and 
inside the conductor are tabulated alongside each other for ease in checking the accuracy of 
the two numerical programs against the quasi-analytic solution. 
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2 Basic equations and boundary conditions 

919 

The control model consisting of a conducting plate 0 < z < d divided into three regions 
y < - a, IY I< a and y >a of conductivities a 1 , a2 and a 3 respectively, and underlain by a 
perfect conductor, is the same as in paper I and is reproduced here in Fig. 1 for convenient 
reference. Vacuum permeability µ0 is assumed everywhere. For a quasi-static, time harmonic 
electromagnetic field in the E-polarization mode, the electric and magnetic vectors can be 
expressed in the component form 

E(y, z, t) = [U(y, z), 0, O) exp (iwt). B(y, z, t) = [O, Y(y, z), Z(y, z)] exp (iwt), 

where w is sufficiently small that displacement currents can be neglected. We shall find it 
useful in this paper to label the three regions of the plate in the plane x = 0 as «1; .Y; and ,</'3 

consecutively, from left to right and sometimes it will be helpful to distinguish between the 
different mathematical expressions for the field in these regions by writing 

U=U;, Y=Y;, Z=Z;, [(y,z)ESf;, i=l,2,3). 

The field components in [If are connected by the Maxwell equations 

iw Y; = - a Udaz, iwZ; = au;1ay, µ 0 a; U; = aZ;/ay - a Y;/az 

from which it follows that 

where V' 2 '= a2 /ay2 + a2/az2 and K; = Wµoa;. 

(I) 

(2) 

(3) 

The usual boundary conditions specifying the continuity of the tangential electric and 
magnetic fields across the vertical boundaries within the conducting plate, and the vanishing 
of the tangential electric field at the surface of a perfect conductor can be expressed in terms 
of the electric component as follows: 

U1 = U2 , aU1/ay = aU2/ay on y = -a (0 < z < d), 

U2 = U3 , au2/ay = aU3/ay on y =a (0 < z < d), 

and for i = l, 2, 3 

ui = 0 on z = d. 

As IY I~ <X>, the model becomes 1-D so in addition we have 

aui(ay ~ 0 asy ~ - 00 ; aU3/ay ~ 0 asy ~ + 00 • 

(4) 

(5) 

(6) 

(7) 

On z = 0, U, Y and Z are all continuous, and as IY I ~ 00 in z < 0 the 1-D solution gives 
Y ~ B0 , a constant. In the B-polarization problem discussed in paper I we were able to use 
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~~~~ ~~~~z=0 
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Figure I. The control model and the parameters used in the numerical calculations. 
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920 J. T. Weaver, B. V. LeQuang and G. Fischer 

the fact that the magnetic field was B 0 everywhere in z < 0 (and in particular on z = O) but 
no such simple boundary condition exists in E-polarization. It is therefore necessary to 
resort to the integral relation (Schmucker 1971) 

Y(y,O)=B 0 -fZ(y,0). (8) 

where f is the Kertz operator (or negative Hilbert transform) defined by 

1 f = </>(77) 
f</J(y) = - -- d17. 

n --=Y Tl 
(9) 

The bar on the integral sign indicates the Cauchy principal value. 

3 The method of successive approximations 

A quasi-analytic solution of the control model will be obtained by successive approximation 
based on the scheme first proposed by Weidelt ( 1966) and subsequently applied to particular 
models by Kluge! ( 1977) and Rodemann ( 1978). The main steps of the method will be 
outlined in this section with the details of the calculation left until later. 

For (y, z)E!./j and (v, w) EYJ we seek first the Green's function G;j(y, z Iv, w) which is 
the solution, in Y;, of 

(\7 2 - iK;) G;j(Y. z Iv, w) = &(y - v) o(z -- w) 

that satisfies the boundary conditions 

G;j()', JI v, w) = 0, G;j(y, OI v, w) = 0. 

(10) 

( 1 1 ) 

where G;;· = aG;/az. The rhs of (I 0) clearly vanishes in g; unless (v, w) also belongs to Y;. In 
addition we require the separate functions G lj and G3 i to have vanishing gradients at 
infinity and to match G2 j smoothly across the boundaries y = ±a through the same 
boundary conditions (7 ), ( 4) and ( 5) as are satisfied by U 1• U 3 and U2 . If we now multiply 
( 1 0) by U; and ( 3) by G;i, subtract, and then integrate over the region g; using the property 
of the delta function we obtain 

JI { Uj(V, w) (i = j) 
{U;(y, z)V 2 G;j(Y, z Iv, w) - G;j(y, z Iv, w)V 2 U;(Y. z)} Jydz = . . (12) 

Yi 0 (1 *J). 

The lhs of (12) can be transformed by Green's identity into a closed line integral around the 
boundary of Y[, and when the three equations corresponding to i = 1, 2, 3 are summed the 
result is 

( 13) 

where dl; is an element of length (i.e. either dy or dz) of the rectangular contour <€ i (the 
rectangles ~1 and 1'3 actually extend to infinity) enclosing the region g; and where a;an 
denotes the outward normal derivative (i.e. either ±a/az or ±a/ay) on this contour. The line 
integrals along the common segment y = -a of the two contours Cf5 1 and 1'2 clearly cancel 
each other by virtue of the boundary conditions (4) satisfied by G 1i and G2 i as well as by 
U1 and U2 . Likewise ( 5) ensures the cancellation of the integrals along y = +a. Finally as a 
result of ( 6 ), the first of conditions (I I) and the fact that G 1 i and C 3 i also satisfy (7 ), the 
line integrals along z = d and at infinity all vanish. Thus with the second of conditions ( J 1 }, 
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equation (13) reduces to 

L~a G 1j(y,Olv.w)U;(Y.O)dy+ 1: G2j(y,Olv,w)U;(.v,O)dy 

+ J= G3j(Y, Div, w) u;(y, O) dy = Uj(v, w), (14) 
a 

where U/ = a Ujaz. 
Now the reciprocity property of the Green's function requires 

(I 5) 

a fact which can be verified directly from the explicit expressions for G;j obtained in Section 
4. Thus, by interchanging the variables in ( 14 ), using ( 15) and the first of Maxwell's 
equations (2), noting the definitions in (I) and further defining for i = 1, 2, 3 and j = I, 2, 3, 

G(y, z, v) = G;j(Y. z Iv, 0) [(y, z) Efl/, (v, 0 +) EYJ]. 

we may write ( l 4) in the form 

U(y, z) = - iw J= G(y, z, v) Y(v, 0) du 
-= 

(16) 

( 17) 

which gives the electric field everywhere in the plate 0 < z < d. Differentiating this equation 
according to Maxwell's equations (2) we also obtain for 0 < z < d 

Y(y, z) = L: G '(y, z, v) Y(v, 0) du 

Z(y, z) = - 1: f(y, z, v) Y(v, O) du, 

where 

f(y, z, v) = aG(y, z, v)/ay. 

Substitution of ( 19) evaluated at z = O+ in ( 8) gives 

Y(y, 0) =Bo+ .1( L: r(y, 0, v) Y(v, 0) du. 

This leads at once to Weidelt's scheme of successive approximations. Starting with 

y!Ol(y, O) =Bo, 

(18) 

( 19) 

(20) 

(21) 

(22) 

which is the field that would obtain if the plate were uniform, we write, according to (21 ), 
the (n + l)th approximation (n;;. 0) as 

yfn+I] (y, 0) = B0 +.1( i~ f(y, 0, v) ylnl(v, 0) du. 

The surface magnetic field is then given by 

Y(y, O) = lim y!Nl(y, O) 
N->= 

(23) 

(24) 
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922 J. T. Weaver, B. V. LeQuang and G. Fischer 

provided that this sequence converges. Once Y(y, 0) has been found the entire electro­
magnetic field within the plate can be found from ( 17), ( 18) and ( 19). 

The alternative version of this scheme proposed by Mann ( 1970) follows immediately if 
we define for n;, 0 

Alnl(y) = ylnl(y, O) _ yfn-lj (y, 0) (25) 

so that (22) and (23) can be recast in the form 

Afol(y)=Bo (26) 

Aln+ll (y) =% I: f(y, 0, u) A (n)(u) du, (27) 

giving 

Y(y, 0) = I A 1Nl(y) (28) 
N=O 

provided that this series converges. 
The first approximation A( l) can actually be calculated analytically in terms of the 

exponential integral function. Putting h(y) = A( 1)(y)/B0 , substituting from (9) for the 
operator %in (27) (with n = 0), and interchanging the order of integration, we obtain 

h(y) =ff 1: rtv, 0, u) du= 1: 2(y, u) du (29) 

where 

I f"" f(77, 0, u) 
2(y, v) = - d17. 

