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ABSTRACT 

We examine the relationship between the seven invariants of the 
complex MT tensor, which we previously proposed as a vehicle for 
testing the dimensionality of the regional conductivity structure 
prior to an analysis of MT data, and the three invariants of the 
real 'phase tensor', recently introduced as an innovative aid in the 
treatment ofMT data. It is found that the relevant invariants, and the 
necessary conditions on them for galvanically distorted data to be 
consistent with ID, 2D, or 3D regional structures, agree in almost 
every detail for the two approaches. The new method does lead, 
however, to an improved normalisation of the eighth (dependent) 
invariant previously introduced. It is shown that the phase tensor 
can be expressed as a sum of three simple matrices, clearly 
associated with ID, 2D and 3D regional conductivity structures 
respectively. It is further shown that it can be depicted graphically 
as a single Mohr circle that retains the principal properties of the 
separate real and imaginary Mohr circles associated with the MT 
tensor. The simplicity and elegance of the phase tensor method 
is achieved by dispensing with the capability of distinguishing 
between galvanically distorted and undistorted data in ID and 
2D regions, a distinction that is ultimately unimportant and 
unnecessary with real data. The paper concludes with a simple 
illustrative example of the theory applied to a real MT dataset 
from NE Australia. A shallow ID regional conductivity structure 
associated with a sedimentary basin is revealed, and a 2D anomaly 
with calculated strike angle is also identified. 

INTRODUCTION 

In recent papers CaldwelJ, Bibby, and Brown (2002, 
2004) (hereafter referred to as CBB) and Bibby et al. (2005) 
have introduced a new and elegant method for analysing 
magnetotelluric (MT) data which can be applied directly to 
galvanically distorted data in a regional conductivity structure 
of any dimension. It is therefore more general and direct than 
previous methods (e.g., Bahr, 1988; Groom and Bailey, 1989; 
Smith, 1995) which involve a decomposition of the MT tensor 
based on the assumption that the regional conductivity structure 
is 2D. The procedure of CBB, on the other hand, is founded on 
their innovative definition of a real 2x2 'phase tensor' which is 
independent of any real (galvanic) distortion that may be present 
(in fact it is identical for both the distorted and the regional data), 
and does not require any assumption about the dimensionality of 
the underlying regional conductivity. 
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Szarka and Menvielle (J 997) and Weaver, Agarwal, and Lilley 
(2000) (WAL in the following) took a somewhat different approach 
by characterising the MT tensor in terms of different sets of seven 
independent invariants. WAL gave physical interpretations of each 
invariant in their chosen set, with the aim of finding necessary 
(but not sufficient) conditions for distinguishing between distorted 
and undistorted data and determining the dimensionality of the 
regional conductivity. 

In this paper we examine how the MT tensor invariants of WAL 
that are associated with galvanically distorted data, are related to 
the properties of the CBB phase tensor. It is found that the seventh 
invariant of WAL, whose vanishing is necessary for the regional 
structure to be 2D, and whose magnitude otherwise indicates the 
degree of three-dimensionality, emerges quite naturally from the 
phase tensor in identical form. The conditions for the regional 
structure to be ID, specified by WAL in terms of the vanishing of 
their sixth invariant and a supplementary dependent invariant, are 
also very similar when derived from the phase tensor. Only the 
normalisation of these two invariants is different in this case. The 
results are expressed concisely by writing the phase tensor as a sum 
of three matrices, each of which is obtained from the identity matrix 
by elementary operations and is multiplied by a factor proportional 
to one of the three relevant invariants. These three matrices are then 
clearly associated with ID, 2D, and 3D conductivity structures 
respectively, and the relative magnitudes of their multiplying factors 
indicate the nature of the regional structure. 

In contrast to CBB, who displayed the phase tensor graphically 
as an ellipse in the plane of the earth, we follow our previous 
practice with the MT tensor, by representing the phase tensor by 
its Mohr circle in the plane of the components in its first column. 
The three invariants of the real phase tensor are immediately 
identifiable in the Mohr circle diagram, with the conditions for 
ID and 2D regional structures requiring the circle to shrink to 
a point, and to be centred on the horizontal axis, respectively. 
While these general properties are similar to those that hold for 
the separate real and imaginary Mohr circles associated with 
the MT tensor, identification of the seventh invariant of WAL is 
much more straightforward in the diagram for the phase tensor. 
It is proportional to the displacement of the centre of the Mohr 
circle from the horizontal axis, rather than being related in a rather 
complicated way to the coupling of the real and imaginary Mohr 
circles representing the MT tensor. 

Finally, we illustrate the theory by applying it to a set of MT 
data obtained in the Mount Isa and Eromanga Basin region of NE 
Queensland in Australia. The invariant analysis clearly reveals a 
shallow 1 D structure in the region of the sedimentary basin, and 
a 2D strike running roughly 26° east of north at one of the sites, 
which may be associated with the Carpentaria anomaly. 

INVARIANTS OF THE MT TENSOR 

The notation of WAL is introduced in this section. Later 
the ideas of CBB will be expressed in this notation, in order to 
facilitate comparison of their results with the magnetotelluric 
(MT) tensor invariants of WAL. 
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In a rectangular coordinate system with x and y horizontal axes 
directed north and east respectively, and z vertically downwards 
into the earth, the MT tensor is represented by the 2x2 complex
valued matrix M defined by e = Mb or 

(I) 

where e = (el' e2Y and b = (hI' h2Y are (complex-valued) column 
vectors representing the spatial parts of the horizontal electric and 
magnetic fields on the earth's surface. The time-dependence of 
these vectors is represented by a factor exp(iwt) which cancels out 
in the equation above. Real parameters 0 and Yfj defined by 

~, + iT/, = (M" + M" )/2, ~2 + i1]2 = (MI2 + M2i )/2 (2a) 

~3 + i1]3 = (M" - M,,)/2, ~4 + i1]4 = (MI2 - M2i )/2 (2b) 

are introduced so that the matrix takes the form M = P + iQ where 

P=(~' +~3 ~'+~4j, Q=(1], +1]3 1], +1]4j . (3) 
~-~ ~-~ ~-~ ~-~ 

When the axes of measurement are rotated through an angle 8 
in a right-handed sense about the positive z-axis, as defined by the 
rotation matrix 

R(B)=(COSB SinB] , 
-smB cosB 

(4) 

the matrix of the MT tensor in the rotated system is given by R(8) 
MRT(8) = M' = P' + iQ' , where 

P' = ( ~l + ~,S + ~3C ~4 - ~3S + ~2Cj 
-~4 - ~3S + ~2C ~,- ~2S - ~3C 

Q' = ( T/, + 1],S + 1]JC 1]4 -1]JS + 1]2. CJ 
-1]4 -1]]S + 1]2C T/, -1],S - T/1C 

and S = sin 28 and C = cos 28. 

(Sa) 

(5b) 

It was shown by Szarka and Menvielle (1997) that Im(det M) is 
an invariant under such rotations, which, as noted by WAL, is the 
same as stating that I, defined by 

is invariant. It can be safely assumed that I * 0, for otherwise 
Im(det M) vanishes, which renders the MT tensor physically 
meaningless. Szarka and Menvielle (1997) chose Im(det M) as a 
fundamental member of their set of seven independent, rotational 
invariants defining the MT tensor. In the alternative scheme 
proposed by WAL, the first four invariants are 

(7) 

(8) 

The three remaining invariants, defined in terms of the 
dimensionless parameters 

are given by 

MT invariants and the phase tensor 

where 10 , equivalent to (QI/,)/I in the notation of WAL, is a 
dependent invariant expressed by 

(11) 

It is important to note that the definitions of dij and Sij in (9) 
differ from the corresponding definitions of WAL, where the 
normalisation was by 1/2 rather than I. This accounts for the 
factor 11(1/

2
) appearing in the definitions of Is and 1

6
, All of the 

independent invariants except I, and 12, which are based on the 
'central impedances' introduced by Lilley (1993), were expressed 
as sines of real angles by WAL, so that their absolute values are 
bounded by ° and I. 