1T -oo y .. 77 
(30) 

lt is the function 2(y, v) which is expressed in terms of the exponential integral function by 
the formula in (30). The first approximation to the field itself is then given analytically by 
the expression. 

y1 1 1(y,O)=B0 {l+h(y)}. (31) 

ln fact for the special cases of the two-plate model (a2 = a3, y' = y +a) and the quarter­
space ( a 2 = a3, y ' = y +a, d -+ 00), the expression (31) reduces to the approximate solutions 
calculated by Treumann ( 1970) and Weaver & Thomson ( 1972) respectively. Earlier Weaver 
( 1963) had used the zero-th approximation (22) to obtain first approximations to the other 
components of the field for the quarter-space model according to the formulae (17), (18) 
and (19). 

These results enable us to develop yet another variation of Weidelt's method in which the 
integration procedure is very much simplified. Interchanging the operator %and the integral 

in equation (21) with the aid of the result (30), and also adding and subtracting h(y) Y(y, 0) 
on the rhs using the integral representation (29) for the subtracted term, we obtain 

Y(y, 0) = B0 + h(y) Y(y, 0) + L: 2(y, u) {Y(v, 0) - Y(y, O)} du. 

The form of this equation suggests that the (n + 1 )th approximation can be expressed by the 

http://gji.oxfordjournals.org/
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formula 

yln+I l(y, O) =B0 + h(y) ylnl(y, 0) + £: 2:(y, u) {ylnl(u, 0) - ylnl(y, O)} du (32) 

which together with (31) defines the iterative scheme that we shall use. It will be seen that 
h(y) and 2:(y, v) can be calculated analytically from the formulae (29) and (30). This results 
in a considerable reduction in the amount of numerical work required; the double integral 
appearing in the original equation (23) is reduced to a single integral and the potentially 
troublesome numerical evaluation of the Hilbert transform .)( is avoided altogether. The 
subtraction of the magnetic fields in (32) effectively removes a logarithmic singularity in the 
integrand that would otherwise occur at v = y through the presence of the exponential 
integral function in 2:(y, v ). 

Although each step in the iterative scheme defined by (31) and (32) requires a numerical 
integration by quadratures, the integrands involved are always known functions, and as 
stated in Section 1, it is for this reason that the solution we obtain is called 'quasi-analytic' 
rather than numerical. There remains, in fact, a considerable amount of analytical develop­
ment to be done before the quasi-analytic solution for the control model under 
consideration can be obtained by the method described in this section. Included in this 
development is the analytic calculation of the functions G, r, E, and h which will be dealt 
with in Sections 4 and 5. 

4 Calculation of the Green's function 

As remarked earlier the rhs of (I 0) vanishes except when i = j. Thus for i ic j the general 
solution of (l 0) satisfying the boundary conditions (11) can be expressed in the form 

- ~- ;. ij (i) ij . (i) ' G;j(y, z \v, w) - L {s;I m exp(/'111 Y) + ~m exp ( - 'Ym Y)} cos (km z) cos (km it) (33) 
d m=o 

where 

km = (2m + 1) rr/2d, -v(!) = Jk 2 + iK · 1m m r (34) 

and where s;I~ and £11~ are arbitrary functions of v and w, with the factors (I /d) cos (km w) 
included with them for algebraic convenience. It is understood that 

(35) 

so that the boundary conditions at infinity corresponding to (7) may also be satisfied. The 
rhs of (33) will be recognized as the Fourier series expansion of G;j in 0 < z < d. 

To find the remaining functions Gii we first seek the solution of (I 0) in the entire strip 
-- 00 <y< 00 , O<z<d, subject to the boundary conditions (11). This will serve as a 
particular integral G;~ in the appropriate region ff;. The general solution Gu can then be 
found by adding auxiliary solutions of the form (33). Putting i = j in (IO) and taking its 
finite cosine transform defined by 

~km)= Jd <I>(z)cos(kmz)dz, 
0 

(36) 

we obtain after applying the boundary conditions ( 11) and using the property of the delta 
function 

(37) 

http://gji.oxfordjournals.org/
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924 J. T. Weaver, B. V. LeQuang and G. Fischer 

If the exponential Fourier transform defined by 

¢(ri) = ;n i~ </>(Y) exp UriY) dy 

is now applied to (37), then we obtain 

exp (iriv) cos (km w) 
iu(T/, km Iv. w) = - _ r- 2 (i) 2 

y21T[T/ +(f'm) J 

whose inverse is 

exp ( 
(38) 

Finally. it follows from the well-known formula for the coefficients of a Fourier cosine 
series (or by Sneddon 1951, p. 73) that the inverse of (36) is 

) = 

<I>(z) = ""- L </>(km) cos(km z), 
d m=o 

so that by inverting (38) we find that the particular integral in Y'; is 

* 1 = exp(-r~/ly-vl) c .. (v z Iv w) = -- -- ' --------.. -·-··----cos (k z) cos (k w). 
" · ' ' I L (1) m m 

l m=o I'm 

By ( 16 ), (33) and ( 39) it is now clear that the required form of the Green's function is 

I = -
G(y, z, v) = - L G;j(Y. v) cos (km z) [(y, z) E!J[, (v, 0 +) E9j], 

d m=O 

with 

(39) 

(40) 

where D;j is the Kronecker delta. Bearing in mind the definitions (36), we see that there are 
I 2 non-vanishing coefficients d~ andaJ~7 for each m. These can be determined from the 12 
boundary conditions (corresponding to ( 4) and (5)) which prescribe the smooth matching of 
G 1i and G2 j across y =-a and G2 i and G3i across y =+a. This is clearly a straightforward 
but tedious algebraic exercise. Here we quote only the final expressions for Gij; it can easily 
be verified directly that they satisfy the required boundary conditions. 

First it is necessary to introduce some simplifying notation. in the following it is under­
stood that l can take the values 1 or 3. Introducing the parameters 

cx<ll = ,..,(1) + ,..,(2) {3(1) = ,..,(l) - ,..,(2) A (I)= x(I) + ,..,(2) v<n = x(l) - ,..,(2) 
rn 1 m 1 nz , tn 1 n1 1 rn ' n1 m 1 nz ' m m ' n1 (42) 

where 

X
(/) = 'V(I) 'V(3l/-v(/) 
1n 1n1 1 ni 1 n1 • 

(43) 

http://gji.oxfordjournals.org/
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we define the functions 

rf/,)(t 17) = "/\~) exp [- (~ - 17) 'Y~;i) + v~) exp [- (~ + 17 + 2a) 'Y;,;iJ 

s~l(t 17) = "/\;;/ exp [ - ( ~ - 17 )'Y;,;)] -- v~,l exp [- (~ + 17 + 2a)'Y;,; l], 

and also 

c(ll(i- n)=({3(1) D /'V< 2 l)s<nc1- n)exp(- 1 a'V< 2 l) 
n1 <;~·1 . n1 1n lrn 1n S:~·1 ~ 'rn 

L~,Ul(t 17) =Dm [2"A}~) {I -exp [(a - 17) {3~,l]} + ([3~j,) h;,;Ji -</.l (a, a) 

± 2v};,l exp f (a - 17) {3;/,) - 2(a + ~) 'Y)~lJll exp [( ~ - 17) 'Y;,;)l 

ftf,:,l(t 17) = - 4'Y;,;l Dm ex~ [(a -- O 'Y~l + (a ·-· 17) x};,l - 2a'Y;,;i] 

M~)(t17)=Dm[2A~) {1 -exp [(a-17){3~)1} -({3~)hg>)r~~)(a,a) 

+ 2v~) exp f(a -- 17) ex~/- 4a'Y)~lJn exp [(17 - ~) ,,;:,>J, 

where we have written 

The required formulae for G;j are 

G11 (y, v) = A~>(-y, -v) -('Y~»- 1 exp (- IY -- vi 'Y~~>) 

G22(Y, v) = c;,,1)(y, - v) + c;:)(- y, v) - c,,;,;))-1 exp (- IY -v 1,,;,;i) 
GJJ{y, v) = A~l(y, v) - ('Y;;»- 1 exp (-- ly - vl'Y},7>) 

G12(Y, v) = N;,,1)(- y, - v) -('Y,~>r 1 exp [(y -- v) 'Y~lj 

G21(y,v)=L-:r,(l)(--y, -v)-h~»- 1 exp f(v-y)'Y~l] 

G23(y, v) = L;,?lcv, v) - ('Y~»- 1 exp [(y - v) 'Y~;lJ 

G32 (y, v) = Ni3l(y, v) -('Y~))- 1 exp [(v - y)'Y}~l] 

- (3) G31 (y, v) =Mm (_v, - v). 