The measured electric field can sometimes be regarded as an 
in-phase (or real) distortion of the regional electric field e. Such 
galvanic distortions are caused by charges accumulating on the 
boundary of a localised, near-surface, conductivity anomaly. The 
magnetic field of the electric currents associated with galvanic 
distortion is usually negligible compared with the regional 
magnetic field h. Thus we may assert that 

e=Ae, b=h, (12) 

where A is a (real) distortion matrix. Since the regional MT 
tensor M = P + iQ is defined by e = Mh = Mb, it follows that 
Mb = e = Ae = AMb, whence M = AM, or 

P=AP, Q=AQ, (13) 

since A is assumed real. 

THE PHASE TENSOR 

In a recent paper, eBB introduced a 'phase tensor' represented 
here by the 2x2 real matrix T, and defined by 

(14) 

An important property of this tensor is that in the presence of 
in-phase distortion 

(\5) 

In other words, the phase tensor is the same for both the regional 
field and the locally distorted field. Moreover, eBB showed that 
when the regional conductivity structure is two-dimensional (2D), 
so that the diagonal elements of P and Q vanish in the strike frame 
whose axes are aligned along and perpendicular to the direction 
of the regional strike, then T is necessarily symmetric. For when 
the axes are rotated into the strike frame, 'I' = (p'r'Q' becomes 
diagonal, taking the form 

(\6) 

and since symmetry is preserved under a rotation (4), 'I is also 
symmetric in the frame of measurement. It follows at once from 
(15) that T is symmetric in the frame of measurement as well. 
Thus symmetry of the phase tensor is an immediate and simple 
indication that MT data, whether locally distorted or not, are 
consistent with a 2D regional conductivity structure. Furthermore, 
it follows from (16) that when T is symmetric, T' = 'I' becomes 
diagonal in the strike frame, thereby enabling an expression for the 
regional strike angle to be derived. 
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If the regional structure is ID, i.e., the conductivity varies only 
with depth, then we require 

~2 = -P" = P and Q" = -QC! = Q 

(say) for all angles of rotation. Hence (15) and (16) give 

T = T = Itantp , ( 17) 

where I is the identity matrix and tp = arctan(QlP) is the familiar 
impedance phase of the ID regional structure. 

COMPARISON WITH THE MT INVARIANTS 

As shown by CBB, the phase tensor can be readily expressed 
directly in terms of the components of the MT tensor itself. 
However, in order to facilitate a comparison with previous results, 
the notation and invariants of WAL introduced earlier are preferred 
here. Substituting from (3) into (14), and inverting P, we note that 

T= 1 x 
~; - ~~ - ~J + ~1 

( ~'-~3 
l-~2 +~4 

Introducing an invariant quantity 11 defined by 

J = ~,1J, - ~21J, - ~31J3 + ~41J4 
I ~; - ~~ - ~; + ~i 

1 
(18) 

and performing the matrix product with the aid of definitions (9), 
we obtain 

(19) 

Under a rotation of axes (4), the matrix T in (19) transforms into 

(20) 

where we have substituted from the last equation in (10), and for 
convenience, have defined dij'l == dij + dkl . 

It follows from (20) that the condition for T to be symmetric 
is li7 = 0 (or d41 = dn ), and furthermore that T becomes diagonal 
when the axes are rotated through an angle a = a" satisfying 
d1243C = d m4S, i.e., 

d d +d. d-d tan 28 = ~ == _" __ 4_, = _1' __ 3_4 

, d 1324 dl3 + d'4 dl3 + d 24 

(21) 

Equation (19) can now be expressed more concisely in terms 
of a" as 

10 sin 28, - 101,) . 
1- 10 cos 28, (22) 

If the regional structure is ID then, in accordance with (17), T 
must reduce to the identity matrix multiplied by some scalar. Thus 
the required conditions are IJ7 0= d4 , - d23 == 0 and 10 == 0, since they 
reduce equation (22) to (17) with tanqJ = 1 I' The measured data are 
then consistent with aID regional structure with impedance phase 
given by this value of (jI. It also follows from (22) that IJ7 == ° 
(Io et 0) is the necessary condition for a 20 regional structure and 
that the strike angle is a, defined by (21), the same result obtained 
by WAL and earlier by Bahr (1988). 
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(23) 

and J == Klcos2as + K2sin2as' we can make these observations 
more transparent by rewriting (22) in the form 

(24) 

where 

(25) 

The first, second, and third terms in (24) can then be regarded as 
the ID, 20 and 3D contributions to the phase tensor respectively, 
and their magnitudes are in the ratios 1: 10 : 101/71. 