The derived Green's function entering (I 8) is obtained from ( 40) in the form 

I = 
G '(y, z, v) = -- L km G;/Y, v) sin (km z) [(y, z) Eyt, (v, 0 +) E9j], 

d m=o 

925 

(44) 

(45) 

( 4 7) 

(48) 

(49) 

(50) 

( 51) 

(52) 

(53) 

where the G;j are given by ( 52). The function r defined in ( 20) can be found by 
differentiating the expressions ( 5 2) with respect toy. Writing 

I = -
r(y, z, v) =- L r;j(Y, v) cos (km z) [(y, z) E.9f, (v, 0 +) E£1'J 

d m=o 
(54) 

31 
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it follows at once that 

f"11 (y.v)=1;,:)A;,: 1(-_1',-v)+sgn(v-v)exp(-ly vl1;~ 1 ) 

f'22 (.1',v)=--v( 2 lc< 1>(1' v)+-v< 2lc< 3l(--1' v)+sgn(1• v)exp(-!_1• vl-v( 2
)) 'rn 111 . • '111 nt . • . I 1n 

1' 33 (.l', v) = -- 1},;> A ;,;1>()'. v) + sgn (y v) exp ( - Ir 

F (r,v)= .. ) 1lN< 1l(-l' --v)-exp[(v--v)-v< 1>] t 2 . 1 1n n1 - • ~ · 1 111 

re;- , ) - (2 )[-·(I)( , 
2 I (.\ • V - - "( 111 'in -· .1 , v) +exp [(v \') "Y ( 2) l 

· I HI 

I' (\' v)='\/( 2 )1..-< 3 >(1· V) -eXJJ 1(1' V)"",<,2,>1 
2 3 · ' I 111 Ill · ' · I 

v 1-v( J)) 
J 111 

f ( v v) = - -v< 3lM( 3l( 1· v) 
.ll. • '111 m ·' · 

It can be seen from (34) and (42) that 

(3 (/) = i(K1 - Ko )/Cl.(l) 
n1 - ~ rn 

(55) 

whence all coefficients of those exponential functions in (46)-(50) that reduce to unity 
when y = v = ±a are 0 ( 1 /k;,,) for large m. (In this regard note that the first terms in the 
expressions for 1..;,,m and N,\~> vanish at these points.) This property is important since it 
ensures that the associated terms in (55) are 0 (I /k;n) thereby guaranteeing the convergence 
of their contributions to the infinite series (54) at v = y =±a. The final terms in the 
expressions ( 55) give rise to a singularity in r at v = y. This is discussed in more detail in 
Section 6. 

5 Calculation of the functions :::: and lz 

It was remarked in Section 2 that the function Z(.V, u) can be evaluated in terms of the 
exponential integral function which is defined by the formula (Gau tschi & Cahill, 1964) 

i
~ cu· u 

f:'1(n= , (larg~l<n). (56) 

The analytic properties of the function which we shall need to use are exhibited by its 
series expansion 

( - I )'1 ~n 
I 

n n ! 
(57) 

11=1 

(C is Euler's constant) and by its asymptotic representation as~___,. 00 

(58) 

Now from the definitions (29), (30) and (54) we Note that if we write 

:=:(y, v) = :=:i(Y, v) [(v, 0 +) EYj] (59) 

then 

(60) 
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Comparison of E-polarizatiu11 calculariuns 927 

where for j = I, 2, 3 

2:i(Y. v)=-~ I {f-a f_11(7J,~ d71+ fa ~Yi~_,_v) d71+ f= f3j_(~~] dfl} (61) 
rrd m=o -= Y 11 -a Y fl a Y fl 

Actually only one of the three integrals in ( 61) has a singularity at y =fl for any given value 
of y. For example, if y >a then only the third integral need be calculated as a Cauchy 
principal value. In fact by examining the formulae ( 5 5) giving f 31 , i\2 and f 33 and the 
associated definitions (46), (47) and (48) we see that the third term in ((1 I) involves integrals 
of just two types, namely 

I = f= exp <:_m) Jn 
3 'I• 

a Y · 11 f= . exp(-lfl-Ui'Y) 
13 = sgn (71 - v) ----· -~- Jri 

a )' fl 
(v>a). 

Herc we have temporarily written 'Y instead of]'~,;~). The transformations= (77 -· y)'Y yields 

(62) 

where so= (a - y)'Y. The path of integration 'C in the complex .1·-plane runs from isl= lsol to 
Isl= 00 along the radial line arg s = arg so. When y <a, so lies in the first quadrant of the 
.1·-plane and the integral in ( 6 2) is just t' 1 (s 0 ) as defined in ( 5 6 ). But when y > a, s 0 is in the 
third quadrant and 'C passes through the pole at s = 0 where the Cauchy principal value of 
the integral must be taken. However, if the contour is indented around the pole along a semi­
circle 'f/0 of vanishingly small radius, as shown in Fig. 2. then the integral along~+ 'C0 still 
gives E 1 (So) according to the definition (56 ). Since the residue at s = 0 is I the contribution 
from 'if0 is rri and we deduce that for ally 

(63) 

where H(y) is the Heaviside function equal to I for y > 0 and 0 for y < 0. The integral J 3 can 
be similarly transformed and rearranged to give 

Joo -s } 
=-ds 

-!;' s 
!;' e (v >a), 

Figure 2. The contours 'C and ~o in the complex s-plane. 
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928 1. T. Weaver, B. V. LeQuang and G. Fischer 

where ( = (v - y)'y. These integrals are all of the type ( 62) and can therefore be evaluated as 
in (63). After some further manipulation of the Heaviside functions (recalling that v >a) we 
finally obtain 

Similarly, integrals of the type 

i -a exp(- f17-- Vf'Y) 
1 1 = -~ sgn(17-v) - · - · d17 

... ~ y-17 
(v < - a) 

and 

/~·= faexp(±m) 
_ dn 

- a Y 17 
(fvf <a) 

arise from the formulae ( 5 5) for f\ 1 , f'i 2 , :f 1 3 and :f 21. f 22 f 2 3 respectively and can be 
calculated in like manner. Introducing the functions 

(64) 

we can summarise all the results as follows: 

I1.3=±exp(-a1)f[(a±y)"yj+niH(+y a)exp(±.V"f) (65) 

11,3=-g[(v y)'y]+exp[(a±v)'yjf[(+y a)y]+11iH(+y-a)exp(-lv-yfy) (66) 

12± =exp(±af')f[±(v a)'Y] -exp(+a'Y)f[±(y+a)"y]+11iH(a--fyf)exp(±yy) (67) 

12 = - g[(v · y)!'] +exp [-(a+ v)'Y] f[(a + y)'Y] +exp [-(a· v)'Y] f[(a y)'Y] 

+11iH(a-fyf)exp(-lv·-Yi'Y)· (68) 

In ( 65) and ( 66) the upper and lower signs on the right correspond to the subscripts 1 and 3, 

respectively, on the left. It is clear from all these results that the final expressions for the 
function 'Zi defined by ( 61) will be extremely complicated. After some tedious algebraic 
manipulation they can be written in the reasonably compact form 

+ 11iH(- y - a) {exp (-Iv - yjy~)) - exp (-Iv+ y + 2a II'~»}] 

1 = 
2.2 (y, v) = - I {r},:)c- y, - v) + T~3)(y, v) - g[(v - Yh~)J 

11d m=O 

+ 11iH(a - lyi) exp (-Iv Yl'Y~;>)} 

I = 
Z 3 (y,v)=- L [S~)(y)exp[(a-v)'Y};)J-g[(v-y)'Y};)J 

11d m=O 

(69) 

(70) 

( 71) 
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where we have defined for l = I , 3 

s~\vl = g[U' a)-v<n] - 1 D .• //J s U>(a a) 1· ['a - v)-v<n] 
'1n --m1n1rn 1 .\ "'nz 

- 27~;)Dm [q~\-a, y) + {2x~l f[(a + Y)X~l] -q}/,lla, y)} exp (-2a7~l)] 

+ ?rriD n 2..,< 2 lx<l)H(-- v - a) exp [(a+ 1')X(1) - "'a..,< 2>1 + ..,< 2 )s(l)(a 1•) H(a .... m U / n1 111 .., . rn - / 1n 1 1n 1n ' ~ 

T~l(y,v)=Dm[[a~>q~l(a,y) +v~~)p~l(-a, ···-y)] exp[-(a+v)"t~)} 

929 

ly I) 

(72) 

-- 27;/,ls~\a, v)f[(a Yh}/,l] + rri {27~ls;/z\a, v)H(y ·a) exp [(a y)'y~/J 

In these expressions we have introduced the functions 

p~\t 1/) = ():~) f [ (~ + 1/ n},;> l - ~~:) f[ (~ -17 n~7)J exp ( - 207};;» 

q~/(t 1/) = t..~? f[(~ + 77Jy~l) - v}/zlf[(~ -- 77Jy},;lJ exp (- 2a7},;l), 

where, by ( 42) and ( 43 ), 

P},~\~. 7/) = q;1;
3>(t 1/), P},1\t 1/) = £/},~\~. n). 

(73) 

(74) 

For convenience in computing, note that the asymptotic form (58) shows that if we write 

"\' g(q )"= L.... ' ff! 
(75) 

where c represents any length, then the numerical summations of the g functions in the 
expressions above will converge much faster. The first term in the identity (75) follows 
from a well-known series 

= I rr2 
I ,., - --:;-,: = 
m~o (""m + l) 8 

(76) 

(see e.g. Dwight 1961, 48.12). It is apparent that the expressions ( 69)-(71) are undefined at 
v = y (because 2 has a logarithmic singularity there), but this does not matter since the 
integrand in (32) vanishes identically at this point. This completes the calculation of Z(v, y) 
in terms of tabulated functions. 

Fortunately the integrations required to obtain h(y) as given by (60) are relatively 
straightforward. All the terms except g[(v - y)'y J in ( 69), (70) and (71) depend on v through 
simple exponential functions which can be integrated by inspection. To integrate g we first 
consider the integral 

f c g[(v - y)7] du"'_!_ t-, es E 1 (s) ds - ~ J-~-. es E 1 (s) ds 
b 7 !;, 7 -!;, 

(77) 

where S' 1 = (h - y)'y and S' 2 = (c - y)"t. The integrand is analytic on any contour joining S' 1 

and ~ 2 that docs not cross the negative real axis in the complex s-plane. An integration by 
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930 J. T Weaver, B. V. LeQuang and G. Fischer 

parts and the fact that differentiation of (56) gives E; (s) = -- e-s;s leads to the result 

From the definitions of t 1 and t 2 we see that if y < b < c or b < c < y then arg (±t2 ) = 
arg (± t 1 ), but if h <y < c then arg (± t 2 ) = rr ± arg (± t 1 ). Hence. 

and ( 77) can be written 

'Y Jcg[(v y)'Yjdv=f(t2l J(ri> f(- r2)+j(- ti)+ 2rrijl/(r h) lf(_i· c)]. (78) 
h 

Setting U) b =a, c = 00 (ii) b = - 00 , c =-a and (iii) b =-a, c =a and noting by ( 58) and 
(64) that/(±r>->- 0 as r-. 00, we obtain the required integrations as follows: 

"f J=g[(v r)'Yjdv=f[(F ah] f[(a y)'Y]+2rriH(y -a) 
a 

(79) 

"f L~a gf(v - y)'Y] du =f[-(y + a)'Y) -- f[(y + a)'Y) + 2rriH(--y -- a) (80) 

"f fa g[(v--y)J']1lv=f[(a y)'yj+f[(y+a)'y]- f[(Y a)'YJ f[-(y+a)'Y] 
-a 

+ 2niH(a -- ly I). (81) 

The final expression for h(y) follows after some further algebraic manipulation_ We can 
express it quite simply as 

(82) 

in terms of the function 

R~\y) = P~{! f((a Yh;f/J - Q~> f [(a y)'y ,<,;lJ + { Q~l - P,~l} f((y - a)'Y~;lJ 

- rri{P,~~)H(y a) exp [(a Yh~)J + Q~)H(a - [yl) exp [(a Y)'Y~ 1 ]} (83) 

in which we have defined for I= I, 3 

Q (l) = (c/I) vUl D /-v( 2 )) [t..(l)/x(l) -- (/3(1)/-v(I))· exp (-- 'a-v( 2 ))] exp (- 7 a-v< 2 J) (85) ni nz nz tn 1 nz tn m 1n 1 m ....., 1 m - / tn · 

Some minor computational difficulties arise at y =±a because of the logarithmic 
singularities in the functions fat these points. In fact by (57) and (64) it is readily shown 
that as y->- a 

f[Cv -- a)'YJ ~ C - log(ly - al'Y) + rrill(a -- y). (86) 
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Comparison of £-polarization calculations 931 

However, these singularities cancel out in the expression for R~l(y) above. Thus, using (86) 
in (83) we see that asy --+a 

R~;3 >(y) ~ P,~;ll log (r~,7)h'~;>i - rri[P~;'>H(a ·- )') + Qf;lH(y -- a)]. 

This gives the limiting values 

R <3l(a + 0) = p( 3 ) log ("1< 2 l;"'< 3l) - rriQ( 3) 
n1 m m ltrt rn ' 

R <3>(a - 0) = p(Jl [log (-v< 2 >;...,< 3 l) - mj 
nz n1 . / rn '111 · 

There is no singularity in R ,~1 )( - y) at y =a and substitution in (83) yields 

R~11 \-a - 0) - Rf;>(- a+ 0) = rriQ,\}) exp (2a"f~l). 

!t follows from ( 87) and (88) that 

R,~1 l( - a -- O) + R :,;'\-a+ 0) = R,~1 )(- a+ 0) + Rf;>(a - 0) 

+ rri[P,~3l - Q;;l + Q~l exp (2a'Y~l)] 

( 87) 

(88) 

and the vanishing of the last term by virtue of (84) with [= 3 ensures that h(a + 0) = 
h(a - 0) = h(a) where by (83) and (87) 

+ p(J) log (...,(2>;-v< 3l) - rriQ( 3 )] 
rn 1111 'n1 rn · (89) 

A similar discussion of the behaviour of the functions at y =-a shows that 

., 
h( - a)=_-:_ L [p~3 > f(2a"f~l) -· Q,Cjl f(2a'Y~;>i + (Q,~3l 

rrd m=o 

(90) 

Both ( 89) and (90) are in a form readily amenable to computation. 
Logarithmic singularities at y =±a are also present in the functions! occurring in S~\v) 

and T~>(y, u) defined in (72) and (73). A careful analysis again shows that they disappear 
when all the terms are collected together. We shall not go through the detailed arguments 
here which are similar to those above. However, the limiting forms of the various expressions 
are quoted below since these are needed for numerical computation. We have first 

S(l)(a) = ;...,< 2 lD {f 'A(I) f'(!a...,< 2 >) + u(ll /'(-- )a-/ 2 >) 
nl ._ 'm · n1 nz . ...._ / rn nl . ,_ / 111 

+ rriaY) D ~(!)(a a) 
tn n1' rn ' 

(9 l) 

)(/)(- a)=g(-!a"'<ll) _;...,(l)D s<l)(a a)/'(!a-v<ll) 
l tn ,_, ' n1 ~ / 111 1n m ' · ,_ / n1 

__ .,...,(l)D {'A(/)f'( - 1 a-v< 2 l) + u(l) f'( 1 a"'< 2 )) exp (- 4a-v(2l) 
"- / 1n m ni . - / 111 n1 . - 1 n1 ,. 'ln 

+ r ;x(l) log (-v(2>;x(I)) - rriA.(l)l exp ( ')a-v< 2 >)} 
,._, n1 - / n1 , n1 rn - ' 1n 

(92) 
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932 J. T. Weaver, B. V. LeQuang and G. Fischer 

which when substituted in (69) and (71) give 

(93) 

(94) 

Finally, when the functions T~~l are combineu with the term involving the Heavisiue 
function in (70), it is found that unique limits of the total expression exist asy-+ ±a from 

left or right, giving 

1 = 
';;'(av)=- ' { D s(3l(a u) [11i<i 3l _,'"lf(.l) log("-'( 2l;-v< 3l)j 
-2 • d L... rn nI • rn - / 111 1 n-1 I n1 

11 m~o 

+ Dm sf,{ l(a, - u) [Cl'.~) /(2a"(},;l) + (3~11 ) f( - 2a"(},;>) - 2"(}; l f( 2a"(~;)) J 

g[(u · a)'Y~l]}, (95) 

+ D s< 3l(a u) [Cl'.(J) ((2a-v< 2 l) + (3(J) f(-· 2a....,< 2 l) - 2-v(J) f('a"(< 3 l)J 
nz m t rn · / n1 1n · / rn ' 1n ...... 1n 

(96) 

6 Calculation of other field components 

Although algebraically complicated, the functions E and h required in the application of the 
successive approximation scheme defined by (31) and (32) are readily evaluated on the 
computer. Once the solution Y (y, 0) has been found it is necessary to calculate the Green's 

functions G and r in order to obtain the other field components U and Z, and also Y inside 
the conductor, given by the integral formulae ( 17)-( 19). There are some numerical 
difficulties associated with the functions (J;; and f;; defined in (52) and (55) because they 
contain terms ('Y~,l)- 1 exp (- ly - vl'Y~l) and sgn (y - u) exp (- IY - vl'Y~l) respectively 
which make the series (40), (53) and (54) defining G, G' and r quite slowly convergent near 
v = y. Moreover, at the point u = y itself where the Green's functions are discontinuous, 
these terms cause the series to be formally divergent, although the singularities are of course 
integrable. Nevertheless, such behaviour makes the numerical evaluation of the Green's 
functions quite tricky in the neighbourhood of their discontinuities. 