From its definition (11), it is obvious that 10 == 0 if and only 
if d l2 - d34 = 0 and d l3 + d24 = O. Indeed, these conditions ensure 
that both numerator and denominator of (21) vanish when 10 == 0, 
thereby rendering as indeterminate, as required when the structure 
is ID. It follows that the left-hand side of the identity 

(S13 -S24)(d,2 -d34 )-(SI2 +s,4)(dll +d24 )== 

d41 (522 +S33)- d23(S44 +5,,) 

(WAL, equation (31» vanishes when 10 = 0, and since by definitions 
(6) and (9) we have S44 + SII - S22 - 5 33= 2, the other condition for 
a ID regional structure, d41 = d,3' further implies that d41 == d23 == O. 
Hence (1//1)16 0= d41 = d'3 = O. Thus, in complete agreement with 
the criteria specified by WAL, the conditions for local distortion in 
a ID region are satisfied when 16 = la == 0, in which case 17 becomes 
indeterminate because d41 = d23 == 0 when 10 = O. It was observed 
by WAL that the same conditions arise when there is local 
distortion in a 20 region at a position where there is no phase 
splitting between the E-polarization and B-polarization fields. 

Conditions for ID Structures in Practice 

With real data, the invariants will never vanish precisely; rather, 
they will become negligibly small in some sense. Thus for an 
interpretation of regional one-dimensionality we want the second 
and third terms in (24) to be always negligibly small compared 
with the first term. These conditions will hold provided that 
1/0Icos2a,l, 1/0Isin2B,I and 1/01/71 are all very much less than 1,. In 
other words, we require 

(26) 

Thus the practical criteria for assuming that MT data are 
consistent with a ID regional structure are Id41 - d231 < 0.1 to 
maintain the symmetry of T, and 10 < 0.1 to ensure that T is 
approximately a scalar multiple of the identity matrix. These 
conditions are similar to those prescribed by WAL except for the 
different normalisation of the parameters du' This normalisation 
has led to a proper justification of the first criterion in (26), 
compared with the rather more speculative assertion Q < 0.1 made 
by WAL in the original notation. 

Conditions for 2D Structures in Practice 

Likewise, for an interpretation of regional two-dimensionality 
we may assert that the elements of the antisymmetric part of T, 
which are clearly invariant under a rotation of the axes, must 
always be small in magnitude compared with the corresponding 
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off-diagonal elements in the symmetric part, which are not 
invariant. It is immediately apparent from equation (22) that the 
required condition is 

(27) 

which, by (25), is equivalent to IJ,I « IJ21 in (24). Thus a 
reasonable criterion in practice for a 2D interpretation of the 
regional conductivity structure is 1/71 < 0.1. This is precisely the 
necessary condition obtained by WAL using different arguments. As 
mentioned in Section 1, it was also shown by WAL that if 1/71 exists, 
then 1/71 :::; I. When 1/71 > 0.1, it is concluded that the regional structure 
is 3D, the degree of three-dimensionality increasing with 1/71. 

----"~=-.:....----jP 

---::--l""=--..L...---\--------'----'-----=~-~ T'[[ 
01+--------->...,...----+ 

Fig. 1. Mohr circle representation of the phase tensor. 
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Fig. 2. Flow chart for analysis of MT data. 

MT invariants and the phase tensor 

MOHR CIRCLE FOR THE PHASE TENSOR 

Following Bibby (1986), CBB displayed the phase tensor 
graphically as an ellipse in the xy-plane. An alternative approach, 
adopted here as an aid to the discussion of tensor invariants, is to 
represent the phase tensor by a Mohr circle (Lilley, 1993) drawn 
in the plane of T'II and T'21' 

The three independent invariants Jp J2, and J, defined in (18) 
and (25) are related, respectively, to the determinant, the trace, and 
the 'skew' (the difference of its off-diagonal elements) of the phase 
tensor, which are the three well-known independent invariants of a 
2x2 matrix under rotations. Then we obtain from (22) and (25) 

(28) 

which is the circle with centre (Jp J,) and radius J2 traced out by 
the point (T'lp T'21)' or P in Figure I, as 8 varies. The starting point 
of P, denoted by Po in Figure I, represents the recorded values 
of the MT tensor components in the actual axes of measurement. 
When the axes (x, y) are rotated through an angle 8 in the right
handed sense about the positive z-axis, P moves from Po clockwise 
around the circle through an angle 28. 

From the preceding analysis it is readily seen that if the regional 
conductivity structure is 2D, then J, = 0, i.e., the centre of the 
Mohr circle lies on the horizontal axis T'21 = O. The strike direction 
is reached when P is on the horizontal axis as it rotates around the 
circle, the strike angle 8, being given by half its angle of rotation. 

The more realistic condition (27) translates into IJ,I « J2, or 
Isin yl < 0.1 where y is the angle shown in Figure I. If the regional 
structure is 3D, then IJ, 1 1 J2 > 0.1. Note that when y is small, but 
non-vanishing, the strike angle given by (21) corresponds to the 
point P on the Mohr circle where T'II attains its extremum value 
J

I 
+ J

2
, i.e., where CP is horizontal as depicted in Figure I, not 

the point PI where it intersects with the horizontal axis. Thus the 
off-diagonal elements of T' are not equal to zero when 8 = 8, in 
this case, nor do they vanish simultaneously at any point, but rather 
vanish individually for the two distinct angles of rotation 

8 = 8, ± (arcsin/7 )/2 . (29) 

Hence (arcsin 17)/2 can be regarded as a measure of the 
uncertainty in the strike angle given by (21) with real data. 

If the regional conductivity is ID, then J2 = J, = 0 and the Mohr 
circle shrinks to a point on the horizontal axis. In practical terms, 
the relevant conditions corresponding to (26) are J2 « I J I I and 
1 J, I « I JI I. Since 1 J I I:::; (J1 2 + J,2) 112, the conditions for a ID 
interpretation of the data to hold can be expressed geometrically 
as Isin al « I and Isin 131 « I, where a and 13 are the angles shown 
in Figure I. 

It is concluded, therefore, that three invariants, IJ,IIJ2 == 1/71, 
J/IJII == 10 , and IJ/JII == 101/71 == Id41 - dnl, which are based on just 
two (rather than seven) independent invariants, 10 and 17, of the 
original MT tensor, can be used as indicators of the dimensionality 
of the regional structure. All three are less than or equal to sines 
of angles in the Mohr circle diagram, are therefore bounded by 0 
and I, and can be considered small when they are less than 0.1 in 
magnitude. 

The Mohr circle representation and decomposition (24) can 
be compared with the corresponding procedures used by CBB to 
display the phase tensor graphically and reveal the role played by 
its invariants. By analogy with the method of Bibby (1986) for 
representing the DC apparent resistivity tensor, they portrayed 
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the phase tensor as an ellipse in the xy-plane, given in polar 
coordinates (r, 1jI) by 

r'cos'(IjI- 11, - {312) r'sin'(l/f - 11, - {312) 
-----'-'-------'----::-', --'-- + ,= 1 , (30) 

(1o+J,)" (1o-J,)" 

where 10 = (l,' + 1/)'12 and /3 is the angle shown in Figure I, 
defined by tan /3 = 1/1,. Here the polar radius r in the direction 
defined by the unit vector n == r/lrl, is related to T by the formula 
IIr = IT-' . nl. It is at once apparent from the form of (30) that the 
lengths of the semi-major and semi-minor axes of the ellipse are 
given by la + J

2 
and 10 - 12 respectively, and that the major axis 

is rotated through a positive angle 8, + /312 from the x-axis in the 
observer's frame. If the regional structure is ID, the ellipse reduces 
to a circle of radius 1, == tanip where ip is the impedance phase. If 
the region is 20, then T is symmetric so that l

J 
= 0, i.e., /3 = 0, and 

the axes of the ellipse lie along and perpendicular to the direction 
of strike. 

Routine algebra verifies that the matrix representing T in (22) 
can be decomposed into the form 

where R is the rotation matrix (4) and diag(a, b) is the 2x2 
diagonal matrix with elements a and b. This is essentially the 
singular value decomposition of T employed by CBB, albeit in a 
different notation. It expresses the dependence of T on the three 
invariants lp 12, and l J and the angle 8, rather differently from that 
in the previous decomposition (24). 