The singular behaviour at u = y can be dealt with by noting that for b <Y < c 

f c exp (- [y -- V["f) du=~ {2 -- exp [ (b - y)'Y] - exp (tv ··· c)'Y]} 
b "( 

(97) 

f" sgn(y ·· u)exp(--ly- U["f)du=~ {exp[(y -c)"(j-exp[(h v)"(]} 
b I 

(98) 
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Comparison of £-polarization calculations 933 

so that for 0 <- z < d 

Jc [ = exp(- I)'· vJ1~1» ] I ____ W ___ cos (km z) Y(v, 0) du 
b m=o 'Ym r A~.il(Jy vi. z) lY(v, 0) - Y(y, O)j Ju+ Y(y, O)(J(J - z) 

(99) 

r· [I exp(-Jy u11:f/lcos(kmz)] 3gn(y-v)Y(v,O)Jv 
b m=O 

= Jcy~i)(ly--vl.z)sgn(y v) (Y(v,0)--Y(y,O)]Jv 
b 

(100) 

Jc [ ~ exp(-ly-ul1~,l)sin(kmz)] Y(v,O)Jv 
h m-0 

( 101) 

where 

A(i) (E, z) = I 
C} m=o 

exp ( - E/}~)) {cos} 
(i) . (km z), 

"fm Sin 

(102) 

yU) (E,z)= L exp(-Er~)) 
{~} m=o 

{
cos} . (km z). 
Sin 

In obtaining the terms d(J - z) Y(y, 0) and dY(y, O) in (99) and (101), respectively, we 
have used the well-known Fourier series expansions (see e.g. Dwight 1961, 416.10 and 
416.01) 

11 ; cos_[(2rn + J)x] 
-(rr-2x) = L. --~--
8 m=o (2m+ 1)2 

11 ;, sin [( 2m + I )x1 
(O<x<rr), L.. 

4 m=o 2m + l 
(0<X<7r). 

Explicit expressions for the series A (i) and y(i) which reveal the nature of their singularities 
at f = 0 can be found by introducing the function 

(103) 
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934 J. T. Weaver, B. V. LeQuang and G. Fischer 

and noting with the aid of (34) the following identities 

exp _i-::: E"f~)) = [-_!_ _ iKi(I + km E) __ ~ ~)( E)] 
"'(i) k k 'V(i) (k + .._,(i)) 'V(i) exp (-km E) 
'm n1 m'm m 'n1 11n (104) 

[ 

. 2 ] . lKiE K; f . 
exp(-E'Y(z))= 1---- . -K(z)(E) exp(-k E). 

m 2k 2k (k (1))2 m m m m m+'Ym 

The coefficients of exp (-km E) given by the last two terms in the brackets on the right 
hand sides of these two identities are at least 0 (1 / k~) and therefore yield series that 
converge fairly rapidly when substituted in (102). Only the first terms in the identities give 
slowly convergent series in the forms defined by 

T(E,z)=Tc(E,Z)+iTs(E,Z)= L exp[-km(E -iz)] (I 05) 
m=O 

_ _ _ .- ;, exp [-km (E - iz)] f"" 
A(E, z) = Ac(E, z) + zAs(E, z) = L... = T(E, z) dE. 

m=O km E 

(106) 

Since km = (2m + I )rr/2d, the final expression in (105) can be summed as a geometric series 
to give 

exp [-rr ( E - iz )/2d] 
T(E,z)= 

I -exp [-rr(E-iz)/d] 

and the integration prescribed by (106) then gives 

_ d (l +exp [- rr(E - iz)/2d]) 
A(E, z) =-log . 

1T 1 - exp [ - rr( E - iz )/2d] 

(107) 

(108) 

Both these expressions become infinite as E ~ 0 and z ~ 0 but the singularities are 
sufficiently weak that when z = 0 + the integrands on the rhs of equations (99) and (I 00) 
both remain finite at the point v = y, with 

lim A~i)(ly - vi, 0 +) [Y(u, O) - Y(y, O)] = 0, 
v->y (109) 

(.) d aY(y, 0) 
lim 'T'c' (ly - vi, O+) sgn (y - v) [Y(v, O) - Y(y, O)] = -- ---··--. 

v--+ y 1T ay 

Substitution of the identities (104) into ( 102) gives 

A(i)(E,z)= 

{~} 
{

cos} . (km z) 
sm 

00 

K~)(E) . {cos} L --W exp(-kmE) . (kmz) 
m=o 'Yin sm 

(110) 

( .) {Rlme} _ iKiE {Re} _ K/E ;, :xp(-kl"11__1_ {cos} 
'T' 1 (E, z) = 'T'(E, z) - - A(E, z) - - L... k (k + 'V(i))2 . (km z) 

{~} 2 Im 2 m=o m m 1 m sm 

L K~)(E) exp (-km E) 
m=O 

{
cos} 
. (km z) 

sm 
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which together with (I 03), (I 07) and (I 08) are in a form that can be readily evaluated 
even for small E. 

A similar problem is encountered in the computation of G;j and I"';j when !I; and Y'; are 
adjoining regions, for in this case hoth y and u can approach the same boundary value ±a, 
albeit from opposite directions. This time the singular terms are those involving the 
exponential functions in the expressions for G;j and f\j (Ii j I = I) as quoted in ( 52) and 
(55). They can be integrated for ally and u as follows: 

f c [ = exp [ ±(u - y)'Y~,l] 1 L -- - (i)- - -- cos (k 111 z) Y(u, 0) Ju 
b m=O I'm 

= r AY) [±(y - u), z] [Y(u, 0) - Y(a, O)] Ju 
b 

_ ;. cos (km z) (") (") 
±Y(a 0) L.. -~--- {exp[±(c--y))',:,]-exp[±(b-y)y,:,]} 

' - (-v(i))2 
m-0 1m 

and 

f c [ = {cos} J L exp (±(u- Yh~l _. (km z) 
b m=o sm 

Y(v. 0) dv 

= Jc 'r(i) [±(y - v), z] [Y(v, 0) - Y(a, O)) dv 
b {~} 

± Y(a, O) {J\U> [±(y - c),z]-AUl [±(y -- b),z]}, 

{~ {~ 

(I I I) 

( 112) 

where a stands for either +a or -a whichever is the common boundary value of y and v. 
We write the electric field in the form 

U(y, z) = U(y, z) + U*(y, z) + iw(d - z) Y(y, 0), (J 13) 

where fJ is that part of the field arising from the terms A (I) c<ll L +(l) M(l) and N(ll m' m' m' m m 
defined in ( 46)-(50) while the remaining part represents the contribution from the singular 
terms in the Green's function. The function U;* = U* ( (y, z) E Y{, i = I , 2, 3 J can be found 

for i = I by considering just the last terms in the expressions for G11 and G12 given in ( 55 ). 
Setting b = - 00, c = -a in (99) and b = -a, c =a in ( 111) with the negative sign taken in the 
argument of the exponential function and a= -a' we obtain 

u; = ~ (f-a A~iJ(\y -- v\. z) [Y(v, 0) - Y(y, O)] dv 
d -= 

+ fa ;\~ 1 l(v -y, z) [Y(v, O) - Y(-a, 0)) dv 
-a 

;, cos (km z) [ 2iK .!. (I) 
L.. (J)z 2 Y(y,O)+Y(-a,O)exp[(y-a)'ym] 

m=o ('Ym ) km 

+ [Y(y, 0) - Y(-a, O)] exp((y + a)'y~l] J). ( 114) 
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Similarly for i = 2. we put b =-a, c =a in (99), and both b = - 00, c =-a, a= -a, and 
h =a, c = 00, a= a in ( 111) with respectively positive and negative signs in the argument of 
the exponential function. This gives 

iw J-a u; = - J\~2 \v -- v, z) ( Y(v. 0) - Y(- a, 0)] du 
d -= 

+ fa J\~ 2 )(1v - vi. z) [Y(u. 0) -- Y(_1', 0)] du 
-a 

+ I= J\~ 2 >(v - y, z) [Y(v. 0) - Y(a, O)l du 
·a 

I
= cos(k,,, z) [2iK 2 ( 

- ------- - Y( v 0) + [Y( 1· 0) - Y(-a 0)] exp [-- ( v +a)"-' 2 )] 

( 
( 2) )2 k2 · ' • ' ' · Im 

m=o 'Ym m 

+ [Y(y,0)-Y(a,O)l exp[(y-a)'Y~)l]· (115) 

Finally, with i = 3, h =a, c = 00 in (99), and h =-a, c =a, a= a, and positive argument of the 
exponential function in ( 111) we obtain 

iw la 
u; =d J\~ 3l(y - v, z) [Y(v, O) - Y(a, O)] du 

-·-a 

+ f= A?l(IY - vi, z) [Y(u. 0) - Y(y. O)] du 
a 

= cos (km z) [ 2iK 3 - L (
3

) 
2 

-
2
- Y(y,O)+ Y(a.O)exp[-(a+y)'Y~,;>1 

m=O ('Ym ) km 

+ [Y(y, 0) - Y(a, O)] exp [(a - y)'Y~;>]]. (116) 

The calculation of the vertical magnetic field given by ( 19) is handled in like manner by 
defining Z analogously to Din ( 113) and writing 

Z(y, z) = Z(y, z) + Z *(y, z). 

It has already been noted in Section 4 that the infinite series contributing to Z are conver­
gent everywhere, so that the evaluation of that part of the field is a straightforward 
computation. The singular terms are treated with the aid of (I 00) and ( 112) in exactly the 
same way as those in the expressions for G;j- Noting that J\~.iJ(00, z) = 0 we obtain 
zt =: Z* ((y, z) Efl[; i =I. 2, 3] in the form: 

I [J-a z;=-d -= T~ 1 l(ly-ul.z)sgn(y-u) [Y(u,0)-Y(y,O)] du 

-1: T~ 1 ) (v - y, z) [Y(v, 0) - Y(-a, O)] du 

+ Y( - a, 0) A? \a - y, z) + [ Y(y, 0) - Y( - a, 0)] /\« 1 
)(- y - a, z)] . (117) 
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Comparison of E-polarization calculations 937 

I [J-a y(2 l( )' 
d 

( -
-oo 

u,z) [Y(u.0)--Y(-a,0)1 Ju 

+ f 0 T~2 \ly v l. z)sgn (y - u) [ Y(v, 0) Y(y, 0) J du 
-a 

J"" T<~2 l(v y, z) [ Y(v, 0) Y(a, O)} dv 
a 

-[Y(.v.0)-Y( a,D)JA?l(y+a,z)+ (Y(_v,O}-Y(a,O)]A5 2l(a y,z)J, (118) 

Z*-3 - ~ [ J: T«">cv v, z) (Y(u,0) -- Y(a, O)]dv 

+ f"" T~3 )(1y vl.z)sgn(y-u)(Y(u,O) Y(y,O)]dv 
a 

Y(a,O)A<'. 3\y+a,z)- [Y(y,0)-Y(a,O)j AJ 3l(y a,z) ]. ( 119) 

Note that although Ai'\ e, 0) is logarithmically singular (see ( l 10) and ( l 08)) when e "'0 the 
coefficients of the final terms in ( 117)-( 119) all vanish at the points of singularity and so 
cause these terms to drop out. 

By analogy with ( 113) we express the horizontal magnetic field in the form 

Y(y, z) = Y(y, z} ¥*(y, z) + Y(y, 0). 

It is calculated from the integral ( 18) where G 
1 
is given by (53). This time the contributions 

to Y * (y, z) + Y(y, 0) arise from the final terms in the Green's functions km 01; and take the 
form 

( 120) 

The second term on the rhs of this identity is 0 (I/kl,,) when v = y and so presents no 
convergence problems when substituted in ( 53 ). However, we retain it as part of the 
contribution to Y* so that Y (like fJ and Z) is associated solely with the terms A,<,;>, c:f/. 
L;~n, M~~) and Ngl appearing in the Green's functions. Following the usual procedure we 

calculate Yr by considering the singular terms in kmGu and kmG 12• First we use the 
identity (120), and then set h = 00, c a in (101) and h -a, c a in (112) with 
a= - a and the negative sign taken in the argument of the exponential. Corresponding 
procedures are used to find v; and r;. We may write the resulting expressions for 

Y.* 
I 

1, 2, 3 as 

iK. ( 
00 

[ 2 Yt * - I Y(y, 0) I 
d m~o km 

exp [()'-=9'Y~/J] sir1(kmz) 

km+ 'Y~l (r};/>2 
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9]8 J. T. Weaver, 13. V. leQuang and C. Fischer 

where we have defined the limits of integration 

h 1 =h 2 =- 00, h_,=-a, c 1 =a. c2 =c 3 = 00 

and where evaluation of a rather slowly converging series at v = y has been avoided by sub­
tracting Y(y, 0) from Y(v, 0) in the integrand and adding the equivalent term, which can be 
integrated exactly, to the rapidly convergent series outside the integral. The expressions for 
Y/ * (i = I. 2, 3) are given by 

v\, :) [Y(u, 0) - Y{_I·, O)] Ju 

+ Ja 1'} 1l(u - v. z) (Y(u, 0) - Y(-a, 0)] Ju 
- a 

+ [Y(-a,0)-Y(y,0)] A_; 1>(--a y,z)-- Y(-a,O)A} 1>(a-y,0) ]. 

Y; * = 7 [ i~a T; 2\v v, z) [ Y(v, 0) Y(- a, O)J Ju 

+ £: 1'}2l(IY - vi, z) (Y(u, 0) - Y(y, O)] du 

+ J= T; 2 l(u _I'. z) [Y(u,0)- Y(a.O)] du 
a 

+ [Y(-a,0)-Y(y,O)] A_~ 2 \v+a,z) 

+ [Y(a, 0) - Y(y, 0)] A~ 2 l(a - v. z)], 

v; * = ~ [ Ja 'Y'?>cv - v. z) [Y(u, O) - Y(a, 0)] du 
-a 

+ 1= 1'} 3l(ly vi, z) [Y(v, 0) - Y(y, 0)] du 
a 

+ [Y(a. 0) - Y(y, 0)] A} 3l(y - a, z) - Y(a, 0) A} 3\_v +a, z) ]-

7 Improved derivative formulae for finite difference calculations 

(122) 

( 123) 

(124) 

In paper I we remarked that for easy comparison of the results given by the finite difference 
program of Brewitt-Taylor & Weaver (I 976) with those provided by an analytic solution it is 
desirable to obtain new central difference formulae giving the derived field components at 
the nodes of the numerical grid rather than at the centre of the cells where they were 
calculated in the original version of the finite difference program. Because the horizontal 
electric component of the B-polarization field discussed in paper I was discontinuous at a 
vertical interface between regions of different conductivity, the final formulae as well as the 
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Comparison of E-polarization calculations 939 

algebra involved in their derivation were surprisingly complicated. Fortunately matters are 
much simpler in the case of E-polarization where all the field components are continuous 
across conductivity boundaries. The new formulae for the magnetic field components which 
were used in the finite difference calculations to be described in Section 8 are quoted here 
for reference. 

The notation is the same as in paper I and in the paper by Brewitt-Taylor & Weaver. Thus 
we write Um.n for the electric field al the node (.1· 111 • z,1) of the numerical grid. and we 
define h 111 = Ym+i Ym and kn= Z 11 +1 Zn. The four conductivity values in the 
neighbouring cells are Om, 1; 2 n ± 112 as shown in Fig. 2 of paper I, and the weighted average 
values of the parameter /<. in equation (3) at the points (y 111 , z11 - k 11 _ 1 /2).(y 111 • z11 + k,,/2). 
(Ym - hm_ 1 /2, z,,) and U'm + hm/2. z,1) are written 1<. 111 •11 _1; 2 • K. 111 . 11 + 1; 2 • Km-1/2, 11 and 
K 111 + 1; 2 .n respectively and defined by 

I<. m , 11 + 1 / 2 = ( h m - 1 I<. m - I/ 2 ,11 • 1 / 2 + h m I<. m + l / 2, n ± 1 / 2 ) / ( h 111 + h 111 - 1 ) 

l<.111±1/2,11 =(kn-I l<.111±1/2,11-1/2 + knl<.m ± 1/2.11+1/2 )/(k11 +kn-I). 

Expanding the electric field U as a Taylor series (up to and including 2nd order terms) in 
the positive y-direction from the node (y m, z11 ) while regarding)' = y,,, as a sharp boundary 
between regions of (possibly) different conductivities. we obtain, with the help of the 
second Maxwell equation (2) and the differential equation (3), 

(125) 

All the field quantities in ( 125) are continuous across the boundary y = y 111 even though the 
second derivative a1 U/ay 2 appearing in the original Taylor series expansion is discontinuous 
across this boundary when the two regions it divides are of different conductivity (as can be 
seen from the second and third Maxwell equations ( 2)). A similar equation (125) can be 
found by expanding U in the negative y-direction from the same node. Elimination of 
( o2U/oz 2 

) 111 ,n from the two equations so obtained then yields. after some algebraic 
rearrangement, the required central difference formula 

iwZm,n = _hmhn~ [Um2+1,n - Um2=-~ - [-+ -~-
hm + hm -I hm hm -1 hrn hm -1 

+ i (Km+1/2,n - l<.m -1/2,n) Um,n]] ( 126) 

for the vertical magnetic field. Starting with Taylor expansions in the positive and negative 
z-directions we can develope an analogous formula for the horizontal magnetic field in the 
form 

iwY m,n = - k:~;~~l-1 [~11~~~ - ~kn~~:~ -[);, -~I-~ 
+ ~ (K.m,n+l/2 -Km,n-1/2 )J Um,n] · ( 127) 

In regions of uniform conductivity, the rhs of ( 126) and ( 127) reduce to the standard 
central difference formulae for first derivatives (cf. formula ( 128) in the following Section 
8) as required by the Maxwell equations (2). At the surface of the earth z = 0 where n = q 
(say) and Km,q-i/z = 0, the resulting simplified form of (127) agrees with a special formula 
derived by Brewitt-Taylor & Weaver (their equation (6.10)) for evaluating Y at the surface 
nodes. 
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940 J. T. Weaver, IJ. V. LeQuang and G. Fischer 