DISCUSSION 

While the conclusions reached about the nature of MT data 
are generally similar whether they are based on the invariants of 
the MT tensor itself, or on the phase tensor of CBB, there is little 
doubt that the innovative and insightful approach of CBB leads 
to a more elegant and much simpler analysis, largely because 
the phase tensor is real whereas the MT tensor is complex. Thus 
there are only three tensor invariants to consider compared with 
the seven invariants of the MT tensor, and they can be displayed 
geometrically with the aid of only one Mohr circle compared 
with the two coupled Mohr circles required for the MT tensor. An 
interesting outcome of the analysis is that the dependent invariant 
I defined in (6), has emerged as a more natural normalizing factor 
when defining the parameters d;; and Sij than the term 1/2 chosen 
byWAL. 

The gains in simplicity achieved by employing the phase 
tensor of CBB can only be won, of course, with sacrifices made 
elsewhere. What has been lost is the ability to distinguish between 
distorted and undistorted data in 20 and ID regions, although 
this information is still available, of course, in the full complex 
MT tensor. This is a minor penalty to pay, however, because real 
data are always distorted in some sense, and strictly 20 or ID 
configurations are only found in idealised mathematical models, 
not in the real world. In fact, some of the results for truly 20 or ID 
conductivity structures are already included in the corresponding 
results for distorted data. Thus, if the regional structure is 20 and 
the data are undistorted, then there exists an angle 8, such that 
P'" = P'22 = Q"I = Q"2 = 0, i.e., from (5) 

(32) 

as stated by WAL. The first of these conditions reduces the 
formula (21), and the condition 1r/7 = ° for the phase tensor to be 
symmetric, to tan(28) = -d34ld24 and d23 = ° respectively. It follows 
by simple algebra that (21) then simplifies to the expression in 
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Site 1 2 3 4 5 6 7 8 9 10 

T (s) 

.006 + + + + 

.008 + + 

.012 + 

.018 + + + + + 

.026 + + + 

.029 + + 

.041 + + 

.058 + + + 

.068 + + + + 

.083 + + + + + 

.114 + + + + + + + + + 

.120 + + + 

.177 + + + + 

.263 + + + + 

.293 + + + + + + + + 

.410 + + + + + + + + 

.580 + + + + + + + + + 

.683 + + + + + + + 

.819 + + + + + + + + 
1.14 + + + + + + + + + 
1.67 + + + + + + + + 
2.41 + + + + + + + + 
3.53 + + + + + + + + 
5.25 + + + + + + + + + + 
7.43 + + + + + + + + 
8.19 + + + + + + + + + 
10.4 + + + + + + + + + + 
13.7 + + + + + + + + + + 
20.6 + + + + + + + 
29.0 + + + + + + + + 
41.0 + + + + + + + + 
83.3 + + + + + + + 
175 + + + + + + + + + + 
416 + + + + + + + + + + 
1110 + + + + + + + + + 

Table 1. Schematic diagram showing the interpretation of the 
conductivity structure, ID ( - ), 2D ( I ) or 3D ( + ), at selected sites and 
for each period, as given by the tensor invariants. A blank cell indicates 
a rejected datum. The sites are numbered from west to east, with 
geographical coordinates: 1 (20.700 S, 140.300 E), 2 (20.72°S, 140.62°E), 
3 (20.67"S, 140.82°E), 4 (20.64°S, 140.93°E), 5 (20.64°S, 141.000 E), 6 
(20.63"S, 141.100 E), 7 (20.62°S, 141.200 E), 8 (20.65°S, 141.41°E), 9 
(20.64°S, 141.54"E), 10 (20.66°S, 141.71°E). The rows are ordered from 
top to bottom with increasing period T in seconds. 

Period T (s) Site 3 Site 5 

0.012 24.9° + 1.2° 
0.018 27S ± 3.8° 
0.026 
0.029 26.3° + 2.ZO 30.8° ± OS 
0.041 29.1 ° + 1.8° 
0.058 
0.068 26.5° + 2.2° 
0.083 26.8° ± 0.1° 29.2° ± 1.10 
0.114 25.0° + 4.0° 
0.120 
0.177 29.8° ± 4.8° 
0.263 

Table 2. Strike angles and their uncertainties. 