8 Numerical calculations 

For a comparison of results given by the finite difference program of Brewitt-Taylor & 
Weaver ( 197(1) and finite element program of Kisak & Silvester ( 1975) with the quasi­
analytic solution derived in this paper, the model parameters used were the same as in Paper 
I i.e. a= 10 km, d = 50 km, o 1 = 0.1 S m- 1

, o2 = 1.0 S m- 1
, o 3 = 0.5 S m- 1 and period 

T= 2n/w = 300 s, as shown in Fig. l. 
For the analytic solution the functions Z and h were computed according to formulae 

( 69)-( 71) and ( 82) with the special cases ( 89), (90) and (93 )--( % ) taken into account. The 
use of the identity ( 7 5) for summing the functions g was found to be extremely important. 
The integral in ( 32) was evaluated between v = + v 1 by Simpson's rule with the intervals 
(-vi. -v0 ), (-v0 , -a), (-a, a), (a, v0 ) and (v0 , v 1 ) respectively divided into N2. Ni, No. Ni 
and N 2 subintervals each of width 6.0 between -v0 and+ v0 , and of width 6. between -v 1 

and -v0 and between v0 and v 1• The remaining parts of the integral covering the intervals 
( - oo, ---v 1 ) and (vi, 00 ) were evaluated by 8-point Gauss-Laguerre formulae. For the 
parameters listed above it was found that the values v1 = 53 km, v0 = 15 km, and N 1 = 38, 
N 1 =10, N 0 = 40 (so that 6.0 = 0.5 km and A= 1.0 km) gave satisfactory results. Numerical 
experiments with subdivisions of different sizes gave no change in the accuracy of the values 
of Y(y, 0) up to the number of significant figures presented in Table 1. Convergence to a 
limit was deemed to have occurred when the maximum change in the field value at any point 
was less than 10-8

; this was achieved after 1409 iterations through the successive approxi­
mation scheme. However the maximum change was already less than 10-3 after only 354 
iterations. 

Exactly the same subdivisions and methods of numerical integration were used to 
evalu<ite the field components U and Z for z;:,, 0 and Y for z > 0, as given by the formulae 
( 1 14)-(119) and (121)-(124). The only point requiring some explanation occurs when the 
variable of integration v assumes the value of yin the integrals defining Z, for then according 
to the second of equations (109), the integrand reduces to (1/n)aY(y, O)/ay and a suitable 
procedure for evaluating this derivative must be found. At the two points at the extremities 
of the Gauss-Laguerre integration (several hundreds of kilometres from the origin) it is 
assumed that aY(y, O)/ay = 0. At all other points except y =±a it is sufficient to use the 
central difference representation of the first derivative. 

( 128) 

(6.i and 6.2 are respectively the subdivision spacings to the left and right of the node y) 
since this formula is baseu on a parabolic fit through the field values at the three points 
centred on y, which is the same approximation that leads to the Simpson's rule formula used 
in the integration. The discontinuity in a 2 Y/ay 2 at a surface node lying on the boundary 
between two segments of different conductivities means that Y is not a very smooth 
function of y there. Thus it is not appropriate to fit a parabola at such a node; rather we 
expand Yin Taylor series to the right and left of the node, substitute for a 2 Y/ay 2 from the 
different diffusion equations (of the same form as (3)) satisfied by Yon either side of the 
boundary, and eliminate the continuous function a2 Y/az2 from the resulting equations, to 
obtain 

l3Y(y,0)/3yJy=±a = {Y(±a + A0, 0)- Y(±a - A0,0)]/2ll0± (ill0/4)(K2- K±)Y(±a, 0) 

where we have written K+ = K 3 and K _ = K 1 . It is clear that the second term represents a 
correction to the normal central difference formula. 

Numerical values of the field components obtained from the analytic solution are dis-
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Comparison of E-polarization calculations 941 

Table 1. Values of the real and imaginary parts of the field components calculated from the 
analytic solution for selected points on the surface z = 0 and the interior plane z = 15 km of 
the model shown in Vig. l. The units of U/B 0 are Vm 1 r'; for comparison with results sub-
mitted to COMMEMl the (complex) values of U/8 0 should be divided by 310 + 295i. 

U/8
0 

Y/B
0

xl02 Z/B
0

xl03 

y(km) Re Im Re Im Re Im 

z = O km 

-52 249 294 90.4 4.75 - 28.8 69.7 

-25 194 247 86.3 - 1.60 -175 117 

-15 171 196 92.9 - 7.29 -335 87.5 

-10 166 154 114 - 3.09 -484 - 8.0 

- 7 162 129 129 - 0. 78 -321 90.6 

0 147 102 131 - 9.21 - 79.3 92.1 

7 138 102 124 - 9.47 73.4 40.8 

10 135 108 116 - 9.89 146 54.0 

15 133 120 106 - 9.28 77 .9 - 0 .1 

30 136 130 103 - 3.96 7 .5 - 8.0 

50 137 130 103 - 2. 71 - 1.8 2.1 

z = 15 km 

-52 206 86.7 43.3 -25.4 - 4.8 67.5 

-25 143 59.3 35.4 -23.9 -128 166 

-15 102 19.5 24.4 -25.8 -264 230 

-10 75.2 -13.0 12.6 -28.3 -359 285 

- 7 57.9 -30.l 4.98 -29.2 -193 259 

0 30.1 -41.5 - 3.32 -27.8 - 0.8 111 

24.8 -36.9 - 2.54 -27 .0 55.9 - 34.4 

10 28.6 -32.7 0.37 -27.2 79.0 - 85.3 

15 36.4 -26.5 5.10 -27.5 41.1 - 63.0 

30 48.0 -22.8 9.41 -28.6 - 3.3 - 16.6 

50 50.2 -24.4 9.95 -29.0 - 1.7 0.5 

played in Table 1 to 3 significant figures. In numerical experiments only the results for 
Z at y = ± 10 km on z = 0 appeared to be sensitive to the size of subdivision used. These 
particular values may have small errors of less than 1 per cent of B0 but all the other results 
are accurate to the number of figures given. They are tabulated for the same selected points 
(both on the surface z = 0 and on the interior plane z = 15 km) that were chosen for the 
8-polarization calculations presented in paper I. They can be compared with the 
corresponding values in Table 2 given by the finite difference program of Brewitt-Taylor & 
Weaver (1976) (incorporating the improved derivative formulae developed in Section 7) and 
those in Table 3 given by the finite element program of Kisak & Silvester (1975). 

For the finite difference calculations a 36 x 26 grid was designed with nodes at y = -130, 
-110, -90, -80, -70, -61, -52, -43, -34, -25, -19, -15, -12, -10, -8.5, -7, -5, 
-2.5, 0, 2.5, 5, 7, 8.5, 10, 12, 15, 18, 22, 26, 30, 34, 38, 43, 50, 60, 70 km and z = -90, 
-70, -50, -35, -20, -12, -8, -5, -3,-1.5, 0, 1.5, 3, 5, 7.5, 10, 12.5, 15, 17.5, 20, 24, 
28, 32, 40, 45, 50 km. Apart from 10 additional rows extending the grid into the region 
z < 0, and one extra node at the right hand boundary of the model, this is the same grid that 
was used in paper I. The asymptotic boundary conditions of Weaver & Brewitt-Taylor 
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942 J. T. Weaver, B. V. LeQuang and G. Fischer 

Table 2. As in Table I except that the field components are calculated by the finite difference 
pro~ram of Brewitt-Tay\or & Weaver (1976). 

U/8
0 

Y/8
0 

x 102 ZIBO x 10 3 

y(km) Re Im Re Im Re Im 

z = 0 km 

-52 249 293 90.4 4.57 - 31.0 68.9 
-25 195 247 86 .2 - 1.75 -180 115 
-15 172 195 92 .6 - 7.45 -340 83.0 
-10 166 153 113 - 3 .36 -483 - 9.7 
- 7 163 128 130 - 0.39 -325 86 .6 

0 148 100 132 - 9.03 - 80.6 91.4 
138 100 124 - 9.25 74.7 42 .6 

10 lli 107 116 -10.0 145 55.8 
15 134 118 1~ - 9.29 79.5 1.7 
30 137 129 103 - 3.99 8.5 - 7 .7 

50 137 129 103 - 2.61 - 0.4 3.6 

z = 15 km 

-52 205 85.5 43.4 -25.4 -6 .7 67.8 
-25 143 58.9 35.6 -23.9 -132 167 

-15 102 19.2 24.7 -25.8 -266 232 
-10 75.1 -13.4 13.0 -28.4 -360 287 

- 7 57 .6 -30.4 5.34 -29.2 -194 260 
0 29.6 -41.3 -2.92 -27 .8 - 1.9 111 
7 24.5 -36 .7 -2.19 -27.0 55.3 -34.1 

10 28.3 -32.6 0 .69 -27.1 78.3 -85.0 

15 36 .0 -26 .5 5.35 -27.5 41.1 -62 .9 

30 47.5 -23.0 9 .57 -28.5 - 2.9 -16 .9 

50 49.7 -24.4 10.2 -28.9 - 1.6 - 0.3 

( 1 978) were included in the program. It was for this reason the extra node at y = 70 km was 
inserted, for the program continues to store the l-0 analytic solutions (valid aty = ± 00 ) in 
the columns at the edges of the model and they do not properly match the computed field 
values at the neighbouring interior nodes when asymptotic boundary conditions are used. 
The inclusion of an extra node at y = 70 km effectively removes the 1-D solutions from the 
calculation of the horizontal derivative of U (i.e. the field Z) at y = 50 km. 

The triangulation scheme used in the implementation of the finite element program is 
shown in Fig. 3. In z > 0 it is the same as in paper I. Only one strip of triangular elements is 
shown in z < 0 since the program automatically adds a specified number of identical strips 
above it to cover the region adequately. A total of 3 such strips were included in our 
calculations which put the upper boundary of the model at a height of 90 km (or about 3 
skin-depths of the left-hand segment). 

Tables I and 2 reveal the remarkable accuracy of the finite difference calculations. The 
errors in the separate real and imaginary parts of the magnetic field are less than I per cent 
relative to 8 0 and the corresponding errors in the electric field are always less than (and 
generally much less than) 1.1 per cent relative to a typical magnitude of the electric field 
for the region in question (i.e. the surface fields at y = - 00 , 0 and +=for regions I, 2 and 

http://gji.oxfordjournals.org/


 at Q
ueen's U

niversity on July 24, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

Comparison of E-polarization calc11latio11s 943 

Table 3. As in Table I except that the field components are calculated by the finite element 
program of Kisak & Silvester (1976). At points where numerical derivatives of the electric 
field can be obtained from the field values in two different triangular elements sharing a 
common vertex (sec Fig. 3) the two Vd!ues of the resulting magnetic field were not always 
found to be equal. In such cases both values are given. The magnetic field components at 
points inside the conducting slab are not provided by the finite clement program. 

U/B y /B x 10 2 Z/B x 10 3 
0 0 0 

y(km) Re Im Re Im Re Im 

z = 0 km 

-52 245 287 89.6 4.89 - 18.2 58.1 

-25 193 241 
85.5 -1.61 -135 115 
86.5 -1.93 -138 116 

-15 170 190 92 .6 -7.90 -234 lOI 

-10 165 151 100 -12.3 -381 67.8 
113 -5.27 66 .1 

- 7 161 126 
131 -1.80 -281 101 
130 -1.09 -264 108 

0 146 98.6 130 -10.9 -63.0 86. 9 
131 -10.0 -57.3 83.0 

138 98.8 126 - 9.84 66.6 25.7 
125 -10.2 72.l 26.1 

10 135 105 118 - 9.47 116 19.7 
117 -10.8 115 19.2 

15 134 116 107 -10.2 73.0 -10.8 
-10.3 64.9 -11. 7 

30 138 127 104 - 5.25 5.6 -10.5 

50 140 127 105 - 4.54 - 1.1 - 0.7 

z = 15 km 

-52 206 86.4 

-25 144 58.8 

-15 103 18.9 

-10 75.7 -13.8 

- 7 58.2 -30.9 

0 30.0 -42.5 

24.8 -37 .8 

10 28.7 -33.6 

15 36.7 -27 .6 

30 48.7 -24.3 

50 51.1 -26.3 

3 respectively). In the standard format recommended for the COMMEMI project (Zhdanov 
& Varen tsov 1985) electric fields are normalized by 1:'0 • the surface electric field at y = - 00 • 

A 1-D solution for the left hand segment of the control model gives E 0/B0 = 310.0 + 295.0i. 
so that the tabulated (complex) values of U/B 0 should be divided by this complex number 
for comparison with C'OMMEMI data. 
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-130 -100 -70 -43 -25 -10 0 10 
r---·~--- - 26 38 50 60 km 

---- -- z=-30km 

0 km 

50 km 

Figure 3. The triani!ulation scheme used in the application of the finite clement program of Kisak & 
Silvester ( 1975). Only one of three identical strips covering the region above the earth is shown. 

The results obtained from the finite element calculation presented in Table 3 are Jess 
satisfactory. Errors in the electric field arc typically larger, ranging up to J .7 per cent near 
the centre of the model and then actually getting worse as the right extremity of the grid is 
approached, which is exactly the opposite of what one would expect. For example at y = 50 
km, z = 0 the relative error in both the real and imaginary parts of U/B 0 has reached 2.3 per 
cent, and a similar trend is also apparent along z = 15 km. Magnetic field values are tabulated 
only for points on the surface since, without modification, the program supplied by Kisak & 
Silvester does not permit the calculation of derived fields inside the conductor. Some of the 
selected points on the surface are at a common vertex of two different triangles, each of 
which can be used to calculate derivatives of the field at that point. Although the two 
values obtained should agree, in many cases they did not. At such points both values of the 
magnetic field are recorded in Table 3. The errors are again considerably larger than those 
generated by the finite difference program, especially at the boundary y = - I 0 km between 
the regions of high conductivity contrast where the error in the vertical magnetic field is 
almost 10 per cent. 

A visual comparison of the results is provided by Figs 4 and 5 in which the variation of 
the real and imaginary parts of the field components across the planes z = 0 km and z = 15 
km are plotted between y = ±50 km. For easy reference, the analytic curves are repeated as 
dotted lines superimposed on the graphs depicting the numerical results. It is at once 
apparent that the finite difference and analytic curves are barely distinguishable from each 
other; even the intricate cusp-like behaviour of the vertical magnetic field at y = ±10 km is 
fully and accurately reproduced by the finite difference calculations. The shortcomings of 
the finite element program are also made apparent in Figs 4 and 5. Both the relatively poor 
representation of the variation of the magnetic field components in the neighbourhood of 
y = ± l 0 km and the odd trend of the electric field as y increases, are clearly visible. We have 
attributed this latter behaviour to the (false) assumption made by Kisak & Silvester that U is 
constant (and equal to its value at y = - oo) across the top of the grid. At height hit should 
really change smoothly between its different 1-D values of iwB0 [(iKjr 1/

2 tanh (dViK j) - h], 
j = I and 3, at y = - oo and y = 00 respectively. 

This conjecture was tested by making further calculations on the same model but with 
a3 = l 0-3 S m-1 (so that there was a much higher conductivity contrast between the left and 
right segments), and on a wider grid extending between y = +700 km. This time it was found 
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Figure 4. Comparison of the variations of the real and imaginary parts of the horizontal electric (U), 

horizontal magnetic ( Y), and vertical magnetic (Z) fields along the surface z = 0 for the parameters shown 
in Fig. 1. The curves in the left hand column are those given by the analytic solution. They are 
reproduced as dotted lines in the other diagrams for easy comparison with the corresponding curves 
obtained from the finite difference program of Brewitt-Taylor & Weaver (1976) and the finite clement 
program of Kisak & Silvester (1975) shown in the centre and right hand columns respectively. 
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that the discrepancies in the finite element (compared with the finite difference) values of U 
for large positive values of y were very much greater - up to 20 per cent -- which is to he 
expected since the more widely differing values of 1< 1 and 1< 3 will affect the 1-D solutions in 
a corresponding manner. Similar errors were found in the Y-field but they tended to cancel 
out when the ratio U/Y was taken, so that the finite element program continued to give 
reasonably accurate values of apparent resistivity and phase. Clearly apparent resistivity is 
not a reliable indicator of how well a particular modelling program performs; it is important 
to calculate actual field values when comparing the accuracy of different numerical 
procedures. 

Apart from the case when 1< 1 = 1< 3 , Kisak & Silvester's assumption of constant U across 
the top of the grid is also approximately valid if h is so large that it dominates the term 
(i1<i)- 1f 2 tanh (d..JiK/) in the l-0 solution. Thus the calculations were repeated once more 
with the same high conductivity contrast but now with each strip of triangular elements 
above the earth 300 km (rather than 30 km) thick. With three such strips included above 
the earth, the top of the finite element grid was now at a height of about 3 skin depths of 
the right-hand (low conductivity) segment rather than the left-hand (high conductivity) one. 
This modification did indeed correct the values of U at the edge of the model but only at 
the expense of new numerical inaccuracies arising near y = 0 (where the density of grid 
points is greatest) as a result of the triangular elements there becoming extremely thin and 
elongated. Further details on these calculations have been given by Weaver, LeQuang & 
Fischer ( 1984). We conclude that the finite element program of Kisak & Silvester is not able 
to cope well with models whose 1-D conductivity distributions at y = ±00 are different. 

It is hoped that the tabulated results in both this paper and paper I will serve as a useful 
check on the accuracy of the various modelling programs that have been developed in 
different institutions around the world. The analytic solutions can, of course, be calculated 
for different parameters a, d, a 1 , a 2 , a3 • and w. In particular d could be made large (several 
skin depths of the least conducting segment) to check programs that cannot easily 
accommodate perfect conductors or represent them by using a very large finite value for the 
conductivity. 
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