(32). For a ID structure without distortion, we have additionally 
P'12 = - P'21 and Q'12 = - Q'2P whence (, = 1]2 = (J = I]J = ° as well. 
Thus the phase tensor (19) reduces to T = 111 = (1]/(4)1 = (//11)1, 
which by comparison with (17), shows that the impedance phase 
of the ID region is given by arctan(// 1

1
), in agreement with a result 

quoted by WAL. The associated apparent resistivity was also stated 
by WAL to be 110(// + 1,')lw, where 110 is the permeability of free 
space, but this information is not recoverable when dealing with 
the phase tensor alone. 
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A SIMPLE ANALYSIS OF DATA 

Following the scheme illustrated in Figure 2, we have applied 
the ideas described above to a rudimentary analysis of MT data 
collected in a region of NE Australia. Note that the flow chart 
rejects those measurements that appear not to be 3D (i.e., 1/71 < 
0.1) and yet violate the conditions det(Re M) > 0 and det(Im M) > 
o suggested by Lilley (1998) as necessary for physical MT data to 
be treatable. Such data do occasionally occur in practice, and are 
possibly associated with a high degree of local (as distinct from 
regional) anisotropy. 

The data were collected in NW Queensland at MT sites along 
a line from Mount Isa in the west to the Eromanga Basin in the 
east. The line traverses the Carpentaria anomaly (Chamalaun et 
aI., 1999), which runs roughly north-south and may mark the 
boundary between the pre-Cambrian Mount Isa block and the 
younger rocks of the basin. The data were supplied as components 
of the impedance tensor ,uoM measured in m V!km/nT for periods 
T in the range 6.0xlO·3 s to 1.11 xl 03 s. 

Mean values of the tensor components with their standard 
errors were available for each site and period. For this preliminary 
demonstration of the preceding theory applied to field data, we 
have simply computed the invariants and strike angles (where 
relevant) for a range of periods at 10 selected sites, from the 
mean values of the tensor components. Three distinctive symbols 
are used in Table I to show the interpretation of the data at each 
site as suggested by the values of the tensor invariants. Horizontal 
and vertical lines represent ID and 2D structures respectively, 
while a combination of the two (a plus sign) represents a 3D 
region. The relevant symbols for each site are displayed in a 
column in order of increasing period from top to bottom, and 
the columns themselves are arranged alongside each other from 
left to right corresponding to the order of sites from west to 
east along the profile. The resulting diagram as such is only 
schematic; the columns and rows are equally spaced, even though 
neither the distance between the actual sites nor the interval 
between the square root of the measured periods are uniform. 
Nevertheless it is useful in providing an immediate visualization 
of the regional structure. 

The sedimentary basin is revealed as a ID region near the 
surface on the right of the profile, whereas the Mount Isa block on 
the left has a mainly 3D interpretation. The data at Site 3, and to a 
lesser extent at Site 5, are consistent with a shallow 2D structure 
over a range of periods, and probably reflect the presence of the 
Carpentaria anomaly. Table 2 displays the values of strike angle at 
these two sites as calculated from formula (21), along with their 
theoretical uncertainties as given by (29). The calculated strike 
angles are, of course, ambiguous to the extent of ±90°. Where the 
value of 1/71 unexpectedly suggests a 3D structure at a single period 
within a range that is otherwise 2D (e.g., period 0.114 s at Site 
3), we have calculated a strike angle anyway, because the cut-off 
value of 0.1, which distinguishes 2D from 3D regions, is somewhat 
arbitrary. The larger value of 1/71 in such cases is always reflected in 
the increased uncertainty in the calculated value of the strike angle. 

For the 10 periods in the range 1.2xlO·2 s to 1.2xlO' s, 
the average strike angle at Site 3 is N26.2°E with a standard 
deviation of 1.1°. If the last two results for Site 3, up to the period 
2.63xlO·' s, are taken into account, the average strike angle 
becomes N24.9°E with a much larger standard deviation of 3.1°. 
The average strike direction determined from 9 periods in the same 
period range at Site 5 is N30.00E with standard deviation 3.6°. 
These results compare quite well with the strike angle determined 
by Groom-Bailey decomposition for short periods on the west of 
the profile (Lilley et aI., 2003). 

MT invariants and the phase tensor 

Since the conditions for determining the dimensionality of the 
regional conductivity are necessary, but not sufficient, we have 
ignored the occasional isolated examples in Table I indicating a 
ID or 2D structure. If the region were truly ID or 2D then we 
would expect this to be seen over a range of periods, especially if 
only in-phase distortion is present, as assumed in the theory. 

Finally, we emphasise that the above example of treating real 
data is primarily illustrative to demonstrate an application of the 
theory in practice, not to present a detailed, thorough investigation 
of the Australian data. A full treatment would include an error 
analysis based on the given standard errors of the MT tensor 
components. It is hoped eventually to present such an analysis of 
these and other MT data elsewhere. 

CONCLUSIONS 

By employing the phase tensor of Caldwell, Bibby, and Brown 
(2002, 2004), we have greatly simplified and clarified our earlier 
investigation of the MT tensor invariants and their application to 
an interpretation of MT data. In place of the seven independent 
invariants (plus one additional dependent invariant which proved 
useful in the previous study), only three are needed to characterise 
the real phase tensor, which nevertheless retains the salient 
properties of the more familiar, but complex, MT tensor with 
virtually no loss of insight. It has been shown that the necessary 
conditions on these three invariants for the regional conductivity 
structure to be ID, 2D, or 3D are essentially equivalent to those we 
derived in our previous paper for galvanically distorted data. The 
previous dependent invariant, however, has now been renormalised 
and is related to one of the three independent invariants, Jr 
This leads to a more satisfactory understanding of its role in the 
interpretation of MT data, and graphically it is clearly seen to be 
proportional to the radius of the Mohr circle for the phase tensor. 
Likewise, 17 is now readily identified as being proportional to the 
off-axis displacement of the Mohr circle, whereas in our earlier 
paper it was related in an obscure way to an angle that served as the 
coupling between the two Mohr circles representing the separate 
real and imaginary parts of the MT tensor. 

The simplicity of the new approach is embodied in equation 
(24), which separates the phase tensor into three simple matrices 
associated with ID, 2D, and 3D structures, respectively. The 2D 
and 3D terms are multiplied by factors involving those invariants 
that were shown in our earlier work to be necessarily vanishing 
when the regional structure is ID, while the factor in the third term 
was similarly shown to vanish alone when the regional structure 
is 2D. Thus the decomposition summarised by equation (24) is 
somewhat different from that favoured by CBB who diagonalised 
the phase tensor by a singular value decomposition involving the 
strike angle (), and a 'skew angle' given by -/312 == [arctan (-li7)]/2 
in our notation. 

Although the map of regional dimensionality in Table I is very 
similar to that obtained when we examined the Australian data 
(Agarwal, Weaver and Lilley, 2000) according to the criteria given 
by WAL, some of the strike angles computed at '2D sites' are 
quite different. This is because the previous analysis distinguished 
between apparently distorted and undistorted data at 2D sites, and 
prescribed different formulae, (21) for the former and a modified 
form of (32) for the latter, for calculating the strike angle in the 
two cases. When using equation (32) we make the tacit assumption 
that d23 "" O. Theoretically the vanishing of dn , which is equivalent 
to 17 = 16 = 0, is indeed a requirement for a 2D structure. A re
examination of the data, however, showed that even when both 
conditions 17 < 0.1 and 16 < 0.1 were satisfied, it did not always 
follow that d23 was negligible. In such cases, the angles given by 
the two alternative formulae in (32) can be significantly different, 

Exploration Geophysics (2006) Vat 37, No. 3 266 



Weaver, Agarwal and Lllley 

and their average value -S2/S22' which was actually used by WAL to 
calculate the strike angle, then becomes unreliable. An advantage 
of a method based on the phase tensor of CBB is that distorted and 
undistorted data are treated alike, so that the formula for the strike 
angle given in (21) is always used. As we have shown, this formula 
reduces algebraically to (32) when d23 = O. 

The analysis of noisy synthetic data undertaken by WAL 
showed that computed values of the strike angle given by (21) 
and the invariant 17 defined in (10), were less stable than the 
values obtained for the other invariants. A detailed treatment 
of the Australian and other MT data must therefore include 
an error analysis based on the standard errors of the MT 
tensor components in order to place some confidence limits on 
calculated strike angles. 
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